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Abstract. A regional rice (Oryza sativa) grain yield prediction technique was proposed by inte-
gration of ground-based and spaceborne remote sensing (RS) data with the rice growth model
(RiceGrow) through a new particle swarm optimization (PSO) algorithm. Based on an initial-
ization/parameterization strategy (calibration), two agronomic indicators, leaf area index (LAI)
and leaf nitrogen accumulation (LNA) remotely sensed by field spectra and satellite images,
were combined to serve as an external assimilation parameter and integrated with the
RiceGrow model for inversion of three model management parameters, including sowing
date, sowing rate, and nitrogen rate. Rice grain yield was then predicted by inputting these opti-
mized parameters into the reinitialized model. PSO was used for the parameterization and
regionalization of the integrated model and compared with the shuffled complex evolution–
University of Arizona (SCE-UA) optimization algorithm. The test results showed that LAI
together with LNA as the integrated parameter performed better than each alone for crop
model parameter initialization. PSO also performed better than SCE-UA in terms of running
efficiency and assimilation results, indicating that PSO is a reliable optimization method for
assimilating RS information and the crop growth model. The integrated model also had
improved precision for predicting rice grain yield. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.8.083674]
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1 Introduction

As the most important food crop in China, rice accounts for ∼30 and 40% of the national total
production area and yield of food crops, respectively. China also has the largest production of
rice in the world.1 Therefore, it is important to develop the ability to predict regional rice grain
yields timely and accurately, which can support the macro level of control and decision-making
for crop production and food trade regionally or nationwide.

Remote sensing (RS) technology is an important tool for crop yield prediction. Some studies
performed predictions by establishing relationships between spectral vegetation indices and crop
yields.2 Others have used the approach of first predicting crop growth parameters, such as leaf
area index (LAI), biomass, chlorophyll content, and leaf nitrogen content (LNC), based on spec-
tral vegetation indices and then evaluating crop yield based on the close inherent relationships
between these growth parameters and crop yield.3 However, RS data usually ignores the effect of
the climate, soil, and environment on crop yield and can only reflect the instantaneous status of a
crop canopy. In addition, only a limited amount of RS data can be obtained during the whole crop
growth cycle due to limitations imposed by weather conditions and satellite period, especially in
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the rice production area of south China. Therefore, it is difficult by using RS data alone to explain
the intrinsic principles of crop growth and development processes and relate them to crop yield.4

Crop growth models also have been used widely in the evaluation of crop growth status and
yield prediction, which can describe the interactions between the genetic potential, environmental
effects, and field managements of a crop by simulating the dynamic patterns of growth. For in-
stance, the crop environment resource synthesis (CERES-Maize) model was successfully used to
predict grain yield of maize in the United States.5 The erosion-productivity impact calculator
(EPIC) model was shown to accurately simulate yields of crops, such as soybean, grain sorghum,
sunflower, and wheat.6 Brown and Rosenberg7 had evaluated the changes in yields of maize, soy-
bean, grain sorghum, and wheat based on an EPIC model in the central region of the United States.
The agricultural production systems simulator-wheat model performed well in wheat grain yield
predictions in Western Australia under different soil, water, and cultivation conditions.8 Simane et
al.9 had studied the influence of soil water stress on the potential yield of durum wheat in Ethiopia
based on the simple and universal crop growth simulator model. However, when applied to a large-
scale area, the crop model required such a large amount of input data that it was virtually impos-
sible to gather all of it with a sufficient degree of confidence.10 Such incomplete datasets would
disregard spatial heterogeneity, introduce uncertainties, and limit the accuracy of the predictions.

Therefore, integrating RS data into a crop growth model may be an effective way to improve
the accuracy of predicting crop growth status and yield at the regional scale. For example,
Delecolle et al.11 inputted the LAI inverted from SPOT/HRV data into the AFRC-wheat
model and improved the accuracy of wheat grain yield estimations. Doraiswamy et al.12 estimated
LAIs of corn and soybean using eight-dayMODIS composite images during their growing seasons
and simulated the crop yields in a 1.6 × 1.6 km2 grid scale by integrating the estimated LAIs into a
climate-based crop simulation model based on the forcing strategy. Abou-Ismail et al.13 developed
a new rice-Stanford research systems (SRS) model by coupling the LAI inverted from NOAA/
AVHRR data and the rice growth model ORYZA1 (an ecophysiological model for irrigated rice
production) and improved the estimation accuracy of rice grain yield at the regional scale. While
the forcing strategy uses the state parameter inverted by RS that is more accurate than that simu-
lated by crop modeling, it requires greater observation times. As mentioned above, however, it is
difficult to obtain RS data with high spatial and temporal resolutions simultaneously.

