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Abstract. Chlorophyll-a concentration (Chla) is a key indicator of water quality, and accurate
estimates of Chla using remote sensing data remain challenging in turbid waters. Previous
research has demonstrated the feasibility of retrieving Chla in vegetation using spectral
index, which may be the potential reference for Chla inversion in turbid waters. In this study,
106 hyperspectral indices, including vegetation, fluorescence, and trilateral indices, as well as
combinations thereof, are calculated based on the in situ spectra data of 2004 to 2011 in Taihu
Lake, China, to explore their potential use in turbid waters. The results show that the normal
chlorophyll index (NCI) ðR690∕R550 − R675∕R700Þ∕ðR690∕R550þ R675∕R700Þ is optimal
for Chla estimation, with a determination coefficient (R2) of 0.92 and a root mean square error
(RMSE) of 14.36 mg∕m3 for the data from July to August 2004, when Chla ranged from 7 to
192 mg∕m3. Validation using the datasets of 2005, 2010, and 2011 shows that after reparame-
terization, the NCI model yields low RMSEs and is more robust than the three- and four-band
algorithms. The results indicate that the NCI model can satisfactorily estimate Chla in multiple
datasets without the need of additional band tuning. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.7.073465]
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1 Introduction

The water quality of inland lakes is a main concern of the public and the government given its
importance in land use, eutrophication, global change, and regional biogeochemical cycles.1

Chlorophyll-a concentration (Chla) is a major indicator of water quality and the important indi-
cator of lake eutrophication. Characterizing the heterogeneity of, and temporal changes in, water
quality across lake ecosystems is difficult when using conventional sampling methodologies.2,3

Thus, detecting Chla in water through remote sensing has become the subject of intense research,
given the efficiency, economy, and macrography of this method.1

Spectral reflectance above the water surface in the visible and near-infrared (NIR) spectra pro-
vides qualitative and quantitative information on optically active substances in the water. In the
open ocean, where the optical properties of the water are determined by phytoplankton and their
associated degradation products, the ratio of blue spectral reflectance to green spectral reflectance
has been used to assess Chla.4 However, in turbid inland waters, whose optical properties are
determined by the combination of phytoplankton, total suspended matter, and colored dissolved
organic matter (CDOM),5 blue-green algorithms generally return inaccurate results owing to the
strong overlapping absorption by nonalgal particles and CDOM in the blue spectral region.

The red and NIR spectral regions, where the absorption effects of nonalgal particles and
CDOM are largely decreased, are often used to estimate Chla in turbid waters. Many algorithms
have been developed based on these spectral regions, such as the ratio of the NIR peak reflec-
tance to the red trough reflectance near 675 nm,6,7 the position of the NIR reflectance peak,6 and
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fluorescence line height (FLH).8 In 2003, Dall’Olmo et al.9 developed a semianalytical three-
band algorithm to estimate Chla in turbid waters. This algorithm has also been validated for the
use in Chla estimation in other water bodies.10,11 Subsequently, a modified four-band algorithm
was proposed by Le et al.12 to remove the effects of the absorption and backscattering caused by
suspended solids in the NIR region and to suppress pure water absorption.

However, the model band combinations and parameters used by different algorithms may
vary, given the great spatial and temporal changes in the biophysical characteristics of turbid
waters. Models from different authors for the same water body may vary owing to the variety
of sampling times and positions.10,13,14 The band combinations from different authors may also
differ, even if the same model-building method was used.10,15,16 The inversion model derived
from a specific dataset has to be refined and calibrated when applied to new datasets.

The basic building process of the Chla inversion model involves calculating the correlation
between the constituent concentration and spectral reflectance and then determining the optimal
band combination with high accuracy and robust performance. These combinations and region-
specific algorithms for Chla inversion in turbid waters are still currently under development.17

However, endless combinations of hyperspectral reflectance exist, making it laborious and
impractical to exhaust all possible combinations and expressions to find the optimal one.
Many band combinations in existing inversion algorithms can produce satisfactory results,
prompting the mining of useful information from previous studies.

Chlorophyll-a is the primary photosynthetic pigment in terrestrial green plants and phyto-
plankton in water, which is strongly absorbent of the blue and red spectral region, and highly
reflective of the green and NIR spectral region, indicating a similarity between the spectral
reflectance of algae-containing water and terrestrial vegetation. The principle of the commonly
used three-band conceptual algorithm for Chla inversion in turbid waters9,10,15 originates from
terrestrial vegetation.18 Several inversion methods have been applied to both terrestrial and
aquatic systems, such as derivatives of reflectance spectra,7,19 the NIR/R ratio method,6,20,21

normalized difference index,22–24 and so on, demonstrating the potential of the use of spectral
indices from vegetation remote sensing in Chla estimation in turbid waters.

The potential application of spectral indices obtained from vegetation remote sensing in tur-
bid water was tested in this study, including vegetation index, pigment index, fluorescence index,
and trilateral index. Based on a collection of 106 typical spectral indices from the literature and
their calculation using in situ spectra from Taihu Lake, China, during the period of 2004 to 2011,
the objectives of this study are to (1) find the optimal spectral index from vegetation remote
sensing by comparing the performance of these indices in Chla estimation in turbid waters
and build an estimation model based on this index; (2) validate the model using the datasets
of 2005, 2010, and 2011 from Taihu Lake, and test the robustness of the model by comparing
it with the three- and four-band models; and (3) validate the application of the model in the
hyperspectral images using the band reflectance of EO-1/Hyperion and PROBA/CHRIS simu-
lated by the in situ spectra data.

2 Materials and Methods

2.1 Study Area

The study area is Taihu Lake, the second largest freshwater lake in China, located between
30°56′ to 31°33′ N and 119°55.3′ to 120°53.6′ E and having an area of 2427.8 km2 and an
average depth of 2.12 m. This lake is large and the water in the lake is highly turbid. The
eutrophication of the lake is serious, with the hypereutrophic area mainly covering Meiliang
Bay, Wuli Lake, and the Western Lake.25 The Chla in the lake has obvious seasonal and annual
variation, with the highest concentration in July to August when algae blooms occur.

