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Abstract. Early identification of cotton fields is important for advancing boll weevil eradication
progress and reducing the risk of reinfestation. Remote sensing has long been used for crop
identification, but limited work has been reported on early identification of cotton fields.
The objective of this study is to evaluate aerial imagery for identifying cotton fields before cotton
plants start to bloom. A two-camera imaging system was used to acquire red-green-blue and
near-infrared images with 1-m pixel resolution along two flight lines over an 8 km × 12 km

cropping area. The images were mosaicked using two approaches: manual georeferencing fol-
lowed by position-based mosaicking in Erdas Imagine and content-based automatic mosaicking
in Pix4DMapper. The mosaicked images were then classified into different crops and cover types
using supervised classification techniques. Results showed that both types of mosaics were
effective for cotton identification and that maximum likelihood classification produced the
best overall accuracy of 90% for the position-based approach and 91% for the content-based
approach. The methodologies presented in this study will be useful for boll weevil eradication
program managers to quickly and efficiently identify cotton fields at relatively early growth
stages using mosaicked aerial imagery. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.016008]
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1 Introduction

The boll weevil (Anthonomus grandis grandis Boheman) is now eradicated from all cotton-
producing states in the U.S. except for the Rio Grande Valley of Texas.1 However, the cotton
(Gossypium hirsutum L.) growing areas, especially those adjacent to the lower Rio Grande
Valley, will remain susceptible to reinfestation from boll weevils that migrate or are transported
on cotton harvesting equipment. The eradication program functions by monitoring all cotton
fields using pheromone traps to detect incipient weevil populations and by applying insecticides
when and where justified by weevil captures or as preventive measures.2 Although cotton pro-
ducers are required to report the location of planted cotton fields to the Farm Service Agency,
this information is belatedly available for the boll weevil eradication program. Therefore,
early identification of fields planted in cotton is critical for eradication program managers to
effectively monitor boll weevil populations and treat the respective fields in a timely manner.

Another important aspect to ensure the success of the eradication program is the mandatory
and timely elimination of cotton plants following harvest and the subsequent creation of a host-
free period. By law, cotton plants must be destroyed after harvest by a certain date to prevent
regrowth of cotton fruit on which weevil populations can survive and reproduce.3 Volunteer
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cotton plants can also germinate from seed that remains in a field after harvest or that is inad-
vertently scattered by floods or by transport of harvested cotton to gins. Information on the
location and area of planted cotton fields will facilitate the quick detection of potential areas
for volunteer and regrowth cotton plants.

Multispectral imagery from satellite sensors, such as Landsat and SPOT, has been used for
crop identification and area estimation for decades.4–7 As high-resolution satellite sensors, such
as IKONOS, QuickBird, and SPOT 5, have become available more recently, imagery from these
sensors has also been evaluated for crop identification.8–12

Recent advances in imaging technologies have made consumer-grade digital cameras an
attractive option for remote sensing applications due to their low cost, small size, compact
data storage, and ease of use. Consequently, consumer-grade digital color cameras have been
increasingly used by researchers for agricultural applications.13–16 Unlike traditional sophisti-
cated airborne imaging systems that need to be mounted on designated remote sensing aircraft,
imaging systems based on consumer-grade cameras can be easily mounted on any small aircraft
with no or minimal modification.17 Furthermore, agricultural aircraft provide a readily available
and versatile platform for airborne remote sensing. Single-camera and two-camera imaging sys-
tems have been attached to agricultural aircraft to take aerial images for monitoring crop growing
conditions and detecting crop pests.15–18

Since aerial imagery has a relatively small ground coverage compared with satellite imagery,
a large number of images taken along multiple flight lines with specified minimum overlaps are
needed to cover a large geographic region. Image mosaicking techniques are then used to mosaic
the images. Most image processing software, such as Erdas Imagine (Intergraph Corporation,
Madison, Alabama), requires that the input images be georeferenced to a coordinate system with
known projection information before being mosaicked based on their geographic position.
Another approach for image mosaicking is based on the content of the images using photogram-
metry software, such as Pix4DMapper (Pix4D SA, Lausanne, Switzerland). Pix4DMapper can
automatically convert large numbers of aerial images into georeferenced two-dimensional ortho-
mosaics and three-dimensional surface models using the latest innovations in computer vision
and photogrammetry.