The initialization/parameterization strategy, which should overcome the shortcomings of the
forcing strategy, assimilates RS data and the crop growth model by initializing input parameters
of crop model or other parameters produced in the modeling process to improve the prediction
accuracy. By using the initialization strategy, Dente et al.14 improved the prediction accuracy of
wheat grain yield based on assimilating the LAI derived from advanced synthetic aperture radar
(ASAR) and medium resolution imaging spectrometer (MERIS) data into the CERES-wheat
model. This process reinitialized the model by optimizing input parameters, which required
good temporal agreement between the LAI values simulated by crop model and estimated
by RS. The shuffled complex evolution-University of Arizona (SCE-UA) optimization method
has also been used to assimilate remotely sensed LAI into the crop growth model EPIC to sim-
ulate regional yield, sowing date, plant density, and net nitrogen fertilizer application rate of
summer maize.15 A data assimilation approach was developed to integrate remotely sensed
data with the core scenario model (CSM)-CERES-maize model for corn yield estimation.16

Huang et al.17 also successfully predicted main growth parameters and wheat grain yield at
the field and regional scales by integrating the ground-based and spaceborne remotely sensed
data and a wheat growth model (WheatGrow), which inverted accurately three management
parameters (sowing date, sowing rate, and nitrogen rate) based on the SCE-UA optimization
method. Too many parameters should be determined and repeated testing is needed before
SCE-UA can be used effectively, which increases the complexity of calculations.18 However,
PSO is comparatively a simple optimization algorithm that needs few input parameters and
has high calculation efficiency.

The choice of optimization method is very important in the process of assimilating a crop
growth model and RS data, which is reflected in the assimilation accuracy and running effi-
ciency. In currently published papers, only one agronomic indicator, such as LAI or LNA,
is usually used as the assimilation parameter, and there are few reports that use two crop growth
parameters simultaneously. Therefore, the objectives of the present study were (1) to introduce
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the particle swarm optimization (PSO) algorithm and compare it with the SCE-UA optimization
algorithm, (2) to develop an optimization algorithm based on two crop growth parameters
(LAI and LNA) jointly as the assimilation parameter, and (3) to establish an RS-RiceGrow
assimilation model for rice grain yield for prediction at the field and regional scales.

2 Materials and Methods

2.1 Experimental Design

The data used in the present study were obtained from three rice field experiments involving
different nitrogen (N) rates, cultivars, and planting densities from varied sites and years, as
described below. All cultivation procedures followed the local rice production standard except
for the differences in experimental treatment.

Experiment 1 was conducted in 2009 at the Rugao Farm in Changjiang Town of Rugao City
in Jiangsu Province, China (120°35′E, 32°3′N). The field soil was classified as a sandy soil with
20 g kg−1 organic matter, 1.70 g kg−1 total N, 34.79 mg kg−1 available phosphate, and
98.96 mg kg−1 available potassium (0 to 25 cm soil depth). The rice variety Zhendao 413
was directly sown in the field on June 10 with two density rates of 67.5 kg hm−2 (D2) and
105 kg hm−2 (D3). Plot areas were each 8100 m2 (90 m long × 90 mwide). Three N rates of
270 kg hm−2 (N3), 360 kg hm−2 (N6), and 450 kg hm−2 (N7) were applied as urea with
30% at preseeding, 20% at tillering, 25% at panicle initiation, and 25% at spikelet initiation.
For all treatments, 120 kg ha−1 P2O5 (as monocalcium phosphate [CaðH2PO4Þ2]) and
190 kg ha−1 K2O (as KCl) were applied prior to seeding. The experiment was a randomized
complete block design with two replications.

Experiment 2 was conducted in 2010 at the same location as for experiment 1. Three N rates
were adjusted to 150 kg hm−2 (N1), 240 kg hm−2 (N2), and 330 kg hm−2 (N5). The variety
Zhendao 413 was directly sown in the field on June 14 with two density rates of
60 kg hm−2 (D1) and 105 kg hm−2 (D3) in order to obtain more distinct results from different
treatments. All other parameters, including experimental block design treatments and manage-
ments were the same as for experiment 1.

Experiment 3 was carried out in 2010 at the Yizheng experimental station in Xinji Town of
Yizheng City in Jiangsu Province, China (119°30′E, 32°32′N). The field soil was classified as a
sandy soil with 20 g kg−1 organic matter, 1.66 g kg−1 total N, 47.17 mg kg−1 available phos-
phate, and 100.57 mg kg−1 available potassium (0 to 25 cm soil depth). The rice variety
Wuxiangjing14 was sown on May 16 and transplanted on June 20 with two density rates.
The row and plant spacings were 45 and 15 cm (D4) and 25 and 15 cm (D5), respectively.
Each plot area was 42 m2 (6 m long × 7 mwide). Two N rates of 150 kg hm−2 (N1) and
300 ðN4Þ kg hm−2 were applied as urea with 50% at preplanting, 10% at tillering, 20% at panicle
initiation, and 20% at spikelet initiation. For all treatments, 135 kg ha−1 P2O5 (as monocalcium
phosphate [CaðH2PO4Þ2]) and 190 kg ha−1 K2O (as KCl) were applied prior to transplanting.
The experiment was a randomized complete block design using a factorial arrangement of treat-
ments with three replications.