Four datasets were used in this study, including July to August of 2004 and 2005, as well as
September of 2010 and 2011, and the sampling distributions are shown in Fig. 1. In July to
August of 2004 and 2005, water samples were collected at the Taihu Lake monitoring sites
and the spectra were measured on the first 10 days of each month. On September 19, 2010,
and September 3, 2011, the sampling positions mainly covered the hypereutrophic area of
Meiliang Bay and the central lake, with spectral measurements taken near noon within 1 day.
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2.2 Data Acquisition

Using an Analytical Spectral Devices Field Spectroradiometer (Analytical Spectral Devices Inc.,
Boulder, Colorado) with 512 bands ranging from 350 to 1050 nm with increments of 1.5 nm, the
hyperspectral reflectance in the study area was measured at 0.5 to 1 m high above the water
surface, with a probe field angle of 10 deg. The instrument was positioned at a specific viewing
geometry to avoid the effects of direct solar radiation and prevent the ship from interfering with
the water surface.26 Ten curves were acquired for each location, and the median value of the
repeated measurements was used to calculate the remote sensing reflectance. The reflectance
of a standard gray plate is 30%, and the spectra with wavelengths shorter than 400 nm or longer
than 900 nm were discarded owing to noise. The spectra were resampled to 1-nm interval and
smoothed using the kernel regression smoothing method with a window width of 5 nm.27

Discarding samples under windy or cloudy conditions, a total of 85 samples were finally
kept, of which 24 samples in July to August of 2004 were used for model building and 20
samples in July to August of 2005, 25 samples in September of 2010, and 16 samples in
September of 2011 were used for model validation.

Chla was measured according to the Chinese national standard three-color spectrophotom-
etry (SL88-1994). First, the water samples collected in the field were filtered through a Whatman
GF/C membrane, after which the membrane was kept in darkness in a refrigerator overnight.
After the removal from refrigeration, Chla was extracted using 90% acetone. The extracted liquid
was centrifuged for 10 min, and the supernatant was spectrophotometrically analyzed using
a Shimadzu UV-2550 UV-Vis spectrophotometer. The Chla (mg∕m3) was calculated using
the absorbance at 750, 663, 645, and 630 nm, according to the standard formula.

The total suspended sediment (TSS) concentration (mg∕L) was determined gravimetrically
according to the Chinese national standard (GB11901-89, 1990).

2.3 Spectral Index

The spectral index is the mathematical combination of reflectance at the visible and NIR bands,28

including vegetation index, fluorescence index, and trilateral index. A total of 106 spectral
indices were collected in this study (Tables 1 and 2).

Fig. 1 Sampling distribution in July to August of 2004 and 2005 (a), September of 2010 (b) and
September of 2011 (c) in Taihu Lake, China.
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Table 1 List of the spectral vegetation indices.a

No. Index Formula

1 Adjusted transformed
soil-adjusted VI (Ref. 29)

ATSAVI ¼ aðR800 − aR670 − bÞ∕½aR800þ R670 − abþ
X ð1þ a × aÞ�, X ¼ 0.08, a ¼ 1.22, b ¼ 0.03

2 Area red edge peak
(Ref. 30)

ADR ¼ P
Dð680 − 760Þ

3 Red/green pigment index
(Ref. 31)

RGI ¼ R690∕R550

4,5 Blue/green pigment indices
(Ref. 31)

BGI1 ¼ R400∕R550; BGI2 ¼ R450∕R550

6,7 Blue/red pigment indices
(Ref. 31)

BRI1 ¼ R400∕R690; BRI2 ¼ R450∕R690

8 First derivative of logarithm
(Ref. 19)

Blog ¼ ½logð1∕R737Þ�’

9 Buschman’s ratio of
reflectance (Ref. 32)

BR ¼ R800 − R550

10 Buschman’s difference of
reflectance (Ref. 32)

BD ¼ R800∕R550

11 Chlorophyll absorption ratio
index (Ref. 33)

CARI ¼ CAR × ðR700∕R670Þ, CAR ¼ jða × 670þ R670þ bÞj∕
ða2 þ 1Þ0.5, a ¼ ðR700 − R550Þ∕150; b ¼ R550 − ða × 550Þ

12 Curvature index (Ref. 34) CUR ¼ ðR675 × R690Þ∕ðR683 × R683Þ

13 to 17 Carter indices (Refs. 35
and 36)

Ctr1 ¼ R695∕R420; Ctr2 ¼ R695∕R760; Ctr3 ¼ R605∕R760;
Ctr4 ¼ R710∕R760; Ctr5 ¼ R695∕R670

18 Double difference (Ref. 37) DD ¼ ðR750 − R720Þ − ðR700 − R670Þ

19 Modified simple ratio of
derivatives (Ref. 37)

DmSR ¼ ðD720 − DR500Þ∕ðD720þ DR500Þ

20 Difference VI (Ref. 38) DVI hyper ¼ R800 − R680

21 to 23 Datt indices (Ref. 39) DIa ¼ R672∕ðR550 × R708Þ; DIb ¼ R672∕R550;
DIc ¼ R860∕ðR550 × R708Þ

24 Greenness index (Ref. 40) GI ¼ R554∕R677

25 Green NDVI (Ref. 41) GNDVI hyper ¼ ðR780 − R550Þ∕ðR780þ R550Þ

26 Leaf chlorophyll index
(Ref. 42)

LCI ¼ ðR850 − R710Þ∕ðR850 − R680Þ

27 to 29 Lichtenthaler indices
(Ref. 43)

Lic1 ¼ R440∕R690; Lic2 ¼ R440∕R740; Lic3 ¼ P
Rð450 − 680Þ

30 McMurtey index (Ref. 20) MI1 ¼ R700∕R670

31 Maccioni index (Ref. 44) MI2 ¼ ðR542 − rmÞ∕ðR750 − rmÞ, rm is the minimal
reflectance from 650 nm to 680 nm

32 Modified chlorophyll
absorption in reflectance
(Ref. 40)

MCARI ¼ ½ðR701 − R671Þ − 0.2ðR701 − R549Þ�∕ðR701∕R671Þ

33 Modified chlorophyll
absorption ratio index1
(Ref. 45)

MCARI1 ¼ 1.2½2.5ðR800 − R670Þ − 1.3ðR800 − R550Þ�

34 Modified chlorophyll
absorption ratio index2
(Ref. 45)

MCARI2 ¼ 1.5½2.5ðR800 − R670Þ − 1.3ðR800 − R550Þ�∕
sqrt½ð2R800þ 1Þ2 − ½6R800 − 5sqrtðR670Þ� − 0.5�
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Table 1 (Continued).

