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Abstract. Sound forest management requires accurate forest maps at an appropriate scale. Forest
cover data developed at a national scale may be too coarse for forest management at a local
level. We demonstrated a two-stage unsupervised classification, integrating Continuous
Forest Inventory (CFI) data and Landsat imageries, to classify forest types for Indiana State
Forests (ISF) and 8-km surrounding areas. In the first stage, an automatic unsupervised classi-
fication assisted by CFI data was applied in ISF. In the second stage, the resultant forest cover
information from the first stage was used to expand the classification area into the 8-km sur-
rounding areas. Splitting the classification procedure into two stages made it possible to expand
the classification area beyond the coverage of the CFI data. This data-aided unsupervised clas-
sification approach increased the repeatability of forest mapping. The resultant map contains five
forest types: conifer, conifer-hardwood, maple, mixed hardwood, and oak-hickory forests. The
overall accuracy was 81.9%, and the total disagreement was 0.176. The accuracies of conifer,
conifer-hardwood, maple, mixed hardwood, and oak-hickory forests were 81.6, 63.4, 75.0, 33.3,
and 90%, respectively. This forest mapping technique is suitable for automated mapping of forest
areas where extensive plot data are available. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083546]
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1 Introduction

Remote sensing is an effective technology to extract and map spatially explicit information of
land use and cover at different scales.1,2 Forest cover maps are one of the products made using
remotely sensed data and are essential for forest management, habitat monitoring, and biodiver-
sity analysis.3–6 General-purpose land cover maps developed at national and global scales usu-
ally describe forest information at a coarse level. For example, the National Land Cover Database
(NLCD)7 for the United States contains three forest types: deciduous, evergreen, and mixed
forests, a level-II classification defined by the United State Geological Survey (USGS).8 For
the purposes of intensive forest management, habitat characterization, and forest health mon-
itoring, it is essential to obtain more detailed forest information than the USGS (or
Anderson) level-II classification can provide.9–11

The major challenge in land use or forest classification is to increase classification detail with
satisfactory accuracy.12–14 This is because forest classification can theoretically be made at any
level but classification accuracy decreases with increasing classification detail. Fine-level forest
cover maps with low classification accuracy are no better than coarse-level forest cover maps

*Address all correspondence to: Gang Shao, gshao@purdue.edu

Journal of Applied Remote Sensing 083546-1 Vol. 8, 2014

http://dx.doi.org/10.1117/1.JRS.8.083546
http://dx.doi.org/10.1117/1.JRS.8.083546
http://dx.doi.org/10.1117/1.JRS.8.083546
http://dx.doi.org/10.1117/1.JRS.8.083546
http://dx.doi.org/10.1117/1.JRS.8.083546


with high classification accuracy though different forest management activities may require differ-
ent forest cover maps. A three-forest-class (or Anderson’s level-II) land cover map works well for
national-scale forest assessment, but is insufficient for complex forest management at the state
level, such as in Indiana where 95% of forests are deciduous.15 In this region, distinct deciduous
hardwood forest types exist, requiring differing silvicultural regimes for management and main-
tenance.10,16 However, detailed classification of hardwood forests is difficult due to the similarities
in spectral reflectance, canopy structure, and spatial mixture of hardwood tree species.17

There is a clear need for a quality forest cover map in Indiana to assess the habitat availability
for bat species that are at risk from white-nose syndrome.18 For example, the Indiana bat (Myotis
sodalis) is listed as an endangered species by the U.S. Fish and Wildlife Service as well as the
International Union for Conservation of Nature.19 Populations of Indiana bats have declined>50%

from 1960 to 200120 and are under considerable threat of increased declines due to white-nose
syndrome.21 During the summer, Indiana bats mainly use hardwood and hardwood-pine forests22

and a quality forest cover map can assist in modeling current and future bat habitat.23

