After performing the SICCF on Eq. (16), we obtain Display Formula
$RAB(tm,\tau )=RABp,self(tm,\tau )+RABq,self(tm,\tau )+RABpq,cross(tm,\tau )+RABqp,cross(tm,\tau ),$(31)
where Display Formula$RABpq,cross(tm,\tau )=\sigma p\sigma q\u2009exp[j(\varphi Bq\u2212\varphi Ap)]\u2062exp{j2\pi [(fp\u2212fq)tm+(fp+fq)\tau 2+12(\mu p\u2212\mu q)tm2+12(\mu p+\mu q)\tau tm+12(\mu p\u2212\mu q)\tau 24]},$(32)
and the cross-term $RABqp,cross(tm,\tau )$ is the same as $RABpq,cross(tm,\tau )$ in essence; thus, we only take $RABqp,cross(tm,\tau )$ as an example to analyze. Then, after ST, we have Display Formula$STABpq,cross(tm\u2032,\tau )=\sigma p\sigma q\u2009exp[j(\varphi Bq\u2212\varphi Ap)]\u2062exp{j2\pi [(fp\u2212fq)tm\u2032\tau +(fp+fq)\tau 2+12(\mu p\u2212\mu q)(tm\u2032\tau )2+12(\mu p+\mu q)tm\u2032+12(\mu p\u2212\mu q)\tau 24]}.$(33)