No. Index Formula

35 Modified LCI (Ref. 44) mLCI ¼ ðR780 − R710Þ∕ðR780 − R680Þ

36 Modified normalized
difference (Ref. 46)

mND705 ¼ ðR750 − R705Þ∕ðR750þ R705 − 2R445Þ

37 Improved SAVI with
self-adjustment factor L
(Ref. 47)

MSAVI hyper ¼ 1∕2f2R800þ 1 − sqrt½ð2R800þ 1Þ2
−8ðR800 − R670Þ�g

38 Modified simple ratio
(Ref. 48)

MSDR ¼ ðR800∕R670 − 1Þ∕sqrtðR800∕R670þ 1Þ

39 Modified simple ratio
(Ref. 46)

MSDR705 ¼ ðR750 − R445Þ∕ðR705 − R445Þ

40 Modified triangular VI1
(Ref. 45)

MTVI1 ¼ 1.2½1.2ðR800 − R550Þ − 2.5ðR670 − R550Þ�

41 Modified triangular VI2
(Ref. 45)

MTVI2 ¼ 1.5½1.2ðR800 − R550Þ − 2.5ðR670 − R550Þ�∕
sqrt½ð2R800þ 1Þ2 − ½6R800 − 5sqrtðR670Þ� − 0.5�

42 Normalized pigment
chlorophyll index (Ref. 49)

NPCI ¼ ðR680 − R430Þ∕ðR680þ R430Þ

43 Normalized
phaeophytinization
index (Ref. 50)

NPQI ¼ ðR415 − R435Þ∕ðR415þ R435Þ

44 Normalized difference
index (Ref. 22)

NDI ¼ ðR750 − R705Þ∕ðR750þ R705Þ

45 Optimized soil-adjusted VI
(Ref. 51)

OSAVI ¼ ð1þ 0.16Þ × ðR800 − R670Þ∕ðR800þ R670þ 0.16Þ

46 Plant biochemical index
(Ref. 52)

PBI ¼ R810∕R560

47 to 49 Simple ratio of pigment
(Ref. 53)

PSSRa ¼ R800∕R680; PSSRb ¼ R800∕R635;
PSSRc ¼ R800∕R470

50 to 51 Pigment specific normalized
difference (Ref. 53)

PSNDa ¼ ðR800 − R680Þ∕ðR800þ R680Þ;
PSNDb ¼ ðR800 − R635Þ∕ðR800þ R635Þ

52 to 54 Photochemical reflectance
index (Ref. 54)

PRI1 ¼ ðR528 − R567Þ∕ðR528þ R567Þ;
PRI2 ¼ ðR531 − R570Þ∕ðR531þ R570Þ;
PRI3 ¼ ðR570 − R539Þ∕ðR570þ R539Þ

55 Reflectance reciprocal at
700 nm (Ref. 55)

RR ¼ 1∕R700

56 to 57 Ratio analysis of reflectance
spectra (Ref. 56)

RARSa ¼ R675∕R700; RARSb ¼ R675∕ðR700 × R650Þ

58 Renormalized difference VI
(Ref. 45)

RDVI ¼ ðR800 − R670Þ∕sqrtðR800þ R670Þ

59 Red-edge vegetation stress
index (Ref. 57)

RVSI ¼ ½ðR714þ R752Þ∕2� − R733

60 Soil-adjusted VI (Ref. 58) SAVI hyper ¼ 1.5ðR800 − R670Þ∕ðR800þ R670þ 0.5Þ

61 Structure intensive pigment
index (Ref. 59)

SIPI ¼ ðR800 − R445Þ∕ðR800þ R680Þ

62 to 63 Simple ratio (Ref. 22) SR1 ¼ R750∕R705; SR2 ¼ R750∕R555

64 Simple ratio pigment index
(Ref. 59)

SRPI ¼ R430∕R680
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2.3.1 Vegetation index

The vegetation index (Table 1) is the mathematical expression of reflectance, at a specific band
(Nos. 1 to 73) or within a band range (Nos. 74 to 87) that reflects the biochemical component of
the vegetation. Given that the spectral response function was not available to simulate the reflec-
tance of a broad band range (such as the blue, green, yellow, red, and NIR bands), the average
reflectance within the wavelength range was used instead.

Table 1 (Continued).

No. Index Formula

65 to 66 Sum of first derivative
reflectance (Refs. 60 and 61)

SD1 ¼ P
Dð625 − 795Þ; SD2 ¼ P

Dð680 − 780Þ

67 Triangular VI (Ref. 62) TVI ¼ 0.5½120ðR750 − R550Þ − 200ðR670 − R550Þ�

68 Transformed CARI (Ref. 63) TCARI ¼ 3½ðR700 − R670Þ − 0.2ðR700 − R550Þ� × ðR700∕R670Þ

69 to 72 Vogelmann indices (Ref. 64) Vog1 ¼ R740∕R720; Vog2 ¼ ðR734 − R747Þ∕ðR715þ R726Þ;
Vog3 ¼ ðR734 − R747Þ∕ðR715þ R720Þ; Vog4 ¼ D715∕D705