Various pixel-based classification methods have been used to classify remote sensing
imagery. These include traditional unsupervised and supervised classification methods, such
as iterative self-organizing data analysis and maximum likelihood (ML), as well as more
advanced techniques, such as artificial neural networks, support vector machines, and decision
trees.19–22 These classifiers and techniques provide varying levels of success for crop identifi-
cation depending on the complexity of crop growing environments. However, with the
pixel-based classification approach, pixels are classified individually based on their spectral
characteristics regardless of their spatial aggregation. Another approach for crop identification
is object-based classification, which typically relies on segmentation algorithms to define
geographical objects that can be classified. Object-based classification can improve classification
accuracy.23,24 Therefore, object-based techniques have been increasingly used for image clas-
sification.25–27 However, object-based classification generally requires additional software
and advanced image processing skills.16,28 For parcel- or field-based classification, field boun-
daries need to be available or manually digitized.12,24 This can add more processing time and
cost for the production of classification maps.

The overall goal of this study is to develop practical methodologies for early identification of
cotton fields using airborne multispectral imagery. To achieve this goal, accurate and easy-to-use
image mosaicking and classification techniques needed to be identified for efficient and quick
implementation. As discussed above, satellite imagery has beenwidely used for crop identification,
but limited work has been reported on early identification of cotton fields, especially using aerial
imagery. Therefore, the specific objectives of this study are to: (1) evaluate position- and content-
based image mosaicking techniques for creating mosaics from overlapped aerial multispectral
imagery; (2) compare five commonly used supervised classification methods, including ML, mini-
mum distance (MD), Mahalanobis distance (MAHD), spectral angle mapper (SAM), and spectral
correlation mapper (SCM), for crop identification from the mosaics; and (3) identify practical
image mosaicking techniques and classification methods that can be easily implemented for iden-
tification of cotton fields from aerial imagery before cotton plants begin to flower.
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2 Materials and Methods

2.1 Study Site

An 8 km × 12 km cropping area with the center coordinates (30°34′11″N, 96°29′4″W) along the
Brazos River near Snook, Burleson County, Texas, was selected for this study (Fig. 1). The soils
in the area are very deep and very slowly permeable with slopes ranging from 0% to 3%. The
surface layer and subsoil are reddish brown clay underlain by dark gray silty clay loam. The
underlying material is mainly composed of clayey and loamy alluvial sediments. The clayey
surface layer may delay cultivation after periods of prolonged rainfall. Cotton, corn, and grain
sorghum are the main crops. Minor crops, such as winter wheat, soybeans, watermelon, and
alfalfa, are also cultivated. Corn and grain sorghum are typically planted in February to March
and harvested in July to August, while cotton is planted in April to May and harvested in August
to October. In the 2014 growing season, cotton and corn were the two main crops, while grain
sorghum, winter wheat, and watermelons were grown in the study area. Other noncrop cover
types included mixed herbaceous species (pasture), lush grass (hay), mixed woody species,
water bodies, and bare soil/impervious surfaces.

2.2 Image Acquisition

A two-camera imaging system described by Yang et al.14 was used to acquire images from the
study area. The system consisted of two Canon EOS 5D Mark II digital cameras with a 5616 ×
3744 pixel array (Canon USA Inc., Lake Success, New York). One camera was used to capture
red-green-blue (RGB) images, while the other was modified to capture near-infrared (NIR)
images by replacing the NIR blocking filter fitted in front of the sensor with a 720-nm longpass
filter. The modified camera also had three channels, but only NIR radiation was recorded. As the
red channel had the best sensitivity, the image recorded in the red channel was used as the NIR
image. The RGB camera was also equipped with a global positioning system (GPS) receiver to
geotag images. A remote control was used to trigger both cameras simultaneously. Images from
each camera were stored in 16-bit RAW (CR2) and JPEG files in a CompactFlash card.