The study area covered the whole Rugao City of Jiangsu Province, China, which is located in
the east central plains, between latitude 32°0’ to 32°30’N and longitude 120°20’ to 120°50’E. The
area has a subtropical humid climate with an average annual temperature of 14.4°C, annual average
of 2078.4 sunlight hours, and annual total rainfall of 1057.1 mm. The main planting system was a
rotation of rice and wheat crops. Forty global position system (GPS) positioning points were set up
randomly to cover the entire city and used for geometric correction of satellite images.

2.2 RS and Agronomic Data Acquisition

2.2.1 RS image acquisition

A total of six images19 from the China environmental and disaster monitoring and forecasting
small satellite HJ-1A/B CCD of the study area in 2009 and 2010 rice growing seasons were
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acquired for this study, which coincided with the jointing stage (August 16, 2009; August 13,
2010), heading stage (September 6, 2009; September 21, 2010), and grain-filling stage (October
2, 2009; October 5, 2010). These images were offered by the China Resources Satellite
Application Center (http://www.secmep.cn/secPortal/portal/index.faces). HJ-1A/B CCD has a
spatial resolution of 30 m and measures four bands, including blue (430 to 520 nm), green
(520 to 600 nm), red (630 to 690 nm), and near-infrared (760 to 900 nm). The revisit period
of HJ-1A/B is 2 days.

2.2.2 Canopy spectral reflectance measurements

During the experimental periods, ground-based hyperspectral reflectance was measured at key
growth stages using a field Spec Pro FR spectroradiometer (Analytical Spectral Devices,
Boulder, Colorado). This instrument records reflectance between 350 and 1000 nm with a sam-
pling interval of 1.40 nm and a resolution of 3 nm, and reflectance between 1000 and 2500 nm
with a sampling interval of 2 nm and a resolution of 10 nm. The sensor of this instrument has a
25-deg field of view and was placed at nadir 1 m above the rice canopy when measured. All
spectral measurements were made during cloud-free periods at mid-day, between 10:00 and
14:00. A white Spectralon reference panel (Labsphere, North Sutton, New Hampshire) was
used under the same illumination conditions to convert the spectral radiance measurements
to reflectance.

In experiments 1 and 2, there were five spectra sampling points for each plot established with
a 75-m line drawn through each plot and 15-m interval between two neighboring points. A sin-
gle-point measurement from 10 scans was used for ground-based analysis, while the average of
five points was used to create the final data for each plot. The spectra measurements of experi-
ments 1 and 2 were acquired at the same time and day by RS imaging. In experiment 3, 10 scans
were made for each plot and averaged to produce final canopy spectra in an interval of 10 days
from the jointing stage.

2.2.3 Determination of agronomic parameters

LNA and LAI were measured at the spectral sampling points and sampling times as indicated in
the spectral measurements. After each measurement of canopy spectral reflectance, five plants
from each plot in experiment 3 and 40 plants from each plot in experiments 1 and 2 were selected
randomly and destructively sampled for determination of leaf area and leaf weight. From each
sample, all green leaves were separated from their stems, measured for the leaf area using an LI-
3000C meter, oven-dried at 105°C for 30 min, and then at 80°C until a constant weight was
reached. Dried leaf samples were ground to pass a 1-mm screen and then stored in plastic
bags prior to chemical analysis. LAI was calculated by the dry weight (DW) method, and
total N concentration was determined by micro-Keldjahl analysis. LNA was expressed as
Eq. (1). Mature rice plants were sampled at five observation points in 1 m2 for experiments
1 and 2, and at one observation point in 1 m2 for experiment 3. Unit grain yield values
were determined by weighing after threshing and drying.

LNA ðgNm−2Þ ¼ leaf nitrogen contentð%Þ × 0.01 × leaf dry weightðgDWm−2 soilÞ: (1)

2.3 Data Utilization and Analysis

2.3.1 Satellite image preprocessing and rice information extraction

Images were preprocessed by ENVI software.20 HJ-1A/B images were geometrically corrected
using 40 GPS ground control points and atmospherically corrected based on the fast line-of-sight
atmospheric analysis of spectral hypercubes (FLAASH) model of ENVI software by an empiri-
cal linear method.21 By combining a support vector machine method with field surveys and
ground-based spectral data, the supervised classification and reflectance threshold segmentation
of HJ-1A/B images were carried out to extract the rice planting area.22,23 Finally, an
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administrative map of Rugao City was used to mask the images to obtain canopy reflectance data
of rice. Borders and locations of fields were determined by GPS positioning.

2.3.2 Monitoring models for LAI and LNA

Ground-based estimation models for LNA and LAI were developed based on spectral vegeta-
tion indices (VIs).24,25 For the spaceborne data, VIs for estimating LAI and LNA were devel-
oped by fitting 1-nm interval analytical spectral devices (ASD) canopy reflectance data to the
wide band of HJ-1A/B CCD according to their spectral responding functions.26 The modeled
VIs were correlated to measured LNA and LAI based on data from experiment 2. The ratio
vegetation index performed well and was selected for estimating LAI and LNA for HJ-1
images (Table 1).