73 Zarco-Tejada and Miller
(Ref. 30)

ZTM ¼ R750∕R710

74 Chlorophyll index at green
range (Ref. 65)

Chlgreen ¼ ½Rð760 − 800Þ∕Rð540 − 560Þ� − 1

75 Chlorophyll index at
red-edge range (Ref. 65)

Chlred-edge ¼ ½Rð760 − 800Þ∕Rð690 − 720Þ� − 1

76 Difference VI (Ref. 38) DVI large ¼ NIR − R

77 Enhanced VI (Ref. 66) EVI ¼ 2.5ðNIR − RÞ∕ðNIRþ 6R − 7.5Bþ 1Þ

78 Green NDVI (Ref. 41) GNDVI large ¼ ðNIR −GÞ∕ðNIRþGÞ

79 Improved SAVI with self-
adjustment factor L (Ref. 47)

MSAVI large ¼ ð2NIRþ 1Þ − sqrt½ð2NIRþ 1Þ2 − 4ðNIR − RÞ�

80 Modified simple ratio
(Ref. 48)

MSR ¼ ðNIR∕R − 1Þ∕½sqrtðNIR∕RÞ þ 1�

81 Normalized difference VI
(Ref. 24)

NDVI ¼ ðNIR − RÞ∕ðNIRþ RÞ

82 Renormalized difference VI
(Ref. 67)

RDVI ¼ SqrtðNDVI × DVIÞ

83 Ratio VI (Ref. 21) RVI ¼ NIR∕R

84 Soil-adjusted vegetation
index (Ref. 58)

SAVI large ¼ 1.5ðNIR − RÞ∕ðNIRþ R þ 0.5Þ

85 Visible atmospherically
resistant index for green
reflectance (Ref. 68)

VARI green ¼ ðG − RÞ∕ðGþ RÞ

86 Visible atmospherically
resistant index for red-edge
reflectance (Ref. 68)

VARI rededge ¼ ðRE − RÞ∕ðREþ RÞ

87 Wide dynamic range VI
(Ref. 69)

WDRVI ¼ ð0.1NIR − RÞ∕ð0.1NIRþ RÞ

aAbbreviations: Rxxx, remote sensing reflectance at xxx nm; Dxxx, the first derivative of the remote sensing
reflectance at xxx nm; _large, large band range; _hyper, hyperspectral wavelength; VI, vegetation index; B,
Blue band (490 to 530 nm); G, Green band (530 to 680 nm); R, Red band (680 to 760 nm); NIR, Near infrared
band (760 to 900 nm); RE, Red-edge (685 to 710 nm).
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2.3.2 Fluorescence and trilateral index

The spectral fluorescence indices (Nos. 88 to 90 in Table 2) include the fluorescence peak (maxi-
mum fluorescence peak near 685 nm) and the normalized fluorescence height (fluorescence peak
divided by the peak reflectance at 560 and 675 nm).70 The spectral trilateral indices (Nos. 91–106
in Table 2) include the red-edge, green-edge, and trilateral parameters. The red-edge parameters
were calculated using the inverted Gaussian model, including the reflectance at the red shoulder,
the reflectance at the absorption valley, the position of the absorption valley, the position of the
red edge, and the width of the red-edge absorption valley. The green-edge index includes the
reflectance and position of the green peak. The trilateral refers to the red edge, blue edge, and
yellow edge, and trilateral parameters include the location, amplitude, and area of the edge.

To find the spectral index most sensitive to Chla, the combinations of vegetation indices,
fluorescence indices, and trilateral indices were calculated, including band ratio, band difference,
and band normalization.

Table 2 List of spectral fluorescence and triangular indices.a

No. Index Explanation

88 FP (Ref. 70) Fluorescence peak, the maximum fluorescence peak near 685 nm

89 /560(Ref. 70) Fluorescence peak divided by the peak reflectance around 560 nm

90 /675(Ref. 71) Fluorescence peak divided by the peak reflectance around 675 nm

91 Rs(Ref. 72) Reflectance of red shoulder

92 R0(Ref. 72) Reflectance of chlorophyll absorption valley

93 λ0(Ref. 72) Wavelength of chlorophyll absorption valley

94 σ(Ref. 72) The width of the red edge absorption valley

95 λp(Ref. 72) Wavelength of the red edge inflection point

96 Rg(Ref. 73) Green peak: maximum reflectance between 500 to 600 nm.

97 λg(Ref. 73) Green peak position: wavelength of the green peak

98 WP r (Ref. 74) Red position: wavelength of the maximum first-derivative reflectance
in 685 to 710 nm.

99 Dr(Ref. 74) Red amplitude: maximum value of the first derivative spectrum
within 685 to 710 nm.

100 SDr(Ref. 74) Red area: area surrounded by the first derivative spectrum curve
between 685 to 710 nm.

101 WP b(Ref. 74) Blue position: wavelength of the maximum first-derivative reflectance
in 490 to 530 nm.

102 Db(Ref. 74) Blue amplitude: maximum value of the first derivative spectrum
between 490 to 530 nm.

103 SDb(Ref. 74) Blue area: area surrounded by the first derivative spectrum curve
between 490 to 530 nm.

104 WP y (Ref. 74) Yellow position: wavelength of the maximum first-derivative reflectance
in 550 to 582 nm.

105 Dy(Ref. 74) Yellow amplitude: maximum value of the first derivative spectrum
between 550 to 582 nm.

106 SDy(Ref. 74) Yellow area: area surrounded by the first derivative spectrum curve
between 550 to 582 nm.

aNote: Spectral indices of No. 91 to 95 were simulated by inverted Gaussian model, and the red-edge range in
No. 91 to 95 and No. 98 to 100 were redefined as 685 to 710 nm because the red-edge of the spectrum above
water surface is not that wide as vegetation.
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2.4 Model Building and Accuracy Assessment

Regression analysis was used to build the model between Chla and the spectral index. Both the
three-band9,10,15 and the four-band12 algorithms were used for model comparison. The formulas
of the three- and four-band models are as follows:

Chla ¼ aþ bðR−1
1 − R−1

2 ÞR3; (1)

Chla ¼ aþ bðR−1
1 − R−1

2 ÞðR−1
4 − R−1

3 Þ−1: (2)

Based on the study by Zimba and Gitelson,75 the three bands were searched in the range of
450 to 800 nm and the initial iterative positions of λ1 and λ3 were 675 and 750 nm, respectively.
Iterative calculation will stop when the root mean square error (RMSE) comes to its lowest. The
optimal four bands were searched using the same iteration method, and the initial positions of λ2,
λ3, and λ4 were 700, 720, and 750 nm, respectively.12

The RMSE and average relative error (ARE) were used to evaluate the model accuracy, and
their respective formulas are as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðy − y 0Þ2

n

r
; (3)

ARE ¼
jy−y 0 j

y × 100%

n
; (4)

where y is the measured Chla (mg∕m3), y 0 is the estimated Chla (mg∕m3), and n is the sam-
ple size.

The determination coefficient R2 was used to evaluate the goodness of fit in the regression
model, and the F-test and p value were used to evaluate the model significance. To guarantee
the model assumption, the residual plots were used to diagnose the regression model before the
model was used for prediction.76

Two residual plots are important: Q-Q (Quantiles-quantiles) plots and scatter plots between
the residuals and the variable, both of which were used in this study. The former was used to
check the normality of the residuals, whose scatter points should form an approximately straight
line if the distribution is close to the standard normal distribution. The latter was used to check
the residual heteroscedasticity: the model must be modified if the residual is a certain function of
the estimated Chla.77

2.5 Hyperspectral Data Simulation

To avoid the uncertainty of atmospheric effect, the band reflectance of hyperspectral sensors EO-
1/Hyperion and PROBA/CHRIS that are currently in orbit was simulated using the in situ spectra
and the spectral response function of each sensor so as to validate the application of the model in
satellite images.