A total of 32 pairs of RGB and NIR images were captured at 3120 m above ground
level along two flight lines spaced 3200 m apart. Each image covered a ground area of

Fig. 1 An 8 km × 12 km cropping area (yellow box) near Snook, Texas, with geotagged RGB
images (thumbnails) plotted along two flight lines on Google Earth. The thumbnails just represent
the image locations but not the actual image sizes.
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5760 m × 3840 m with a ground pixel size of 1.0 m. A Cessna 206 single-engine aircraft was
used to acquire imagery under sunny conditions on June 10, 2014. The side overlap between the
flight lines was 43%, and the forward overlap between the successive images was at least 50%.
Since the GPS information was included in the metadata of the RAW and JPEG images, Picasa
(Google Inc., Mountain View, California) was used to create a KMZ file from the 32 JPEG
images, so the geotagged images (thumbnails) can be viewed on Google Earth (Google Inc.,
Mountain View, California) (Fig. 1). At the time of the image acquisition, cotton plants were
predominately at the pinhead to the third-grown square stage with an average height of 20 to
54 cm and an average width of 22 to 55 cm in the sampled fields. Corn had tasseled and grain
sorghum started to head, and the canopy cover of these two crops was closed at the time of
imaging.

2.3 Image Mosaicking

Both traditional position-based and more advanced content-based approaches were used to
mosaic the images in this study. Erdas Imagine was selected for the position-based approach,
while Pix4DMapper Pro was used for the content-based approach. Before the two mosaicking
approaches were applied, the 32 pairs of RAW images were first corrected for vignetting and
then converted to 16-bit Tiff using Digital Photo Professional software (Canon USA Inc., Lake
Success, New York).

The position-based approach started with aligning each pair of RGB and NIR images as a
four-band image based on nine ground control points (GCPs) evenly distributed across the pair
of images using a second-order polynomial transformation model. The root-mean-squared
(RMS) errors for the 32 pairs of images ranged from 0.2 to 0.7 pixels with a mean of 0.4 pixels.
Then each aligned image was georeferenced to the World Geodetic System 1984 (WGS84)
datum and the Universal Transverse Mercator (UTM) Zone 14N coordinate system. Similarly,
nine evenly distributed GCPs were identified on the aligned image. As a large number of GCPs
for all the images were needed, the UTM coordinates for the GCPs were directly extracted
from the October 3, 2014, Google Earth imagery. The RMS errors for the 32 georeferenced
images ranged from 3.3 to 9.6 m with a mean of 6.6 m based on second-order polynomial
transformation.

All the georeferenced images were resampled to 1-m pixel resolution with the nearest-
neighborhood resampling technique. Four mosaicked images were created using four different
combinations of color correction methods and overlay functions, including (1) no color correc-
tion and a simple overlay, (2) no color correction and the feather function, (3) color balancing
and the feather function, and (4) histogram matching and the feather function. Color balancing
attempts to adjust each image’s brightness based on the brightness values in the areas it overlaps
with in other images. Histogram matching converts the histogram of one band of an image to
resemble another histogram to match the overall color and shading among images. A simple
overlay stacks the images in the order they were acquired, so the last image is on the top, whereas
the feather overlay function employs a linear interpolation of the values for all the pixels in the
overlap area. To examine the effect of the number of images on mosaicked images, a subset of 10
images with a minimum of 20% overlap was selected for mosaicking using the four combinations
of color correction methods and overlay functions. In addition to the four mosaicked images from
all 32 images, a total of eight mosaicked images were created using the position-based approach.

The content-based approach did not require the input images to be georeferenced, but the
geographic position for the center of each geotagged RGB image allowed the orthomosaics to be
georeferenced in the process. Since the NIR images were not geotagged, the geographic infor-
mation in the RGB images was first saved in a file and then transferred to the NIR images after
the images were uploaded into Pix4DMapper. To increase position accuracy, 10 GCPs in the
imaging area collected with a 20-cm GPS Pathfinder Pro XRS receiver (Trimble Navigation
Limited, Sunnyvale, California) were added. Two orthomosaics, one from the RGB and one
from the NIR images, were created with a pixel size of 1.04 m and an RMS error of 0.59 m.
In addition, a digital surface model was also created. Although the two orthomosaics were not
stacked together by Pix4DMapper, they were already aligned and georeferenced. Erdas Imagine
was used to stack the two mosaics into a four-band image, which was then resampled to 1 m.
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The four possible three-band composites, including the color-infrared (CIR) or NIR–red-green,
NIR–red-blue, NIR–green-blue, and RGB composites, were also created for comparison.