2.3.3 Data utilization and statistical analysis

The ground-based canopy spectral and agronomic parameters of experiments 1 and 2 were used
for testing the prediction accuracy of the RS-RiceGrow coupling model developed in the present
paper. Spaceborne RS data and agronomic parameters from experiments 1 and 2 were used to
calibrate and validate the estimation models for LAI and LNA, respectively. Canopy spectral and
agronomic parameters of experiment 3 were used to analyze the sensitivity of the RiceGrow
model and test the validity of the RS-RiceGrow coupling model.

Parameter sensitivity (PS) was used to evaluate the sensitivity of model input parameters to
LAI and LNA. Relative error (RE, %) and root mean square error (RMSE, %) were used to
calculate the fitness between the simulated and measured values and evaluate reliability of
the assimilation technique.27

PS ¼ Dm

Di
; (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ðSi −OiÞ2

N

r
; (3)

RE ¼ Si −Oi

Oi
; (4)

where Dm is the difference between modeled LAI values or LNA values by the RiceGrow with
varied input parameters,Di is the corresponding change in the range of input parameter,Oi is the
measured value, Si is the simulated value, and N is the number of samples.

Table 1 Algorithms of agronomic parameters.

Agronomic
parameter Vegetation index Regression model R2 Reference

FieldSpec
Pro FR

LAI difference vegetation
index (DVI)(854, 760)

y ¼ 67.433x þ 0.1008 0.87 25

LNA (gm−2) RVI(810, 560) y ¼ 0.859x − 1.1596 0.91 24

HJ-1 A/B LAI RVI(4, 2) y ¼ 0.2074x þ 1.6459 0.72 This
paper

LNA (gm−2) RVI(4, 2) y ¼ 0.4508x þ 2.2415 0.72

LAI, leaf area index; LNA, leaf nitrogen accumulation; RVI, ratio vegetation index; DVI, difference vegetation
index. The numbers in DVI(854, 760) and RVI(810, 560) denote different spectral bands (nm). The numbers in
RVI(4, 2) denote different channel numbers of HJ-1 A/B sensor, and 4 and 2 denote near-infrared band (760 to
900 nm) and green band (520 to 600 nm), respectively.

Wang et al.: Integrating remotely sensed leaf area index and leaf nitrogen accumulation with. . .

Journal of Applied Remote Sensing 083674-5 Vol. 8, 2014



2.4 Optimization Algorithms

2.4.1 PSO algorithm

The PSO algorithm28 groups each individual particle (point) with a certain speed of flight but
without quality and size in the multidimensional search space. It is assumed that there is a group
(swarm) consisting of m particles flying with a certain speed in a D-dimensional search space,
and each particle changes its location (i.e., state or solution) based on both its own best search
point in the history of the search process and that of other particles in the swarm (or neighbor-
hood). The following calculations were made:

The position of ith particle is expressed as xi ¼ ðxi1; xi2; : : : ; xidÞ; 1 ≤ i ≤ m; 1 ≤ d ≤ D:

(5)

The velocity of ith particle is expressed as vi ¼ ðvi1; vi2; : : : ; vidÞ: (6)

The best point of ith particle in history is expressed aspi ¼ ðpi1; pi2; : : : ; pidÞ: (7)

The best points of all particles in swarm ðor arreasÞ is expressed aspg ¼ ðpg1; pg2; : : : ; pgdÞ:
(8)

In general, the position and velocity of a particle are continuous true values within real num-
ber space, which change according to the following equations:

vkþ1
id ¼ vkid þ c1ξðpk

id − xkidÞ þ c2ηðpk
gd − xkidÞ; (9)

xkþ1
id ¼ xkid þ vkþ1

id : (10)

In Eqs. (9) and (10), c1 and c2 are the learning factors or acceleration coefficients, which
represent the ability of a particle to self-summarize and learn from other outstanding individual
particles and to approximate the best location in its own history or neighboring area. c1 and c2
values are usually endowed with 2.29 ξ and η ∈ U [0,1] are random numbers between 0 and 1.
The velocity of a particle is limited within a maximum speed ½−Vmax; Vmax� to prevent its depar-
ture from the search space. In this study, Vmax, c1, and c2 were determined as 10, 2, and 2,
respectively.

2.4.2 SCE-UA algorithm

Many studies have shown that the efficient SCE-UA algorithm can resolve some of the problems
of global high-dimensional parameter optimization.18 In the process of global optimization, not
needing to calculate the derivative of the objective function is the main advantage of this algo-
rithm.15 SCE-UA is based on the following six steps:30

Step 1: Initialize and generate sample including s points, s ¼ p ×m, where p is the number of complexes
and m is the number of points in each complex. Compute the functional value fi at each point xi.

Step 2: Rank points. Sort the s points in order of increasing functional value. Store them in an
array D ¼ fxi; fi; i ¼ 1; : : : ; sg.