The spectral response function of Hyperion can be simulated by a Gaussian spectral response
function since each band’s full width at half maximum (FWHM, nm) of this hyperspectral image
is narrow.78 Assuming the Gaussian peak value at the center wavelength is 1, the spectral
response function of Hyperion can be calculated using Eq. (5), where the subscript i represents
the sensor band, λ̄i is the center wavelength (nm), σi is the band width (nm) and can be calculated
from FWHM.

gðλ̄i; σiÞ ¼ exp
−ðλ̄i−λÞ2

2σ2
i ; σi ¼

FWHMi

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p : (5)

The spectral response function of CHRIS is a strip function determined by the center wave-
length and band width [Eq. (6)], whereas each channel’s center wavelength (λi, nm) and band
width (Δλi, nm) values can be found in the technical documentation of CHRIS.79
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SiðλÞ ¼
1

1þ j2ðλ − λiÞ∕Δλij4
; λi − Δλi < λ < λi þ Δλi: (6)

Using the spectral response function and in situ spectra data with wavelength interval of
1 nm, the reflectance of channel i in hyperspectral sensors can be calculated according to
Eq. (7), where ri represents the spectral reflectance of channel i, λsi is the initial wavelength
of channel i, λei is the end wavelength of channel i, rðλÞ is the in situ reflectance at wavelength
λ, and φiðλÞ is the spectral response factor at wavelength λ within channel i, which can be calcu-
lated from the spectral response function.

ri ¼
Xλei
λsi

rðλÞφiðλÞ∕
Xλei
λsi

φiðλÞ: (7)

3 Results

3.1 Spectral Reflectance and Constituent Concentration

The spectral magnitudes and shapes of the four datasets after smoothing (Fig. 2) showed similar
characteristics to that of typically turbid water:15 the relative low reflectance in the blue range
(400 to 500 nm) was a result of high absorption by water constituents; a slight reflectance trough
at around 620 nm was formed by the absorption peak resulting from phycocyanin in water con-
taining blue-green algae;80 a second reflectance trough at around 675 nm corresponded to Chla
absorption; and a distinct peak at around 700 nm mainly resulted from both chlorophyll fluo-
rescence and minimum absorption by optically active constituents and water.

Table 3 shows the statistical characteristics of Chla and TSS across the four datasets. The TSS
in July to August of 2004 and 2005 can refer to the TSS data in July to August of 1998 to 2003.
The CDOM is not considered in this study.

Fig. 2 Reflectance spectra in July to August of 2004 (a), July to August of 2005 (b), September of
2010 (c), and September of 2011 (d).

Cheng et al.: Remote estimation of chlorophyll-a concentration in turbid water. . .

Journal of Applied Remote Sensing 073465-9 Vol. 7, 2013



The datasets used encompass widely varying optical conditions and constituent concentra-
tions (Table 3), showing that the water in Taihu Lake is extremely turbid and productive. The
Chla ranged from 4 to 192 mg∕m3 in the four datasets, with averages of 49.88, 25.43, 51.02, and
39.62 mg∕m3 in the datasets of 2004, 2005, 2010, and 2011, respectively. The high Chla indi-
cates serious eutrophication in Taihu Lake. The TSS was also very high, averaging 49.20, 36.61,
and 34.36 mg∕L in the datasets of 1998 to 2003, 2010, and 2011, respectively.

3.2 Spectral Index Sensitive to Chla

Correlation analysis was used to determine the sensitivity of spectral index to Chla. The work-
flow included determining the relationship between Chla and the spectral reflectance and cal-
culating the correlation coefficient.81 Given that Pearson’s correlation coefficient only implies a
linear relationship, the relation between spectral index and Chla has to be first verified using a
scatter plot. A logarithmic relation was found in these datasets; therefore, Chla was transformed
into its natural logarithm, denoted as lnChla.

The spectral indices and their correlation coefficients with lnChla in the datasets of 2004 and
2005 were calculated (Fig. 3). The same tendency indicated the consistent change of spectral
indices with Chla in these two years.

Correlation coefficients in 2004 were sorted from high to low and the top 10 are listed in
Table 4, where p < 0.001. With regard to wavelengths, the sensitive reflectance to Chla mainly
focused at 450, 550, 670 to 700, 800 nm or the nearby location. In terms of spectral indices,
RARSa had the highest sensitivity to Chla. The top three highly correlated spectral indices were
all composed by the band ratio of the reflectance peak near 700 nm and the reflectance trough
near 670 nm, demonstrating the effectiveness of these two bands for Chla estimation in tur-
bid water.

The combinations of spectral indices, including band difference, band ratio and band nor-
malization, were calculated based on the dataset of 2004.

The top five highly correlated difference and ratio combinations are shown in Table 5,
where p < 0.001. Results show that the difference and ratio of spectral indices generally
had higher correlation with Chla than a single spectral index, and the performance of
band ratio was slightly better than that of band difference. The ratio of the red/green pigment
index31 and the ratio analysis of reflectance spectra56 (RGI/RARSa) has the highest correlation
(0.94) with lnChla, better than RARSa (−0.91), as shown in Table 4.

The correlation coefficients between lnChla and the normalized combination of the
spectral index pairs were calculated and the top three are listed in Table 6, denoted as
NR1, NR2, and NR3. They were highly correlated with lnChla (correlation coefficient >
0.93, p < 0.001).

Table 3 Statistical characteristics of Chla in July to August of 2004 and 2005, Chla and total
suspended sediment (TSS) in September of 2010 and 2011, and TSS in July to August of
1998 to 2003.

Data Sample size Minimum Maximum Mean

Chla in 2004 24 7.0 192.0 49.88

Chla in 2005 20 4.0 98.0 25.43

Chla in 2010 25 15.6 109.9 51.02

Chla in 2011 16 8.4 87.5 39.62

TSS in 1998 to 2003 174 12.0 261.0 49.20

TSS in 2010 25 4.1 70.9 36.61

TSS in 2011 16 14.9 50.3 34.36
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3.3 Estimation of Chla Based on Spectral Index

Based on the same dataset used in Sec. 3.2, the three normalized combinations, NR1, NR2, and
NR3 (Table 6), as well as the RARSa (Table 4) and RGI/ RARSa (Table 5) were used for model
building. Results are shown in Table 7.

In the comparison between the R2 value and RMSEs of NR1, NR2, and NR3, NR1 had the
best fitting accuracy and NR3 had the lowest RMSE (Table 7). The fitting accuracy of NR1 was
slightly better than NR3, but its RMSE and residual variation were larger. The residual diag-
nostics plots of NR1 and NR3 (Fig. 4) indicated that the residuals of NR1 showed

Fig. 3 Correlation coefficients between spectral indices and lnChla calculated by datasets of 2004
and 2005, Taihu Lake.