2.4 Image Classification

Crop classes included cotton, corn, grain sorghum, winter wheat, and watermelon, while non-
crop was grouped into five classes: mixed herbaceous species, lush grass, mixed woody species,
water bodies, and bare soil/impervious surfaces. Because of the variations within each of the 10
major classes, 2 to 6 ground verified areas, or areas of interest, within each major class were
selected and digitized on the content-based four-band image as the training areas to represent
respective subclasses for each major class. The numbers of digitized training pixels ranged from
2641 to 592,953 among the 40 digitized areas or subclasses. The total number of the sampled
pixels was 4,338,159 accounting for about 4.5% of the study area. Signatures files were created
for the eight position-based mosaics and the five content-based mosaics using the same train-
ing areas.

Five supervised classifiers built in Erdas Imagine,29 including ML, MD, MAHD, SAM, and
SCM, were applied to the eight position-based mosaics and the five content-based mosaics.
Thus, a total of 40 classification maps were generated for the position-based mosaics and
25 classification maps for the content-based mosaics. The 40 subclasses in each of the 65
classification maps were then merged into the five crop classes and one noncrop class.

Because of within-field variability and spectral similarity between the classes, multiple
classes coexisted within the same field on all classification maps even though only one single
crop was grown in the field. To remove some of the small inclusions of other classes within the
dominant class, AGGIE-GIS aggregation in Erdas Imagine was applied to all classification
maps. Each classification map was divided into 10 m × 10 m windows that produced a single
pixel in the output image. The majority value of the window was assigned as the output value of
the resulting pixel. After the pixel aggregation, all the classification maps had a pixel resolution
of 10 m, and some of the small inclusions were removed.

2.5 Accuracy Assessment

For accuracy assessment of the classification maps, 1100 points were generated and assigned to
the five crop classes and the noncrop class in a stratified random pattern. If a point fell inside a
crop field, the classified crop type was compared with the actual crop type that was ground
verified around the imaging date. If a point fell outside a crop field, its classified class was
compared to the actual noncrop class. Based on the classified classes and the actual classes
at these points, an error matrix for each classification map was generated. Classification accuracy
statistics, including overall accuracy, producer’s accuracy, user’s accuracy, and kappa coeffi-
cients, were calculated based on the error matrices.30

3 Results and Discussion

Figures 2 and 3 present the mosaicked CIR images from the 32 pairs of RGB and NIR images
using the position- and content-based approaches, respectively. Visually, the two mosaics look
very similar. However, mismatches and color differences around overlapped areas in the posi-
tion-based mosaic are noticed when the image was enlarged, while no mismatch or artifact is
found in the content-based mosaic. Both mosaics reveal distinct differences among the crops and
other cover types in the study area. On the CIR images, crops and other vegetation generally had
a reddish color. Since corn and grain sorghum were at their peak growth, they had a dark red
tone. Cotton plants were relatively small and there was substantial soil exposure, so cotton fields
had a pinkish tone. Winter wheat was mature and some fields were even harvested, so it had a
gray to dark gray color. There were only a few watermelon fields, and they had a magenta color.

Figures 4 and 5 show the six-class classification maps generated from the two respective
mosaics presented in Figs. 2 and 3 based on the ML classifier. Although the AGGIE-GIS aggre-
gation was applied to the classification maps, many small areas greater than 10 m × 10 m can be
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seen in the maps. A quick comparison with the CIR images indicates that the classification maps
provided good separations among the crops and the noncrop class. Most of the fields on the clas-
sification maps had only one dominant class, but all fields contained small inclusions of other
classes due to the within-field variability and spectral similarities among some of the classes.