Step 3: Partition into complexes. Partition D into p complexes A1; : : : ; Ap, each containing m points.
Step 4: Evolve each complex. The complexes A1; : : : ; Ap are evolved according to the competitive com-

plex evolution algorithm outlined separately.
Step 5: Shuffle complexes. Replace A1; : : : ; Ap into D.
Step 6: Check convergence. If the convergence criteria are satisfied, stop; otherwise, return to Step 3.
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In this study, m ¼ ð2nþ 1Þ, n stands for the number of assimilating parameters, and p was
determined as 2.30 The PSO algorithm was compared with the SCE-UA optimization algorithm.

2.5 Objective Functions

Objective functions are usually used to reflect the differences between the remotely sensed and
simulated LAI/LNAvalues, which determines whether the optimization algorithm (PSO or SCE-
UA) had obtained the optimum assimilated input parameters. Here, two different objective func-
tions were developed by using one growth parameter (LAI or LNA) or two growth indexes (LAI
and LNA) jointly as the assimilation parameter.

When only LAI or LNAwas used as the assimilation parameter, the objective functions were
as follows:31

J ¼
XN
i¼1

jLAIrs; i − LAIm; ij or J ¼
XN
i¼1

jLNArs; i − LNAm; ij: (11)

When LAI and LNAwere used jointly as the assimilation parameter, the J function was used
to determine the weighted sum of the square errors of LAI and LNA between RS measurements
and RiceGrow simulations. To separate the different effects of LAI and LNA, their weights are
considered inversely proportional to the errors of the retrieved LAI and LNA.14 The J function is
calculated as follows:

J ¼
XN
i¼1

ðLAIrs; i − LAIm; iÞ2
Δ2

LAIrs

þ
XN
i¼1

ðLNArs; i − LNAm; iÞ2
Δ2

LNArs

; (12)

where J is the value of the objective function, and N is the total number of RS estimation. LAIrs
and LNArs are the LAI and LNAvalues retrieved by RS, respectively. LAIm and LNAm are the
corresponding LAI and LNA values simulated by RiceGrow model at the same time RS is con-
ducted. ΔLAIrs and ΔLNArs are the standard deviations of LAI and LNA by RS.

2.6 Rice Growth Model (RiceGrow)

2.6.1 Brief description of RiceGrow

The RiceGrow model, a process based on the rice growth model, was developed from systematic
and comprehensive studies on aspects of the rice cultivation system, such as the mechanisms and
relationships among rice growth, climate, soil, and management technology (Fig. 1). The model
is composed of seven submodels, including phenology, photosynthesis biomass production, bio-
mass partitioning, yield, quality, and water/nitrogen relationships. Eight genotype-specific
parameters relating to rice yield were used: temperature sensitivity, photoperiod sensitivity, opti-
mum temperature, intrinsic earliness (for phonological development), basic filling factor, maxi-
mum CO2 assimilation rate, potential partitioning index for panicle, and potential relative growth
rate for LAI. The submodel equations of the RiceGrow model have been exhaustively described
in a previous publication by Tang et al.32 The genetic and cultivar ecotype parameters of
RiceGrow were adjusted by the trial and error method33 according to characteristics of the
rice cultivars and experimental treatments from the previous experiments,32 which ensure the
good predictability and applicability of RiceGrow at various ecosites. The RiceGrow model
also could reliably simulate the dynamic processes of rice growth, development, and yield
with data from experiments 1, 2, and 3 by validation analysis. The key model state variables
LAI and LNA were selected as the coupling parameters for RiceGrow and RS, which not only
could express rice growth conditions, but were also directly related to the final grain yield. In
addition, data for both of these parameters could be retrieved by RS successfully.34,35 Sowing
date, seeding rate, and nitrogen rate, which are generally difficult to obtain accurately at the
regional scale, were chosen as the assimilating parameters of the RiceGrow model.
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2.6.2 Crop model input data acquisition

Meteorological data, including daily maximum temperature (°C), daily minimum temperature (°
C), sunshine hours (h), and daily rainfall (mm), were acquired from the Weather Bureau of
Rugao. The soil data for the study area was obtained from a soil dataset or chemical analysis,
including soil thickness (cm), physical clay content (%), bulk density (g cm−3), field capacity
(cm3 cm−3), wilting humidity (cm3 cm−3), saturated water content (cm3 cm−3), actual water con-
tent (cm3 cm−3), saturated hydraulic conductivity (mmd−1), organic matter (g kg−1), total nitro-
gen (g kg−1), nitrate (mgkg−1), ammonium (mgkg−1), phosphorus (mgkg−1), potassium
(mgkg−1), and other physical parameters. Geographic information, such as field boundary,
was determined using the GPS Pathfinder GPS achiever (Trimble Navigation Ltd.,
Sunnyvale, California).

