21 October 2014 Deriving a flow coherent surface for runoff simulation in urban areas using light detection and ranging data and multispectral imagery
Gabriel Henrique de Almeida Pereira, Jorge Antonio Silva Centeno
Author Affiliations +
Abstract
This work addresses the topic of flow direction and flow accumulation simulations in urban areas over digital surface models derived from light detection and ranging (LiDAR) data and multispectral high-resolution imagery. LiDAR data are very dense point clouds that include many objects that, in a 2 1/2-dimensional model, may become false obstacles for runoff, such as power lines or treetops. The presence of such obstacles is a problem for the flow paths simulation, especially in urban areas. We describe a methodology to produce a surface model more suitable for runoff modeling, by filtering objects that are above the surface and should not influence the flow paths. In a first step, thin obstacles are suppressed by applying mathematical morphology to a raster surface model. In a second step, satellite multispectral data and LiDAR data are classified using a support vector machine to identify trees, which are also removed from the digital model, and produce a more coherent surface model for runoff simulation. To simulate and evaluate the results, the flow-routing algorithm Dinfinity was used. The results show that the filtering is necessary to achieve a better characterization of runoff paths and allows identifying places where runoff may accumulate, causing floods or other problems.
© 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) 0091-3286/2014/$25.00 © 2014 SPIE
Gabriel Henrique de Almeida Pereira and Jorge Antonio Silva Centeno "Deriving a flow coherent surface for runoff simulation in urban areas using light detection and ranging data and multispectral imagery," Journal of Applied Remote Sensing 8(1), 083545 (21 October 2014). https://doi.org/10.1117/1.JRS.8.083545
Published: 21 October 2014
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
LIDAR

Data modeling

Buildings

Computer simulations

Mathematical modeling

RGB color model

Multispectral imaging

Back to Top