Table 1 summarizes the accuracy assessment results for the 40 classification maps generated
from the position-based mosaics. Overall accuracy ranged from 64.7% for the 10-image mosaic
created using the color balancing and the simple overlay and classified with the SCM classifier to
90.4% for the 32-image mosaic created using no color correction and the feather overlay and
classified with the ML classifier. These accuracy values indicated that 65% to 90% of the
pixels in the study site were correctly identified in the 40 classification maps using the five

Fig. 3 Mosaicked CIR image from 32 pairs of RGB and NIR images using the content-based
approach in Pix4DMapper.

Fig. 2 Mosaicked CIR image from 32 pairs of RGB and NIR images using the position-based
approach with no color correction and the feather overlay function in Erdas Imagine.
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classification methods. Overall kappa ranged from 0.508 to 0.860 among the 40 classification
maps. Kappa values indicate how well the classification results agree with the reference data. A
kappa value of 0 corresponds to a total random classification, while a kappa value of 1 represents
a perfect agreement between the classification and reference data.

Among the five classifiers, ML performed better than any of the other four classifiers for all
the eight mosaics. MAHD was superior to the other three classifiers in all cases except in one
case where MD was better and in two cases where SAMwas better. MD had similar performance
to SAM, while SCM was the worst among the five classifiers. Between the two overlay func-
tions, the feather function was better than the simple overlay. Among the three color correction
methods, no color correction appeared to be better than color balancing or histogram matching,
although the differences among the three were marginal. The overall accuracy values using all 32
images were slightly higher than those using only 10 images for three of the four color correction

Fig. 5 ML-based classification map for the content-based mosaic shown in Fig. 3.

Fig. 4 ML-based classification map for the position-based mosaic shown in Fig. 2.
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and overlay function combinations. Based on these results, ML applied to either the 10-image or
32-image mosaic created using no color correction and the feather overlay function produced
the best classification maps.

Table 2 summarizes the accuracy assessment results for the five classification maps generated
from the content-based mosaics. Similarly, ML performed best, and SCM had the lowest overall
accuracy and overall kappa values among the five classifiers. The best overall accuracy was 91.3%
for the four-band mosaic, slightly higher than the best overall accuracy for the position-based four-
band mosaic (90.4%). The advantage of the NIR band is clearly seen from the difference in overall
accuracy between the four-band mosaic and the RGB composite (91.3% versus 83.8%, respec-
tively). The CIR or NIR–red-green composite had a similar overall accuracy to that of the four-
band mosaic. It also had the highest overall accuracy among the four three-band composites, indi-
cating that a single CIR camera is as effective as the combination of an RGB and an NIR camera.

As overall accuracy indicates the overall performance of all classes as a whole in a classi-
fication map, producer’s and user’s accuracies are more meaningful for the individual classes.

Table 2 Classification accuracy assessment results for mosaicked four-band and three-band
images created from 32 pairs of RGB and NIR images using the content-based approach for
a cropping area.

Band combination

Overall accuracy (%) Overall kappa

MLa MD MAHD SAM SCM ML MD MAHD SAM SCM

NIR-RGB 91.3 77.5 90.2 78.0 69.5 0.873 0.682 0.855 0.683 0.581

NIR-red-green 91.0 75.5 81.6 77.5 65.1 0.869 0.651 0.715 0.668 0.502

NIR-red-blue 89.7 77.6 87.6 73.2 61.6 0.850 0.682 0.816 0.614 0.459

NIR-green-blue 87.1 69.9 78.0 64.6 59.5 0.812 0.574 0.661 0.506 0.372

RGB 83.8 79.0 83.9 68.6 65.8 0.767 0.695 0.765 0.530 0.467

aML = maximum likelihood, MD = minimum distance, MAHD = Mahalanobis distance, SAM = spectral angle
mapper, and SCM = spectral correlation mapper.

Table 1 Classification accuracy assessment results for mosaicked images created from geore-
ferenced four-band images using different combinations of color correction methods and overlay
functions for a cropping area.