3 Results

3.1 Process of Coupling Remotely Sensed Information and
RiceGrow Model

The initialization (assimilation) strategy was adopted to achieve the integration of RS informa-
tion with the RiceGrow model (Fig. 2). During the assimilation process, the initial input param-
eters of RiceGrow (sowing/transplanting date, sowing rate, and nitrogen rate) were adjusted
constantly until the remotely sensed LAI and LNAvalues gradually approached those simulated
by the RiceGrow model. When the difference between the estimated and simulated values
reached the minimum, the input parameters (sowing/transplanting date, sowing rate, and nitro-
gen rate) were considered to be optimized and then used in the reinitialized RiceGrow model. In
this manner, the prediction of rice growth indices and grain yield could be improved based on the
RiceGrow model. An optimization algorithm (PSO or SCE-UA) was also used to improve effi-
ciency of the iterative process and determine when the iterative process was terminated in the
assimilation process. The integrating process was divided into three layers, including the data
layer, assimilation layer, and modeling and evaluation layer.

Fig. 1 Modular structure of the RiceGrow model.
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3.2 Assimilated Input Parameters and Assimilation Parameter of
RS and Crop Model

The selection of input parameters for assimilating should consider whether they have major
impacts on the crop model, have large spatial variability in a certain region, and are difficult
to obtain accurately.4 Accordingly, three rice cultivation management parameters, including sow-
ing/transplanting date, sowing rate, and nitrogen rate, were chosen as the assimilated input
parameters. The assimilation parameter is the agronomic parameter serving as the comparative
object, which can be estimated and simulated by RS and crop model simultaneously in the
assimilation process. In general, those crop growth indices that can be retrieved effectively
by RS and are sensitive to the assimilated input parameters are selected as the assimilation
parameter.36 In this paper, LAI and LNA together were determined as the assimilation parameter
through simple PS analysis.

In the PS analysis, two of three assimilated input parameters were fixed, while the third one
was changed in three levels at each time; the LAI and LNAvalues were simulated accordingly by
the RiceGrow model (Fig. 3). The sensitivity of each parameter (LAI or LNA) to the assimilated
input parameters was calculated according to Eq. (2). The results showed that the PS of LAI to
the three assimilated input parameters, sowing date, sowing rate, and nitrogen rate, were 38.6,
15.9, and 14.0%, and that of LNAwere 48.4, 18.1, and 17.4%, respectively. Thus, the three input
parameters, sowing date, sowing rate, and nitrogen rate, had major impacts on the RiceGrow
model, and LNAwas somewhat more sensitive than LAI. Overall, both LAI and LNAwere found
to be a suitable assimilation parameter alone or jointly.

3.3 Validation Runs

3.3.1 Verification of the assimilation technology

The feasibility of an assimilation technique can be tested by verifying whether it can retrieve the
initial input parameters that were used to drive the crop model when the growth parameters
simulated by the forward running model are used as the external assimilation data.37

Therefore, data from two treatments (N1D3 and N4D4) in experiment 3, which had clear
differences, were used to verify the assimilation procedure in the present paper. First, the

Fig. 2 Flow chart of coupling remote sensing information and the RiceGrow model.
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RiceGrow model was run forward with the sowing/transplanting date, sowing rate, and nitrogen
rate of these treatments, and the simulated daily LAI and LNAwere obtained. The developed RS-
RiceGrow assimilation model was then run to invert the corresponding initial input parameters
with the simulated LAI and LNA serving as external assimilation data. Finally, the differences
between the inverted and input parameters were analyzed (Table 2).

The results showed that the RMSE values of three initial parameters between the retrieved
and actual values were 1.00 d, 5.42 kg hm−2, and 26.57 kg hm−2 based on the SCE-UA algo-
rithm, while they were 1.22 d, 2.59 kg hm−2, and 16.44 kg hm−2 based on the PSO algorithm,
respectively, after running the model 10 times. Moreover, different assimilation parameters also
affected the assimilation accuracy. The RMSE values for three initial parameters were 1.58 d,
4.37 kg hm−2, and 20.86 kg hm−2; 0.71 d, 5.56 kg hm−2, and 25.00 kg hm−2; and 0.87 d,
2.05 kg hm−2, and 20.13 kg hm−2 when using LAI, LNA, and LAI and LNA jointly as the

Fig. 3 Sensitivity analysis of leaf area index (LAI) and leaf nitrogen accumulation (LNA) values
simulated by the RiceGrow model to varied values of input parameters of sowing date, sowing
rate, nitrogen rate.

Table 2 Differences between the initialized parameters based on the remote sensing (RS)-
RiceGrow assimilation model and the original input parameters.

