1 May 2008 Intercomparison of near-real-time biomass burning emissions estimates constrained by satellite fire data
Jassim A. Al-Saadi, Amber Jeanine Soja, Robert Bradley Pierce, James J. Szykman, Christine Wiedinmyer, Louisa K. Emmons, Shobha Kondragunta, Xiaoyang Zhang, Chieko Kittaka, Todd Schaack, Kevin West Bowman
Author Affiliations +
Abstract
We compare biomass burning emissions estimates from four different techniques that use satellite based fire products to determine area burned over regional to global domains. Three of the techniques use active fire detections from polar-orbiting MODIS sensors and one uses detections and instantaneous fire size estimates from geostationary GOES sensors. Each technique uses a different approach for estimating trace gas and particulate emissions from active fires. Here we evaluate monthly area burned and CO emission estimates for most of 2006 over the contiguous United States domain common to all four techniques. Two techniques provide global estimates and these are also compared. Overall we find consistency in temporal evolution and spatial patterns but differences in these monthly estimates can be as large as a factor of 10. One set of emission estimates is evaluated by comparing model CO predictions with satellite observations over regions where biomass burning is significant. These emissions are consistent with observations over the US but have a high bias in three out of four regions of large tropical burning. The large-scale evaluations of the magnitudes and characteristics of the differences presented here are a necessary first step toward an ultimate goal of reducing the large uncertainties in biomass burning emission estimates, thereby enhancing environmental monitoring and prediction capabilities.
Jassim A. Al-Saadi, Amber Jeanine Soja, Robert Bradley Pierce, James J. Szykman, Christine Wiedinmyer, Louisa K. Emmons, Shobha Kondragunta, Xiaoyang Zhang, Chieko Kittaka, Todd Schaack, and Kevin West Bowman "Intercomparison of near-real-time biomass burning emissions estimates constrained by satellite fire data," Journal of Applied Remote Sensing 2(1), 021504 (1 May 2008). https://doi.org/10.1117/1.2948785
Published: 1 May 2008
Lens.org Logo
CITATIONS
Cited by 67 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Combustion

MODIS

Flame detectors

Satellites

Carbon

Biological research

Ecosystems

Back to Top