Color
correction

Overlay
function

No. of
images

Overall accuracy (%) Overall kappa

MLa MD MAHD SAM SCM ML MD MAHD SAM SCM

None Overlay 10 83.6 70.5 71.5 76.7 69.9 0.760 0.564 0.572 0.667 0.578

None Feather 10 88.9 78.1 80.0 77.2 69.5 0.840 0.686 0.708 0.672 0.579

Color
balance

Feather 10 87.0 79.4 77.9 76.5 64.7 0.813 0.705 0.678 0.662 0.519

Histogram
match

Feather 10 86.8 78.5 80.2 77.2 70.8 0.810 0.708 0.674 0.674 0.580

None Overlay 32 80.3 70.4 73.6 75.2 65.2 0.710 0.571 0.589 0.644 0.508

None Feather 32 90.4 78.2 86.7 76.1 69.6 0.860 0.689 0.803 0.659 0.579

Color
balance

Feather 32 88.7 78.7 85.0 75.6 66.9 0.836 0.694 0.776 0.650 0.543

Histogram
match

Feather 32 86.9 76.2 81.3 75.6 66.6 0.808 0.657 0.712 0.654 0.534

aML = maximum likelihood, MD = minimum distance, MAHD = Mahalanobis distance, SAM = spectral angle
mapper, and SCM = spectral correlation mapper.
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Producer’s accuracy of a class indicates the probability of actual areas for that class being cor-
rectly classified, and user’s accuracy of a class indicates the probability that areas classified as
that class on the map actually represent the class on the ground. Tables 3 and 4 present the error
matrices and accuracy measures for the ML-based classification maps for the position-based
four-band mosaic and the content-based four-band mosaic, respectively. Producer’s accuracy
varied from 79% for grain sorghum to 97% for winter wheat for the position-based mosaic
and from 86% for watermelon and grain sorghum to 97% for winter wheat for the content-
based mosaic, whereas user’s accuracy ranged from 75% for winter wheat to 95% for noncrop
for the position-based mosaic and from 79% for grain sorghum to 95% for noncrop for
the content-based mosaic. The content-based mosaic had slightly higher overall accuracy and
kappa values than the position-based mosaic.

Table 3 An error matrix and accuracy measures for an ML-based classification map for
a mosaicked four-band image created from 32 manually georeferenced images with no color
correction and the feather overlap function for a cropping area.

Classified
category

Actual category

Total
User’s

accuracy (%)Cotton Corn
Grain

sorghum
Winter
wheat Watermelon Noncrop

Cotton 243 2 1 0 0 20 266 91.4

Corn 5 139 1 0 0 8 153 90.9

Grain sorghum 0 1 34 2 2 4 43 79.1

Winter wheat 6 1 3 74 0 8 92 75.3

Watermelon 12 0 0 0 18 2 32 80.4

Noncrop 10 13 4 0 1 486 514 94.6

Total 276 156 43 76 21 528 1100

Producer’s
accuracy (%)

88.0 89.1 79.1 97.4 85.7 92.1

Note: Overall accuracy = 90.4%. Overall kappa = 0.860.

Table 4 An error matrix and accuracy measures for an ML-based classification map for a four-
band mosaic created from 32 pairs of RGB and NIR images using the content-based approach for
a cropping area.

Classified
category

Actual category

Total
User’s

accuracy (%)Cotton Corn
Grain

sorghum
Winter
wheat Watermelon Noncrop

Cotton 251 2 1 0 1 22 277 90.6

Corn 2 142 0 0 0 11 155 91.6

Grain sorghum 0 2 37 2 2 4 47 78.7

Winter wheat 6 0 4 74 0 8 92 80.4

Watermelon 3 0 0 0 18 1 22 81.8

Noncrop 14 10 1 0 0 482 507 95.1

Total 276 156 43 76 21 528 1100

Producer’s
accuracy (%)