There are several existing forest cover maps that contain more than three forest types at
national or state scales. The Forest Cover Types map produced by the National Atlas of the
United States24 provides an alternative resource for obtaining a forest cover map in Indiana. This
dataset was created based on advanced very high resolution radiometer and Landsat Thematic
Mapper (TM) imagery acquired in 1991 and includes 25 types of forests with a 1-km spatial
resolution. The classifications of hardwood forests, however, do not separate maple (Acer sp.)
from mixed hardwood tree species groups despite the fact that maple is one of the most dominant
tree genera in Indiana. Furthermore, there is no accuracy assessment information associated with
the metadata. The Indiana Gap Analysis Project has also produced a land cover map.25 The
development of this land cover map focused upon habitat attributes but did not consider sub-
classes of hardwood forests. The overall accuracy of this map was just 70.98%. However, for the
assessment of land use and land cover mapping, the USGS proposed a recommendation of mini-
mum accuracy of 85%.8 For application in landscape quantification, a classification accuracy of
>85% is necessary.13 Although there is no specific accuracy requirement for the purpose of
forest managements and habitat delineation, our objective was to develop a forest cover map
with 85% or better classification accuracy. Existing land cover maps were not satisfactory in
terms of classification details and accuracy; therefore, it was necessary to develop a more accu-
rate and more detailed forest cover map to meet the needs of various spatial analyses, such as
wildlife habitat simulations.

The algorithms of image data classification to derive a forest cover map generally include
supervised and unsupervised approaches.26 Supervised classifications require training a dataset
to predefine the statistical parameters (such as maximum likelihood) or nonparametric statistical
learning functions (such as neural network and support vector machine).27,28 Unsupervised clas-
sifications (such as ISODATA and K-means clustering) generate spectral clusters based on the
statistical information of the remote sensing imagery.29,30 Supervised and unsupervised classifi-
cations each have their own strengths: the former involves more human input than the latter,
whereas the latter is more repeatable than the former. Strictly speaking, both approaches require
human experience and neither is absolutely repeatable in practice. It is ideal for a classification
algorithm to have minimal human input while maintaining a high level of accuracy and repeat-
ability.30–33 Lang et al.30 demonstrated a data-aided unsupervised classification (DUC) method that
interfaced with sample data for labeling spectral classes into information classes. This automated
classification approach is superior to the traditional supervised and unsupervised classification
methods in terms of ease of use, classification accuracy, and repeatability. However, the use of
DUC becomes impractical if there are insufficient ground sample data. Our access to thousands
of geo-referenced plots of forest inventory from Indiana State Forests (ISF) provides us with an
excellent opportunity to classify forest types with the DUC method. This study represents the first
application of DUC to reveal insight about the usefulness of this automated approach in practice.

2 Study Area and Data Processing

This study focused on ISF and the 8-km surrounding areas (37°57′N to 40°54′N, 85°28′ W to
87°38′W). Eight-kilometer surrounding areas were implemented because they encompass the
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majority of Indiana bat movement from roost sites to foraging areas.34,35 A total of 13 state
forests with a total area of 9854 km2 were included in the study area (Fig. 1). Located in
the central hardwood forest region, the forests in the study area are dominated by hardwood
species, such as oak (Quercus sp.), hickory (Carya sp.), maple, and tulip poplar (Liridodendron
tulipifera).

We downloaded cloud-free Landsat 5 TM data of paths 21 and 22, and rows 32, 33, and 34,
acquired in April 2006, September 2008, and October 2010 from the USGS Earth Explorer data
website (Table 1).36 There were limited stand-replacing commercial harvests within the study

Fig. 1 The extents of Indiana State Forests (ISF) and the 8-km surrounding areas across Indiana.
The area between the lines is covered by the Landsat TM path 21 constituting ∼97% of the study
area. The Landsat TM data were placed as the background with the RGB combination of bands 4, 3,
and 2.
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area between 2006 and 2010. A comparison between NLCD 2006 and NLCD 2011 within the
study area indicated that only 0.114% of forestland had changed on ISF and the 8-km surround-
ing areas. Therefore, the overall forest canopy structure remained generally intact during this
period. These satellite image data capture spectral characteristics of tree species in spring
and fall seasons. The use of different seasons of remotely sensed data has proven useful for
improving classification accuracy for mapping tree species in temperate deciduous woodlands.37