Table 4 Spectral indices highly correlated with lnChla in the dataset of 2004 (p < 0.001).

Spectral
index

Correlation
coefficient Expression Wavelength (nm)

RARSa −0.9138 R675∕R700 675 700

Ctr5 0.8911 R695∕R670 670, 695

MI1 0.8910 R700∕R670 670 700

SIPI 0.8613 ðR800 − R445Þ∕ðR800þ R680Þ 445 680 800

PSSRc 0.8498 R800∕R470 470 800

VARIgreen1 −0.8374
ðG − RÞ∕ðG þ RÞ G R

TCARI 0.8299 3 × ½ðR700 − R670Þ − 0.2×
ðR700 − R550Þ� × ðR700∕R670Þ

550 670 700

Lic2 −0.8246 R440∕R740 440 740

BRI2 −0.8015 R450∕R690 450 690

BD 0.7844 R800∕R550 550 800
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heteroscedasticity as Chla changed, and more points in NR1 deviated from the straight line of its
Q-Q plot [Fig. 4(a)]. Comparatively, NR3 fulfilled the requirement of regression analysis better
than NR1 [Fig. 4(b)].

The results of RARSa and RGI/RARSa were then compared, and the results of the compari-
son are also shown in Table 7. Results showed that the RGI/RARSa had a higher fitting accuracy
(R2 ¼ 0.93) than NR3 (R2 ¼ 0.92). However, the scatter plot between RGI/RARSa and NR3
with lnChla (Fig. 5) showed that the variation of RGI/ RARSa was larger than NR3, indicating
that the value of the RGI/RARSa ratio was higher and had a greater variation in sample dis-
tribution and that the NR3 value was lower and had a smaller variation. The NR3 was more
stable with the change in lnChla.

Therefore, NR3 was selected as the optimal index and called the normal chlorophyll index
(NCI), NCI ¼ ðR690∕R550 − R675∕R700Þ∕ðR690∕R550þ R675∕R700Þ. The Chla estima-
tion model was Chla ¼ expð7.6334 × NCIþ 3.3325Þ, with ARE of 18.27%, and RMSE
of 14.36 mg∕m3.

Table 5 Difference and ratio combinations highly correlated with lnChla in the dataset of 2004.

Difference
combination Correlation coefficient Ratio combination Correlation coefficient

Ctr5 BRI2 0.9347 RGI RARSa 0.9424

MI1 BRI2 0.9324 CARI Green peak 0.9364

SR2 ZTM 0.9316 TCARI Sdy 0.9309

Ctr5 Lic1 0.9307 PSSRc ZTM 0.9264

MI1 Lic1 0.9305 SR2 ZTM 0.9231

Table 6 Three normalized combinations highly correlated with lnChla in the dataset of 2004.

Band
Combination Variable A Variable B

Correlation
Coefficient

NR1 CARI∶ðR700∕R670Þ × jða × 670þ R670þ bÞj∕ða2 þ 1Þ0.5
a ¼ ðR700 − R550Þ∕150; b ¼ R550 − ða × 550Þ

Green peak Rmax
(500 to 600)

0.9387

NR2 PSSRc∶R800∕R470 ZTM∶R750∕R710 0.9360

NR3 RGI∶R690∕R550 RARSa∶R675∕R700 0.9323

Table 7 Regression models between the spectral indices (NR1, NR2, NR3, RARSa, RGI/
RARSa) and lnChla in the dataset of 2004 (p < 0.0001).

Model Variable R2 F
Root mean square error
(RMSE) of Chla (mg∕m3)

Residual of Chla (mg∕m3)

Min Median Max

NR1 0.9244 269.10 19.86 −65.72 −1.43 60.90

NR2 0.8973 192.27 23.73 −99.43 0.00 35.76

NR3 0.9156 238.79 14.36 −49.44 −0.86 20.61

RARSa 0.8911 180.10 26.79 −94.38 −0.29 60.19

RGI/RARSa 0.9332 307.52 14.65 −32.17 −0.48 50.20
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3.4 Model Validation

Datasets of 2005, 2010, and 2011 were used for model validation. First, Chla was directly esti-
mated using the model of Chla ¼ expð7.6334 × NCIþ 3.3325Þ, and their models were denoted
as DV1, DV2, and DV3. Then, the model was reparameterized by rebuilding the regression
models between the lnChla and NCI derived from the three datasets and then the Chla was esti-
mated. The models were denoted as RV1, RV2, and RV3. Figure 6 shows the scatter plots
between the estimated and measured Chla of the three datasets.

By using the model of 2004 directly, the validation result by dataset of 2005 was satisfactory
[DV1 in Fig. 6(a)], with RMSE of 11.17 mg∕m3 and ARE of 34.75%. This condition may be
attributed to the consistency between these two datasets in July to August of 2004 and 2005. The
standard deviations of the relative error in the NCI models for 2004 and 2005 were 0.216 and
0.242, respectively. However, although the distribution trend of the model was consistent with
the measured Chla, Chla was generally underestimated when the model was directly validated
using the datasets of 2010 and 2011 [DV2 in Fig. 6(b) and DV3 in Fig. 6(c)].

Fig. 4 Residual diagnostics of the regression models of NR1 (a) and NR3 (b). The residual diag-
nostics include the homogeneity test of variance and the normality test of residuals.

Fig. 5 Correlation between lnChla and the spectral indices of RGI/RARSa and NR3.
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When the coefficients of the model were refitted using the calculated NCI and Chla in the
new datasets, the estimated and measured Chla in the three datasets were consistent with each
other (RV1, RV2, and RV3 in Fig. 6) and most samples were within the error line of 10mg∕m3.
The RMSEs between the estimated Chla and the measured Chla for 2005, 2010, and 2011 were
10.39, 11.87, and 12.65 mg∕m3, respectively. These results demonstrated the usability of NCI in
the new datasets for the remote sensing mapping of Chla in a water body.

3.5 Model Application

To verify the application of NCI index model in hyperspectral sensors, the Hyperion and CHRIS
band reflectances were first simulated using the in situ spectra data in 2004 and 2005 according
to the method mentioned in Sec. 2.5. Both Hyperion and CHRIS have four spectral channels
consistent with the 550, 675, 690, and 700 nm of NCI, the basic parameters of which are shown
in Table 8.