90.9 91.0 86.1 97.4 85.7 91.3

Note: Overall accuracy = 91.3% and overall kappa = 0.873.
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For the position-based mosaic, cotton had a producer’s accuracy of 88.0% and a user’s accu-
racy of 91.4%. These values indicate that 88% of the cotton areas on the ground were correctly
identified as cotton, whereas 91% of the estimated cotton areas on the classification map were
actually cotton. In other words, the classification map missed 12% (omission error) of the cotton
areas on the ground, while about 9% (commission error) of the pixels classified as cotton on the
classification map actually belonged to the other classes. Of the 276 points verified on the ground
as cotton, 5 points (1.8%) were misclassified as corn, 6 (2.2%) as winter wheat, 12 (4.3%) as
watermelon, and 10 points (3.6%) noncrop on the classification map. On the other hand, of the
266 points classified on the classification map as cotton, 2 (0.8%), 1 (0.4%), and 20 points
(7.5%) were actually corn, grain sorghum, and noncrop, respectively. The producer’s and
user’s accuracies for corn and noncrop were better than those for the other crops. It should
be noted that some of these misclassifications were due to the small inclusions in the dominant
class. If the whole field was considered as one unit, the classification accuracy would improve.
For the other classes, winter wheat had a high producer’s accuracy of 97% and a low user’s
accuracy of 75%. This indicates that although 97% of the winter wheat areas on the ground
were correctly identified as winter wheat, only 75% of the areas called winter wheat on the
classification map were actually winter wheat. In other words, winter wheat areas on the
classification map overestimated the actual winter wheat areas.

For the content-based mosaic, the producer’s and user’s accuracies for cotton were both close
to 91%, indicating 91% of the cotton areas on the ground were correctly identified as cotton and
91% of the areas called cotton on the classification map were actually cotton. Of the 276 points
verified on the ground as cotton, 2 points (0.7%) were misclassified as corn, 6 (2.2%) as winter
wheat, 3 (1.1%) as watermelon, and 14 (5.1%) as noncrop on the classification map. Moreover,
of the 277 points classified as cotton on the classification map, 2 points (0.7%) actually belonged
to corn, 1 (0.4%) to grain sorghum, 1 (0.4%) to watermelon, and 22 (7.9%) to noncrop. Similarly,
the producer’s and user’s accuracies for corn and noncrop were generally better than those for
the other crops.

Tables 5 and 6 give area estimates of cotton and noncotton classes from the ML-based clas-
sification maps for the eight position-based mosaics and the five content-based mosaics. The
eight position-based mosaics provided very similar area estimates for cotton, ranging from
2220 to 2454 ha or 23.0% to 25.4% of the total area, although the four position-based mosaics
using all 32 images provided slightly higher estimates than those using only 10 images. In prac-
tice, using only 10 images can significantly reduce the time required for image alignment and
georeferencing. The area estimates for cotton based on the content-based four-band mosaic, the
CIR composite, and the RGB composite (24.7% to 25.4%) were similar to those based on the
position-based mosaics. However, the estimates based on the NIR-red-blue and NIR-green-blue
composites (21.4% and 21.0%) were 3% to 4% lower. As different classification maps had vary-
ing overall accuracy values as well as producer’s and user’s accuracy values, the variation in
area estimates was expected.

The best position-based mosaic created from all 32 images using no color correction and the
feather overlay function provided an area estimate of 2424 ha or 25.1% for cotton. In compari-
son, the best content-based four-band mosaic provided a very similar area estimate of 2453 ha or
25.4%. These numbers could be used as the best estimates for cotton. It should be noted that
although it is important to estimate the cotton production area, it is more important to identify
cotton fields for the boll weevil eradication program. Considering the small inclusions of minor
crop classes or noncrop areas in each crop field on the classification maps, further scrutiny of
these crop fields may be justified. However, cotton fields could generally be correctly identified
from the classification maps if cotton was the dominant class in the fields. Nevertheless, ground
surveys are always necessary for verification.

Although the imaging area (8 km × 12 km) in this study was relatively small, the approaches
can be applied to large cotton growing areas with more diverse cover types. However, as larger
areas tend to have more crop variability and cover diversity, classification accuracy may
decrease. To improve classification accuracy, it is more appropriate to divide a large imaging
area into several smaller subsets and classify the subset images separately based on the signatures
derived from individual subset images.
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4 Conclusions

This study demonstrated the accuracy of various methodologies for early identification of cotton
fields using aerial RGB and NIR imagery. Two image mosaicking approaches and five image
classifiers were evaluated and compared for crop identification and area estimation. Results
showed that cotton fields could be accurately identified at relatively early growth stages using
mosaicked aerial imagery.