In the spring, the deciduous trees have varying levels of greenness due to differences in leaf-
growing stages. In the fall, discrimination among deciduous species is possible due to differing
colors and amounts of leaves. Therefore, the combination of the two-season datasets increases
the ability to distinguish hardwood forest types in Indiana. Mosaics were made from images
acquired on the same date and were all clipped with the boundary of our study area. Spring
and fall TM image datasets were combined into a single dataset, resulting in two datasets cover-
ing 97 and 3% of the area by path 21 and path 22, respectively (Fig. 1). The data-aided clas-
sification method (discussed below) was applied to the classification of the path 21 image
mosaic. The path 22 image mosaic was classified with a traditional unsupervised classification
method due to insufficient plot data available for this small area.26

Table 1 Landsat 5 Thematic Mapper data used in this study.

Year Date Path Row Cloud coverage

2006 April 28 21 32, 33, 24 0%

2008 September 24 21 32, 33, 24 0%

2010 October 16 21 32, 33, 24 0%

2010 October 7 22 33 0%

Fig. 2 A flow chart of applying the two-stage, data-aided unsupervised classification method in
forest cover mapping for ISFs and the 8-km surrounding areas.
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NLCD 2006 was used as a base map, which helped separate forest from nonforested areas
(Fig. 2). This ensured the consistency between the newly developed land cover map and NLCD
2006 data for the nonforest categories. We clipped the image mosaics with forest polygons and
derived image datasets that contained only forest pixels (Fig. 2).

Continuous Forest Inventory (CFI) plot data were collected on ISF by Indiana Department of
Natural Resources (IDNR) between 2006 and 2010 (Fig. 3).38 The sampling intensity was one
plot for approximately every 40 acres. Each plot is in a circular shape with a radius of 7.3 m.
Stand type was recorded and trees with a diameter at breast height of 5 in. and larger were
measured on each plot. In this study, they were used as reference data (n ¼ 2158) for image
classification (Table 2). We grouped all the CFI plots into five forest types: conifer forest, coni-
fer-hardwood forest, maple forest, mixed hardwood forest, and oak-hickory forest based upon

Fig. 3 The spatial distribution of the Continuous Forest Inventory plots in ISF.
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the surveyors’ forest type classification. The coniferous forest type included all the conifer-domi-
nated plots. If the plot contained both hardwood and coniferous tree species, it was grouped into
conifer-hardwood forest type. Maple forest plots were those dominated by maple trees. Plots
would belong to oak-hickory forest type if they were dominated by oak and co-dominated
by hickory. Mixed hardwood forest plots were those dominated with hardwood tree species
other than maple, oak, or hickory. We collected data from an additional 321 plots for accuracy
assessment39,40 based on the CFI technique above, and 248 of these additional plots were located
within ISF area. The 8-km surrounding areas were much greater than ISF in area, but contained
only a small portion of reference plots due to difficult accessibility to private forestland.

3 Classification Methods

Band selection is required to improve efficiency and reduce redundancy. Different bands of
Landsat 5 TM data have different features for forest mapping.41,42 Band 1 has the ability to
distinguish deciduous from coniferous vegetation. Band 2 is useful for assessing plant vigor.
Band 3 is sensitive to vegetation slopes. Band 4 is related to forest biomass content. Bands
5, 6, and 7 reflect the moisture content of soil and vegetation.43 We performed band-by-
band visual examinations to eliminate bands with obvious noise due to high scattered energy
and excluded band 6 because of its large pixel size. Only one band would be kept if some bands
provide similar information for forest mapping to reduce redundancy.

The TM data analysis and classification were performed in Erdas Imagine 2010 (Ref. 44) and
MATLAB® 2010a. The classification procedure included two stages (Fig. 2).