The NCI was first calculated using the Hyperion band reflectance simulated by the in situ
data in 2004 and 2005, whereas data in 2004 were used for model building and data in 2005
were used for model validation. Figure 7(a) shows the regression model between NCI and
lnChla in 2004 and also the model accuracy, including R2, RMSE, and ARE. Figure 7(b)
shows the validation results by directly using this model in 2005 data and also the validation
accuracy of RMSE and ARE, calculated by the estimated results and the measured
Chla. Similarly, Fig. 7(c) shows the NCI regression model using the CHRIS band reflectance
simulated using the in situ data in 2004 and Fig. 7(d) shows the model validation result
in 2005.

Fig. 6 Validation results of the NCI model by datasets of 2005 (a), 2010 (b), and 2011 (c).
Validation process includes the direct Chla estimation from the 2004 model (DV1, DV2, and
DV3), and the Chla estimation after reparameterization of the NCI model based on new datasets
(RV1, RV2, and RV3).
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The accuracy of the NCI model using hyperspectral data is satisfactory, with R2 > 0.92 and
RMSE < 17 mg∕m3. The accuracy of the model built by the simulated hyperspectral data is
better than that of using the in situ spectra (Table 7). Meanwhile, the estimation results are
also satisfactorily in line with the measured Chla in 2005 using simulation data from both sensors
[Figs. 7(c) and 7(d)], with RMSE < 10 mg∕m3.

These results indicated that the NCI model can be used to estimate the Chla in Taihu lake
using the Hyperion/EO-1 and CHRIS/PROBA spectra data with an accurate atmospheric cor-
rection of water body. This index will also have good usability in other hyperspectral satellite
images with similar channel settings.

4 Discussion

4.1 Model Performance of NCI

With regard to Taihu Lake, Le et al.12 stated that the optimal positions for the three-band model
are 660, 692, and 740 nm, and the optimal positions for the four-band model are 662, 693, 740,
and 705 nm. When the three- and four-band models were directly used without reparameteriza-
tion of the new datasets in this study, the performance was poor (not shown). This result is similar
to the results from previous studies.82,83

Based on the data obtained in July to August, 2004, the three- and four-band combinations
were compared with NCI. The regression parameters between ð1∕R660 − 1∕R692Þ × R740 and
ð1∕R662 − 1∕R693Þ∕ð1∕R740 − 1∕R705Þ were first refitted with Chla in 2004, and the optimal
three- and four-band positions were then tuned to calibrate the model. Table 9 shows the results
of the three- and four-band models after reparameterization and model calibration, and Fig. 8
shows their residual diagnostic plots.

Fig. 7 The NCI model and validation results using simulated Hyperion/CHRIS data. Model result
in 2004 (a) and validation result in 2005 (c) using simulated Hyperion data; Model result in 2004 (b)
and validation result in 2005 (d) using simulated CHRIS data.
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Table 9 shows that the models of the previous three- and four-band combinations after rep-
arameterization (R2 ¼ 0.88; RMSE > 15.9 mg∕m3) were less significant than the NCI model
(R2 ¼ 0.92; RMSE ¼ 14.36 mg∕m3). Both the three- and four-band models achieved superior
results after model calibration by band tuning, whereas the four-band model (R2 ¼ 0.93;
RMSE ¼ 12.14 mg∕m3) had a better estimation than NCI.

However, the residual diagnostics plots (Fig. 8) showed that the residuals of the three- and
four-band models were clearly non-normal and increased with Chla. The samples with lower and
higher Chla had a larger deviation. Moreover, the error variance was correlated with Chla, indi-
cating the residuals heteroscedasticity and the necessity for data transformation.77

Comparatively, the residual diagnostics of the NCI model [Fig. 4(b)] was better, indicating
its robust performance in Chla prediction.

The robustness of the NCI model can be explained from two aspects. The first is the log-
arithmic transformation of Chla before model building, which guarantees data normality. After
data transformation, the model is better than directly using regression analysis. Previous stud-
ies83,84 demonstrated the same result.

Regression models between the three- and four-band combinations and lnChla were also
constructed to further verify the effect of data transformation. The reparameterized and calibrated
three- and four-band models had poorer residual diagnostics results than the NCI, except for
the calibrated three-band model (not shown). However, in this calibrated model
ð1∕R664 − 1∕R702Þ × R679, the third band λ3 found in the range of 450 to 800 nm did not
confirm the assumption that it is the spectral region minimally affected by pigment absorption
and can compensate for the variability in the backscattering between samples.9 If the searching
ranges of λ1, λ2, and λ3 were reset into 658 to 676 nm, 691 to 735 nm, and 723 to 780 nm,
respectively, according to Gitelson et al.,10,15 although the 664, 716, and 768 nm would be the
last optimal bands, the residual diagnostic result of the calibrated model would still be poorer
than that of NCI.

The second aspect that can explain the robustness of the NCI model is the stable wavelengths
used in this integrated index. Using the characteristic bands obtained from the vegetation index

Table 8 Hyperion’s and CHRIS’s band parameters near 550,675,690, and 700 nm.

Hyperion’s bands Central wavelength FWHM CHRIS’s bands Central wavelength Band width

B20 548.92 11.0245 A13 551 10

B32 671.02 10.298 A25 672 11

B34 691.37 10.3909 A28 691 6

B35 701.55 10.4592 A30 703 6

Table 9 Model and test results of the three- and four-band models after reparameterization and
calibration in the dataset of 2004 (p < 0.0001).

Model R2 F RMSE
Average relative

error (ARE)

Reparameterization Chla ¼ 637.98 × ð1∕R660 − 1∕R692Þ×
R740þ 16.795

0.88 167.75 15.88 27.03

Chla ¼ 180.79 × ð1∕R662 − 1∕R693Þ∕
ð1∕R740 − 1∕R705Þ þ 12.589

0.88 155.54 16.42 23.89

Band tuning Chla ¼ 2805.19 × ð1∕R677 − 1∕R680Þ×
R760þ 13.13

0.91 232.05 13.72 29.31

Chla ¼ −328.60 × ð1∕R661 − 1∕R689Þ∕
ð1∕R748 − 1∕R706Þ þ 17.77

0.93 302.69 12.14 27.77
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tested by Chappelle et al.56 and Zarco-Tejada et al.,31 the NCI proposed in this study was robust
because it achieved satisfactory results when validated by multiple datasets. Comparatively, the
three- or four-band combinations based on a small number of datasets did not perform well
during validation, thus requiring band tuning in new datasets. Numerous results, including
those of this study and Gitelson et al.,10,15 showed the necessity of model calibration of the
three-band algorithm to make it suitable to new datasets. The three- and four-band models con-
structed by specific dataset may not fulfill the model assumptions when applied to other water
bodies with different optical properties, thus producing unfavorable model diagnostics and inap-
plicable validation in new datasets. The estimation model based on NCI had a better residual
diagnostics result, indicating that it is robust enough to be used in multiple datasets in
Taihu Lake.