Mosaics created from the position- and content-based approaches were effective for cotton
identification if proper color correction methods and overlay functions are used for the position-
based approach. In this study, the combination of no color correction and the feather overlay
function produced the best results. The position-based mosaicking approach provided accurate
results but is laborious and time-consuming. If this approach is used, a subset of images with
20% to 30% overlaps may be selected for mosaicking to reduce the image processing time.
Although the content-based approach requires additional photogrammetry software, such as

Table 6 Area estimates of cotton and noncotton classes from ML-based classification maps for
mosaicked four-band and three-band images created from 32 pairs of RGB and NIR images using
the content-based approach for a cropping area.

Band combination

ha (%)

Cotton Corn Grain sorghum Winter wheat Watermelon Noncrop

NIR–RGB 2453 (25.4) 1433 (14.8) 287 (3.0) 798 (8.3) 254 (2.6) 4430 (45.9)

NIR–red-green 2381 (24.7) 1625 (16.8) 355 (3.7) 713 (7.4) 210 (2.2) 4371 (45.3)

NIR–red-blue 2067 (21.4) 1427 (14.8) 441 (4.6) 940 (9.7) 216 (2.2) 4562 (47.3)

NIR–green-blue 2029 (21.0) 1509 (15.6) 317 (3.3) 1114 (11.5) 269 (2.8) 4416 (45.7)

RGB 2437 (25.2) 1728 (17.9) 338 (3.5) 990 (10.3) 56 (0.6) 4105 (42.5)

Note: Total area = 9650 ha.

Table 5 Area estimates of cotton and noncotton classes from ML-based classification maps for
mosaicked images created from georeferenced four-band images using different combinations of
color correction methods and overlay functions for a cropping area.

Color
correction

Overlay
function

No. of
images

ha (%)

Cotton Corn
Grain

sorghum
Winter
wheat Watermelon Noncrop

None Overlay 10 2220 (23.0) 1477 (15.3) 321 (3.3) 835 (8.6) 514 (5.3) 4287 (44.4)

None Feather 10 2269 (23.5) 1421 (14.7) 383 (4.0) 900 (9.3) 681 (7.1) 4001 (41.4)

Color
balance

Feather 10 2352 (24.4) 1490 (15.4) 342 (3.5) 926 (9.6) 671 (7.0) 3873 (40.1)

Histogram
match

Feather 10 2269 (23.5) 1421 (14.7) 383 (4.0) 900 (9.3) 681 (7.1) 4001 (41.4)

None Overlay 32 2454 (25.4) 1196 (12.4) 340 (3.5) 642 (6.7) 541 (5.6) 4481 (46.4)

None Feather 32 2424 (25.1) 1256 (13.0) 243 (2.5) 722 (7.5) 405 (4.2) 4604 (47.7)

Color
balance

Feather 32 2422 (25.1) 1235 (12.8) 250 (2.6) 740 (7.7) 466 (4.8) 4543 (47.1)

Histogram
match

Feather 32 2393 (24.8) 1362 (14.1) 303 (3.1) 595 (6.2) 412 (4.3) 4589 (47.5)

Note: Total area = 9650 ha.
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Pix4DMapper, it is almost fully automatic except for the minimal manual intervention to add
a small number of GCPs. In this study, the time it took for the position-based approach was 2 to 3
weeks, compared with 3 to 4 h for image processing and another 2 to 3 h to collect and add GCPs
for the content-based approach. Moreover, the orthomosaics from the content-based approach
are more accurate in both geographic position and image content.

Among the five classifiers examined, ML performed better than MD, MAHD, SAM, and
SCM. As ML is probably the most commonly used classifier and can be found in almost all
imaging processing software packages, it will be the best choice for this application. Consider-
ing imaging cost and weather constraints, single-date imagery is sufficient for cotton identifi-
cation as cotton is planted after other major crops. As aerial imagery is relatively cheap to acquire
and can be acquired any time weather permits, mosaicked aerial imagery will be a useful tool for
boll weevil eradication program managers to quickly and efficiently identify cotton fields and
potential areas for volunteer and regrowth cotton plants. As more satellite imagery is becoming
available for free or at a low cost, research is needed to examine both high resolution and
moderate resolution satellite imagery for early identification of cotton fields.
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