1. We classified ISF by applying the original DUC algorithm.30 Unsupervised clustering
was used to achieve preliminary spectral clusters, followed by CFI data assisted cluster
labeling. Among 2158 CFI sample plots we used, 1912 were recorded as oak-hickory
forest type (Table 2), which dominated the forestland in ISF. Maple, beech (Fagus sp.),
basswood (Tilia sp.), and some other hardwood species are usually intermediate or over-
topped in the forest stand.45 We initially separated oak-hickory forest from the other
forest types. CFI data were used to guide the recoding of oak-hickory forests based
on the majority rule, meaning that if over half of the plots belonged to oak and hickory,
this cluster would be labeled as oak-hickory forest (Table 2). Due to the extremely
uneven distribution of the CFI data among different forest types, a large number of spec-
tral clusters were required to distinguish oak-hickory forest and those forest types with
rare CFI data. This procedure resulted in a forest cover map with two forest types: oak-
hickory and other forests. Then, other forest types were split using the non-oak-hickory
CFI plot data. For the classification of non-oak-hickory forest types, we used the relative-
dominant rule: a spectral class was assigned to a forest type that had the most plots within
the spectral cluster. If they had equal numbers of plots between any two hardwood plots,
the spectral class was assigned to mixed hardwood forest if a cluster contained no conif-
erous plot. The classification at this stage resulted in a forest cover map within ISF.

2. Both ISF and the 8-km surrounding areas were considered at this stage, but a similar
clustering procedure was applied. A large number of spectral clusters were required to
identify the forest types with rare CFI data. However, the CFI data were insufficient to
label large numbers of spectral clusters in the 8-km surrounding areas using original
DUC algorithm because most of the CFI plots were located within the ISF. The clusters
that did not overlap with CFI data could not be recoded or labeled with CFI data (Fig. 3).
Instead of using CFI plot data for recoding, the resultant forest cover map for ISF from

Table 2 The distribution of Continuous Forest Inventory plots among forest types in Indiana State
Forest.

Forest type Conifer Conifer-hardwood Maple Mixed hardwood Oak-hickory

Number of points 68 117 16 45 1912
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the first classification stage was used in this procedure. Each pixel of this forest cover
map was used to label the spectral clusters into forest cover classes by the majority rule
of the data-assisted unsupervised classification as discussed in stage 1. Such clustering-
recoding was repeated as the number of spectral clusters increased until classification
accuracy reached the maximum, resulting in a forest cover map for the entire study area.

Quantity, allocation, and total disagreements, which were developed by Pontius and
Millones,46 were calculated to qualify the classification results statistically in each stage.
Quantity disagreement is defined as the amount of difference in the proportions of the categories
between the resultant map and the reference data. Allocation disagreement is the difference in
spatial allocation of the categories between the resultant map and the reference data. Total dis-
agreement is the sum of quantity and allocation disagreements.46 McNemar’s test was used to
test the significant difference between the resultant matrices in stages 1 and 2.47,48 The Z score
was calculated with the following equation:

Z ¼ ja − bj
ffiffiffiffiffiffiffiffiffiffiffiffi

aþ b
p ; (1)

where a was the number of samples that were misclassified by the first stage classification but
were correctly classified by the second stage classification, and bwas the number of samples that
were correctly classified by the first stage classification but were misclassified by the second
classification. We assumed the results from the two stages were statistically significant
(p < 0.05) if the Z value was >1.96.

A complete land cover dataset was then produced by overlaying this forest cover map with
the water layer derived with the original TM imagery and the existing NLCD 2006. The newly
derived forest cover dataset is referred to as a five-forest-class (FFC) map, containing conifer
forest, conifer-hardwood forest, maple forest, mixed hardwood forest, and oak-hickory forest.

