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Abstract. Synthetic aperture radar (SAR) imagery was collected over a brown locust Locustana
pardalina outbreak area to estimate soil moisture relevant to egg development. ERS-2/RadarSat
overpasses and field studies enabled parameterization of surface roughness, volumetric soil
moisture, soil texture, and vegetation cover. Data were analyzed both when the target area
was assessed as nonvegetated and when treated as vegetated. For the former, using the integral
equation model (IEM) and soil surface data combined with the sensitivity of the IEM to changes
in surface roughness introduced an error of ∼� 0.06 cm3 cm−3 in volumetric soil moisture.
Comparison of the IEM modeling results with backscatter responses from the ERS-2/RadarSat
imagery revealed errors as high as�0.14 cm3 cm−3, mostly due to IEM calibration problems and
the impact of vegetation. Two modified versions of the water cloud model (WCM) were para-
meterized, one based on measurements of vegetation moisture and the other on vegetation bio-
mass. A sensitivity analysis of the resulting model revealed a positive relationship between
increases in both vegetation biomass and vegetation moisture and the backscatter responses
from the ERS-2 and RadarSat sensors. The WCM was able to explain up to 80% of the vari-
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1 Introduction

Locusts and grasshoppers (Orthoptera: Acrididae) are infamous pests responsible for destroying
crops and pastures.1–3 All locust species require moist soil for oviposition and varying degrees of
moisture at different times to allow their eggs to develop and hatch. For instance, desert locusts
Schistocerca gregaria need at least 25 mm of rain to have fallen after their eggs have been laid to
allow successful breeding,4 whereas other species, such as the Senegalese grasshopper Oedaleus
senegalensis, can enter quiescence or diapause and their eggs may hatch as long as five years
after being laid.5,6 This is also true of the brown locust Locustana pardalina that occurs in
southern Africa. Although remote sensing has been used both for research and operationally
to detect green vegetation, for instance, as a proxy for the likelihood of desert locust pres-
ence,7–10 an earlier warning system capable of detecting conditions suitable for the laying
and hatching of eggs would be advantageous. Here we present results of a study addressing
this issue using synthetic aperture radar (SAR) images of soil in habitats where the brown locust
breeds in the Republic of South Africa.

Brown locusts persist as scattered populations in a semiarid outbreak area of 250;000 km2 in
the Karoo regions of South Africa and southern Namibia,11 whence they may spread into an
invasion area of nearly 7 million km2 across eight neighboring countries, as far north as the
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Zambezi River.12 Kieser et al.13 described how land use practices and changing rainfall patterns
in South Africa have led to the outbreak area being modified to extend further west and south-
west than the zone described by Lea.14 Currently, there is no active field monitoring program to
locate hopper bands, and control efforts, using broad-spectrum insecticides on congregated
immature locusts or roosting mature swarms, rely on the legal requirement of farmers to report
outbreaks on their property.15

The main hatching period of the brown locust in the Karoo begins with spring rains in
September and continues into October. Fledging begins in December, and a second generation
of eggs can be laid in January and a third in April.16 Egg pods with 10 to 82 eggs3 are laid and the
incubation period can be as short as 10 to 20 days,17 depending on soil moisture availability and
temperature. Temperatures need to exceed 8.5°C for eggs to develop, with an optimum temper-
ature of ∼35°C.17 The role of moisture in egg development is considerably more complicated.
Work by Matthée17 on the moisture dynamics of brown locust egg development highlighted
several key factors, which are summarized below.

• For approximately the first nine days after oviposition, the eggs will develop with or with-
out available moisture. Afterwards, if moisture is not available, the eggs become quiescent
when they are drought tolerant since they can reduce their rate of moisture loss through
evaporation. Provided that the egg moisture content does not fall below ∼40%, the qui-
escent state can be broken by the presence of moisture, which the eggs then absorb. If this
moisture is insufficient to stimulate hatching and these same eggs are again subjected to
desiccation, they can then reenter a quiescent state.