4.2 NCI and Chla

The spectral reflectance of green plants is primarily affected by leaf color, cell structure, and
plant moisture. The typical spectral curves of green plants are as follows: a small reflectance
peak near 550 nm with reflectance of 10% to 20%; two obvious reflectance troughs near 450
and 670 nm owing to the strong absorption of pigment concentration; and a sharp increase of
reflectance from 700 to 800 nm, leading to an obvious slope called “red edge.” Given a wide
range of leaf greenness, the maximum sensitivity to Chla was found at 550 to 560 nm and 700
to 710 nm;85,86 its correlation with Chla at these two bands was larger than 675 nm, and the
reciprocal reflectance near 550 and 700 nm was proportional to Chla.18,85 The reflectance at
670 nm decreased sharply when Chla increased up to 3 to 5 mol∕cm2. Thereafter, R670 was
almost pigment-concentration independent. R670 can thus be used as a reference. However, the
reflectance peak in the NIR area (larger than 750 nm) was insensitive to Chla.85 The ratio may
amplify the differences between the spectra at specific bands due to absorption maxima and
minima of the photosynthetic pigments.56 The band ratio of 675 and 700 nm (RARSa) was
found to have a strong linear relationship with Chla (R2 ¼ 0.93) in the leaves of soybean.56 The
red and green pigment index RGI (R690∕R550) was used to estimate the pigment concentra-
tion of the leaf.31

The spectrum above water surface is affected by the absorption and scattering of water and
particles in it, primarily including phytoplankton, suspended sediment, and CDOM. The four

Fig. 8 Test of variance homogeneity and residual normality of the three- and four-band algorithms
after model reparameterization (a, c) and band tuning (b, d).
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characteristic bands related to chlorophyll are the blue, green, red, and NIR bands in water color
remote sensing.7,87–89 The ratio of the reflectance peak near 700 nm and the reflectance trough
near 675 nm are proven to be most sensitive to Chla in turbid waters of different trophic states,6,17

which makes RARSa (R700∕R675) reasonable. Moreover, the R690 in NCI can be regarded as
the fluorescence peak because the fluorescence peak is around 690 nm, but can vary from 685 to
695 nm,90 or be constant at ∼685 nm.91 Studies showed that normalizing the fluorescence peak
near 700 nm to the reflectance value of the global maximum of the spectrum at green peak can
accurately predict Chla,6,70 making RGI (R690∕R550) reasonable.

Although RARSa and RGI are proven to be theoretically effective in Chla estimation, the
normalized combination of these two indices-NCI is optimal because of its robust perfor-
mance as Chla changes (Fig. 5). The first advantage of NCI is the information supplementary
of low Chla in the hyperspectral reflectance that cannot be fully expressed by the red-NIR
spectrum by using the green band. Accurate estimates of low Chla using fluorescence algo-
rithms, such as FLH and maximum chlorophyll index,92 or the red-NIR algorithms,17 are
unavailable in oligotrophic and some mesotrophic lakes. Thus, the green band was addition-
ally used because the blue and green bands in the OC2-OC4 algorithms were successfully
applied to retrieve 0 to 10 mg∕m3 of Chla in optically complex waters. The second advantage
of the NCI is that the feature wavelengths of 550, 675, 690, and 700 nm have all been set in
hyperspectral sensors, such as EO-1/Hyperion, HJ1/HSI, PHILLS/HICO, and so on.
Compared with the NCI, the commonly used three- or four- band models always require
a reflectance longer than 750 nm. However, obtaining reliable estimates of reflectance at
these wavelengths is a difficult task based on existing atmospheric correction schemes
for turbid waters.16 Moreover, unlike previous studies on Chla estimation based on the spec-
tra data obtained from July to August, 2004, in Taihu Lake, including the NIR∕R ratio,93 the
three-band combination94or the band normalized combination,84 the NCI model proposed in
this study was tested by regression diagnostics and validated by multiple datasets, thus guar-
anteeing more reliability.

5 Conclusion

Based on the 106 spectral indices used in the vegetation remote sensing, this study first calcu-
lated the spectral indices based on the in situ spectra from July to August 2004, in Taihu Lake,
China. The sensitivity of the spectral indices and their band combinations to the logarithmic
transformation of Chla (lnChla) was then analyzed and compared. The integrated spectral
index, NCI [ðR690∕R550 − R675∕R700Þ∕ðR690∕R550þ R675∕R700Þ], was found to be
highly correlated with Chla, demonstrating its potential use in Chla estimation in turbid waters.

Based on the NCI, a new Chla estimation model was constructed based on the 2004 data,
which is Chla ¼ expð7.6334 × NCIþ 3.3325Þ, with R2 of 0.92 and RMSE of 14.36 mg∕m3.
When the model was validated using the datasets of July to August 2005, September 2010,
and September 2011, the model after reparameterization yielded low RMSEs between measured
and estimated Chla, which were 10.39, 11.87, and 12.65 mg∕m3, respectively. Compared with
the three- and four-band models, the residuals’ diagnostics of the NCI model were significantly
better, indicating the robustness of the model and its satisfactory validation performance in multi-
ple datasets. Using the Hyperion/CHRIS band reflectance simulated by the in situ spectra data,
model results in 2004 and validation results in 2005 were both satisfactory, showing good appli-
cability of the NCI model.

This study indicates that the abundant results from vegetation remote sensing have a great
potential for Chla estimation in turbid waters. The NCI proposed in this study with stable band
positions and robust model performance can be preferably used for Chla estimation in turbid
waters.

The Chla range suitable to NCI in this study is from 4 to 192 mg∕m3. The usability of NCI
out of this range will be discussed in future research. Given that the four datasets were all col-
lected from Taihu Lake, one of the limitations of this study is that the calibration and validation
datasets only contain a part of the optical properties of natural turbid waters. We suggest cal-
ibration and validation of the algorithms based on more field-measured data.
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