4 Results

In the band selection procession, we selected nine bands from the Landsat 5 TM data for forest
cover mapping, including bands 2, 3, 4, and 5 from the 2006 TM data, bands 4 and 5 from the
2008 TM data, and bands 4, 5, and 7 from the 2010 TM data. Bands 1 of all Landsat data were
excluded because of the high scattered energy. Bands 6 were all eliminated due to the large pixel
size and because the information they provided was not critical for forest mapping. One out of
three of bands 2, 3, and 7 were kept to reduce the redundancy. All bands 4 and 5 were included
because they are sensitive to the seasonal changes of the spectral reflectance of the forest species.

To separate oak-hickory forest from other forest types in stage 1, we started with 100 spectral
clusters using unsupervised classification and increased the number of the clusters by a 50-clus-
ter interval.26 By adjusting the number of spectral clusters, the highest classification accuracy
was reached when the number of spectral clusters was 200. For the classification of non-oak-
hickory forest types, the classification accuracy reached the highest when the number of spectral
clusters was 100. In this step, there would be individual spectral cluster/clusters that had no
overlap with any CFI plot if there were too many spectral clusters. The FFC map within
ISF was created at this stage [Fig. 4(a)]. In the second stage, 200 spectral clusters were classified
to create an FFC map within ISF and the 8-km surrounding areas [Fig. 4(b)]. The accuracy was
expressed with spatial agreement of forest types within shared ISF area between two forest cover
maps from both stages.

The FFC map resulting from the first stage of the classifications reached an overall accuracy
of 74.2% (Table 3). The quantity and allocation disagreements were 0.052 and 0.206. The total
disagreement was 0.258.46 The oak-hickory forest type had the highest accuracy on the average
of user’s and producer’s accuracies, followed by conifer, conifer-hardwood, maple, and mixed
hardwood forests. The classification accuracies of conifer-hardwood, maple, and mixed hard-
wood forests were lower than desirable. The second stage of the classifications increased the
overall accuracy to 81.9% (Table 4), better than the 78% overall accuracy of NLCD 2006 level II
classification [Fig. 4(c)].49 The total disagreement was 0.176 with a quantity disagreement of
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0.028 and allocation disagreement of 0.148. Again, the oak-hickory forest type had the highest
accuracy; conifer and maple forest types also had satisfactory accuracies. The mixed hardwood
forest type had a rather low producer’s accuracy though its user’s accuracy was relatively high.
McNemar’s test was applied to compare the results from the first and second stages of the clas-
sification. There were 73 plot samples that were used in the second stage of the classification but
were not used in the first stage of the classification because they were located in the 8-km sur-
rounding areas of ISF. As McNemar’s test requires the same quantity of samples from these two
matrices, these 73 samples were not used in the McNemar’s test, among which, 7 samples were
misclassified in the second stage of the classification. The Z value of the McNemar’s test was
2.98, which was>1.96. Therefore, the difference of the results from the two classification stages
was statistically significant at a 96% confidence level, which means that the result in the second
stage of classification was significantly improved.

The FFC map shows the dominant compositions of oak-hickory and mixed hardwood forests
in forest landscape, comprising 81% of the forested landscape in areas within ISF [Fig. 5(a)].

Fig. 4 The ISF forest cover map (a), the forest cover map of the ISF and the 8-km surrounding
areas (b), and the National Land Cover Database (NLCD) 2006 (c).
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This result was consistent with forest composition data reported by IDNR (2008),10 which were
obtained from field observations. Maple forest type in the FFC map constitutes 7% of ISF
area, equivalent to the sum of 4% for maple and 3% for bottomland hardwoods (IDNR
2008) [Fig. 5(b)]. The combined area of conifer and conifer-hardwood mixed forests in the
FFC map was slightly more than the pine forest area reported by IDNR (2008). The proportion
of conifer-hardwood forest in the FFC map was reasonable when compared with independent
forest inventory and analysis (FIA) data from USDA Forest Service.50 The conifer-hardwood
forest covered a much larger area in the FFC map than in NLCD 2006 data either inside or
outside ISF and is much more detailed than the forest cover classifications in NLCD 2006
[Fig. 5(c)].