Assimilation parameter

Sowing/
transplanting
date (day) Sowing rate (%) Nitrogen rate (%)

SCE-UA PSO SCE-UA PSO SCE-UA PSO

LAI −1 −1 −5.16 −1.8 −5.86 −5.18

−2 −2 6.91 6.89 4.7 6.83

LNA 0 −1 −9.45 3.05 −9.76 −1.45

0 −1 −5.63 1.02 4.26 7.37

LAI and LNA −1 −1 −1.19 1.94 −6.87 −1.8

0 −1 4.87 0.84 7.07 5.67

Note: SCE-UA, shuffled complex evolution-University of Arizona algorithm; PSO, particle swarm optimization
algorithm.
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assimilation parameter, respectively. This result indicated that there were no significant
differences in sowing date inverting based on the SCE-UA or PSO algorithm; however, the
PSO algorithm was more suitable for sowing rate and nitrogen rate retrieval. In addition, the
combination of LAI and LNA performed better than each alone as the assimilation parameter
in terms of accuracy. In general, the developed assimilation technique was determined to be
reliable.

3.3.2 Field scale validation runs

The retrieved LAI/LNA from experiments 1 and 2 based on field spectral measurements were
used to analyze initialization with the input parameters (sowing date/transplanting date, sowing
rate, and nitrogen rate) of the RiceGrow model, and different optimization algorithms (PSO and
SCE-UA) and assimilation parameters were further compared (Table 3). The results showed that
the best assimilation results were obtained when LAI and LNA jointly served as the assimilation
parameter based on the PSO optimization algorithm, with RMSE values for sowing date/trans-
planting date, sowing rate, and nitrogen rate of 3.33 d, 8.57 kg hm−2, and 7.99 kg hm−2 for
experiment 1 and 5.75 d, 10.09 kg hm−2, and 9.56 kg hm−2 for experiment 2, respectively.
These results were consistent with the results of the initial validation runs above. In addition,
the PSO algorithm had a better running efficiency with the faster average calculation time of
39.94 s than that of the SCE-UA algorithm at 87.45 s.

Therefore, LAI and LNA dynamics and grain yield of rice were simulated by the RS-
RiceGrow assimilation model based on the PSO algorithm and the optimal assimilation param-
eter (LAI and LNA). The results showed that the RMSE and RE values between the simulated
and measured values of LAI, LNA, and grain yield were 1.01, 0.59 gm−2, 335.70 kg hm−2, and
0.19, 0.11, and 2.47%, respectively (Figs. 4 and 5). Meanwhile, the corresponding values of
RMSE and RE were 1.25, 1.24 gm−2, 516.83 kg hm−2, and 0.28, 0.18, and −3.61%,

Table 3 Inversion of initialization model parameters by coupling RS and the RiceGrow based on
ground RS data.

Relative
error

Root mean
square
error

Optimization
algorithm

Combination
point

Sowing/
transplanting

Date
(day)

Sowing
rate
(%)

Nitrogen
rate
(%)

Sowing/
transplanting

Date
(day)

Sowing
rate

(kg · hm−2)

Nitrogen
rate

(kg hm−2)

Experiment
1

SCE-UA LAI −4.33 13.73 −13.58 4.47 9.89 49.16

LNA −6.5 16.79 −11.88 5.48 12.46 39.01

LAIþ LNA 4 −10.67 −8.49 3.46 9.55 34.48

PSO LAI −3.33 −9.03 −8.07 3.83 11.38 10.83

LNA −3 11.63 9.03 4.75 14.2 10.46

LAIþ LNA 2.66 8.48 7.58 3.33 8.57 7.99

Experiment
2

SCE-UA LAI −5.34 13.84 −18.72 5.02 11.71 61.02

LNA −5.83 −16.29 −14.68 6.47 11.48 43.87

LAIþ LNA 4.16 −12.76 −11.44 5.49 10.34 47.4

PSO LAI −3.83 8.62 −9.77 4.66 11.23 14.25

LNA −5.67 8.85 8.51 4.08 12.57 11.09

LAIþ LNA 3.16 7.91 −7.67 5.75 10.09 9.56
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respectively, based on the RiceGrow model alone. Thus, the assimilation model based on cou-
pling RS and RiceGrow model improved prediction accuracy and could be utilized in a practical
application.

3.3.3 Regional-scale validation runs

The RS-RiceGrow assimilation model based on the PSO algorithm was further tested on the
whole study area. The sowing/transplanting period, nitrogen rate and seeding rate, and grain
yield of rice in the study area were inverted and simulated as shown in Fig. 6. The results showed
that in the eastern area of Rugao City, the date of transplanting was relatively early with a higher
level of nitrogen application and seeding rates and grain yield. Additionally, the planting method
in Changjiang Town located in the southern area of Rugao (farm) was direct seeding, while other
towns mainly used transplanting. The sowing date for Changjiang Town and transplantion date
for other towns are shown in Fig. 6. These results were consistent with the actual field surveys.
Compared to the ground measured values, the assimilation model had a relatively high simu-
lation precision, with the inversion RMSE and RE values of sowing/transplanting date, sowing
and nitrogen rates, grain yield calculated as 5.76 d, 13.41 kg hm−2, 58.34 kg hm−2, and
426.11 kg hm−2; 6.16 d, 12.76%, 11.43%, and 7.45%, respectively. The predicted average
yield and total production of rice in Rugao City were 8220.93 kg hm−2 and 47.81 million kilo-
grams, which were close to the officially reported values of 8460 kg hm−2 and 42 to 45 million
kilograms in 2009. The slightly higher predicted total production compared to actual values may
be attributed to error from the process of extracting the rice planting area.