5 Discussion

This study is the first demonstration of the DUC algorithm30 for a real-world classification exer-
cise with an integration of remotely sensed and plot-based forest data. Lang et al.30 designed and
tested the DUC algorithm to classify several sample sites into four general land covers, including
agriculture, forest, urban, and water. In this study, we applied this algorithm to a much larger site,

Table 3 An error matrix of classification for forests within Indiana State Forest following the stage
one classification.

Classification

Reference

Total UA (%)Conifer Conifer-hardwood Maple Mixed hardwood Oak-hickory

Conifer 39 6 0 1 1 47 83.0

Conifer-hardwood 1 19 0 2 7 29 65.5

Maple 1 0 14 0 11 26 53.9

Mixed hardwood 0 2 0 6 2 10 60.0

Oak-hickory 8 14 2 6 106 136 82.8

Total 49 41 16 15 127 248

PA (%) 79.6 46.3 87.5 40.0 83.5 OA ¼ 74.2

Note: UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy.

Table 4 An error matrix of classification for forests in Indiana State Forest and the 8-km surround-
ing areas following the stage two classification.

Classification

Reference

Total UA (%)Conifer Conifer-hardwood Maple Mixed hardwood Oak-hickory

Conifer 40 4 0 1 2 47 85.1

Conifer-hardwood 1 26 0 5 15 47 55.3

Maple 1 0 12 0 2 15 80.0

Mixed hardwood 0 0 0 5 1 6 83.3

Oak-hickory 7 11 4 4 180 206 87.3

Total 49 41 16 15 200 321

PA (%) 81.6 63.4 75.0 33.3 90.0 OA ¼ 81.9

Note: UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy.

Shao et al.: Mapping hardwood forests through a two-stage unsupervised classification. . .

Journal of Applied Remote Sensing 083546-9 Vol. 8, 2014



the ISF with the 8-km surrounding areas. We focused on and split the forests into more detailed
forest types, which was more difficult than the general land cover classification due to the simi-
larities. The classification accuracy of such an unsupervised classification approach is deter-
mined mainly by imagery quality and sample data. The two-season Landsat TM datasets we
used in this study provide richer spectral information than single-season imagery for the clas-
sifications of hardwood forests. The CFI plots used in this study were abundant though their
distribution among forest types was uneven. All these factors contributed to the development
of the FFC map that is reasonably consistent with field survey data. This shows that the inte-
gration of image data and forest field data has made the resultant forest cover map more realistic
and objective than the use of image data alone.

The overall accuracy of the forest cover map derived at the second stage was unexpectedly
greater than that at the first stage. The reason for this phenomenon may be that spectral classes
derived from a larger forest area (ISF and the 8-km surrounding areas) have better representa-
tions to forest types than those from a smaller forest area (ISF). Because most sample points are
located inside ISF, forest cover information within ISF may be more reliable than that outside
ISF. The producer’s accuracy of maple forest type in the second stage was lower than that in the
first stage; however, the user’s accuracy had significant increases. This means the FFC map
created in the first stage overestimated the maple. The FFC of the second stage showed a
lower quantity disagreement. It is also reasonable for the additional misclassified maple
plots dropping into oak-hickory forest type because maples are shade tolerance species and
are usually suppressed under the oak-hickory forests. The same trend of accuracies happened
in mixed hardwood forest, where the producer’s accuracy decreased and the user’s accuracy

Fig. 5 A comparison of forest composition in area among NLCD 2006 (a), five-forest-class map
(b), and report by IDNR (2008) (c) for ISF.
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increased. However, there was no confidential evidence to show that mixed hardwood was over-
estimated in the first stage. FFC in the second stage might have underestimated the mixed hard-
wood because the total number of mixed hardwood samples in the resultant map was much
smaller than that in the reference data. The decrease of the allocation disagreement showed
that FFC in the second stage would likely have a better quality.

The classification accuracy is also affected, in theory, by spatial mismatch between pixel
coordinates and plot locations. The coordinates of the CFI plots used in this study were measured
with handheld global positioning system (GPS) receivers and their errors are normally up to
10 m.51 The combination of the GPS error and TM image geometric error can be problematic
for heterogeneous forest canopies. The coverage of this type of forest inventory data is available
for limited forest areas, geographically restricting the applications of the data-assisted unsuper-
vised classifications.

Given the first experiment with the classification method, we suggest that it should be
broadly applied with the following considerations:

1. Temporal consistency: The time of image data to be used for classification should be
close to the time of forest data collection. If there is a difference in time, areas that have
changed between the two times should be excluded from image data classification.

2. Spatial correction: Both image data and plot data should be correctly geo-referenced.
Geometric corrections may be needed though most remotely sensed data have been
geo-referenced by the data provider. It is ideal that forest plot coordinates measured
with GPS are differentially corrected. Because the data-aided unsupervised classification
is a nonparametric approach, sample plots for classification can be purposely located in
the middle of forest stands on the ground. Alternatively, plots located on the edges of
forest stands can be excluded from their use for assisting image data classification.

3. Spatial representation: Sample plots should have an extensive coverage over the study
area and, thus, only the first stage is needed for completing image data classification. Plot
size needs to be big enough to have a good representation of tree composition from
which forest types are derived. If the plot data are used exclusively for image data clas-
sification, the simplest attribute measurement is to record the name of the forest type by
experienced forest surveyors. Only the canopy tree species is helpful to image data
classification.

4. Map validation: The overall accuracy is the first but not the only consideration for the
quality of a forest cover map. It is essential that a forest cover map be assessed with plot
data that are not used for assisting image data classification.39 The sample plots that are
used for accuracy assessment should be randomly located on the ground. It is best to
have a broad coverage over the study area with reference sample plots. It is important to
balance between the user’s and producer’s accuracies.13,52

An important feature of the DUC algorithm is its repeatability, meaning that the classification
procedure can be systematically modified by simply changing classification parameters and
labeling rules if classification results are not satisfactory, thus the loops in the flow chart of
the two-stage unsupervised classification (Fig. 2). Our experience indicates that an automated
computer program for recoding can make the classification less labor intensive and reduce
human errors in labeling processes despite hundreds of spectral classes. Analysts only need
to have fundamental remote sensing training to implement this classification technique.

Forest inventory data, such as FIA, have been used in various ways to improve forest assess-
ment together with remotely sensed imagery.40,53,54 If researchers can access the exact FIA plot
locations, the FIA-DUC approach can be broadly applied at the regional and national scales in
the United States. Such a forest mapping procedure will help save time and money due to a
reduction in the necessary ground validation.

6 Conclusions

This study demonstrates the first application of the DUC algorithm in dividing hardwood forests
into three forest types in an objective fashion. The overall quality of the resultant forest cover
map suggests that the DUC approach with forest inventory data is an effective and efficient
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method for mapping forest cover in Indiana. However, current ground data do not allow us to
classify the hardwood forest into even more detailed levels with satisfactory accuracy. A step-
wise classification procedure of species composition overcomes the difficulties caused by the
extremely uneven distribution of ground data. The two-stage DUC algorithm successfully
extends the mapping area to 8 km away from the plot-based forest data without jeopardizing
classification accuracy. This forest mapping technique is suitable for mapping other forest areas
where extensive plot data are available.

A forest cover map needs to be noise free if it is to be used for forest management activities in
the field. In other words, the minimum mapping unit will likely be greater than pixel size of the
remote sensing imagery at a proper scale based on the objective of the map to reduce salt-and-
pepper or noise pixels. A forest cover map derived from pixel-based classifications can be filtered
to remove noise pixels by using image processing algorithms, such as connected component analy-
sis and morphology fundamentals processing. It is also possible to integrate spectral classes with
image segmentation to obtain patch-style spectral classes, based on which labeling procedure is
implemented. Such comprehensive experiments need systematic explorations in the future.
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