Fig. 4 Comparisons of simulated and measured LAI and LNA values by RiceGrow before and
after assimilation based on data from experiment 2.

Fig. 5 Comparisons of simulated and measured grain yield by RiceGrow before and after
assimilation based on data from experiments 1 and 2.
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4 Discussion

Integrating RS and a crop growth model is a robust way to estimate regional crop yield, and SCE-
UA has been a widely used optimization algorithm for this purpose. However, many more
parameters must be determined, which would increase the complexity of calculations, and
repeated testing is needed before SCE-UA can be used effectively.18 By comparison, the
less complex PSO algorithm can be run with a simple encoded mode and without genetic oper-
ators, such as selection, crossover, and mutation.38 Therefore, a new PSO optimization algorithm
was introduced and compared with SCE-UA in the present paper. The results showed that there
were no significant differences in inverting sowing data between the SCE-UA and PSO algo-
rithms. However, the PSO algorithm had a higher retrieval precision for sowing rate and nitrogen
rate than did SCE-UA. Moreover, the PSO algorithm also had better precision for assimilating
initial input parameters and grain yield simulation when used at the regional scale. Furthermore,
there was a higher running speed with the same number of cycles for the PSO algorithm, indi-
cating that it is more suitable for use on a regional scale than SCE-UA.

Fig. 6 Spatial distributions of initialized input parameters and simulated grain yields in the study
area.
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Regardless of the optimization algorithm used, the assimilation accuracy of initial input
parameters of crop model is significantly influenced by the error of external assimilation param-
eters. The assimilation results from ground-based and spaceborne RS data in this study con-
firmed this idea and were consistent with previous observations.39 Thus, the accuracy of
agronomic parameter estimation based on RS should be further improved to facilitate the effec-
tive integration of RS and crop growth models, which may be achieved by adopting RS images
with high spatial and spectral resolutions and utilizing radiative transfer models to enhance the
mechanistic theory of parameter inversion. Meanwhile, the performance of an assimilation algo-
rithm and its parameters setting also has some impact on the assimilation accuracy, and the
method for setting those parameters should be further examined in future studies. Moreover,
the assimilating strategy used in this paper is based on the assumption that RS observations
can better reflect the objective reality than the crop growth model. Thus, combining the assimi-
lation strategy and the updating strategy in further work would be a promising approach to
improve the prediction accuracy of agronomic parameters, since the updating strategy would
simultaneously remove the errors from both RS observation and crop growth simulation.40

A more routine use of combined RS and crop modeling techniques would improve our ability
to estimate regional rice grain yield predictions. It should be noted that the RS-RiceGrow assimi-
lation model developed in the study is also based on the accuracy and reliability of the RiceGrow
model. Therefore, finding certain nondeterminant factors of the RiceGrow model and improving
accuracy by integrating RS would be key points in further study.

Numerous previous studies have used LAI as the assimilation parameter,14,39 but additional
physiological parameters have been successfully estimated with the development of RS tech-
nology.24 Therefore, LAI and LNA alone or jointly were compared as the assimilation parameter
of RS and the crop model in this study. The results showed that the rank order of different assimi-
lation parameters based on assimilation precision was LAI and LNA jointly >LNA > LAI, indi-
cating that using multiple physiological parameters as the assimilation parameter can improve
the acquisition of initial model input parameters. This is because LAI and LNA jointly can well
reflect both crop canopy population status and nitrogen nutrition status. Fortunately, estimating
multiple physiological parameters from one remote sensor (or one image) can be achieved with
the development of multipectral or hyperspectral RS technology.24,25

The integrated model developed in this paper can be run feasibly within a small study area by
a single commodity computing system. However, processing increasingly complex RS and data
assimilation strategies will become unfeasible for an average computer. This implies that state-
of-the-art-models will typically be slightly beyond the computing capability of the current com-
modity system, thereby warranting the need for parallel or distributed processing, which would
allow multiple computer nodes to cooperate on a common problem.36 The use of multiple simul-
taneous computing nodes offers the potential for enhanced agro-ecosystem modeling. However,
the scope of this potential remains to be determined in further research.

5 Conclusion

A regional rice grain yield prediction technique was proposed by integration of ground-based
and spaceborne RS data with the RiceGrow model through a new PSO algorithm with LAI and
LNA jointly as the assimilation parameter in the present paper. LAI together with LNA as the
integrated parameter performed better than each alone for crop model parameter initialization.
PSO also performed better than SCE-UA in terms of running efficiency and assimilation results,
indicating that PSO is a reliable optimization method for assimilating RS information and the
crop growth model. The integrated model showed good accuracy of prediction for rice growth
parameters and grain yield in both the field and regional scales and was demonstrated to be an
improved approach for regional crop yield assessment.
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