• A proportion of eggs, dependent to some extent on the phase of the parent female as sol-
itarious females lay mostly diapausing eggs—while gregarious females tend to lay non-
diapausing eggs3—will enter diapause with the ability to remain dormant for an indefinite
period provided that the eggs’moisture content does not fall below ∼40%. In this state, the
eggs can absorb available moisture but will not proceed to full development even while
nondiapause eggs, under the same conditions and perhaps in the same pod, are hatching.
This diapause stage can be eliminated by a period of desiccation of ∼45 days immediately
following egg-laying. Beyond this, however, the development pattern of the diapause eggs
is not fully understood.

The ability of the eggs to become quiescent and/or enter diapause can lead to a buildup of
eggs in the soil from multiple generations during droughts, after which the first heavy rainfall
may result in the hatching of several generations at once. This highlights the importance of an
ability to detect even small changes in soil moisture availability resulting from low rainfall events
since they could be critical in maintaining egg viability. An additional factor is the need for direct
contact between the locust eggs and liquid water, with humidity only playing a role in the rate of
the eggs’ water loss through evaporation.17 Given the complex role that moisture plays in egg
development, defining the amount of moisture required for it is difficult, particularly as factors
such as soil type and structure will have impacts on the availability of liquid water in the soil. It
is, however, generally accepted that at least 15 to 20 mm of rain during the incubation period is
necessary to stimulate egg development.18,19 The direct link between rainfall and increased soil
moisture availability has, however, not been made.

In the absence of information that relates brown locust egg development to specific mea-
surements of moisture availability, an approximation can be based on data for the Australian
plague locust Chortoicetes terminifera. Hunter and Deveson20 found that the moisture threshold
needed for its eggs to develop and hatch was 40% of saturated capacity. Assuming that a similar
relationship exists for brown locusts, the saturated capacity, often called the field capacity (FC),
can be approximated from Ulaby et al.,21 in which FC is calculated as

FC ¼ 25.1 − 0.21Sþ 0.22Cl; (1)

where Cl and S are the percentage clay and sand, respectively, of the soil. Using this relationship
and the average results from a soil analysis conducted in the Karoo, at each of the field sites used
in this study (% of sand ¼ 77% of clay ¼ 8.6 soil bulk density ¼ 1.53 g cm−3), a crude estimate
of the volumetric soil moisture content of the Karoo soil at FC is 0.17 cm3 cm−3. If the minimum
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requirement is 40% of FC, then an increase in volumetric soil moisture from <0 to
∼0.08 cm3 cm−3 would be of importance for brown locust forecasting (note: values <0 are pos-
sible due to hydroscopic water retention).

Both passive and active microwave remote sensing techniques have potential for providing
quantitative estimates of soil moisture.22 Passive microwave sensors measure microwave energy
that has been emitted directly from the target as a result of solar energy. Active remote sensing
involves sensors, commonly referred to as RADAR sensors (radio detection and ranging), emit-
ting a pulse of microwave energy that travels to and interacts with the target. The intensity of any
portion of the emitted pulse that is reflected back (backscatter) to the sensor is then measured
along with the round-trip travel time. Factors such as the surface roughness and vegetation are
important as they can have impacts on the SAR backscatter response.

The focus of this paper is an assessment of the potential of SAR to provide an accurate
quantitative assessment of soil moisture, more applicable than rainfall amounts for use in
brown locust life cycle modeling based on practical model inputs that can be clearly defined
and measured in the field using field study results as inputs; we present comparisons of results
using an integral equation model (IEM) and those from SAR imagery to estimate soil moisture
below a bare surface and details of investigations of a vegetated surface. For the latter, a water
cloud model (WCM) prediction of moisture levels was compared with SAR imagery. Finally, the
results are discussed in relation to the applicability of using SAR imagery in practice for locust
forecasting.

2 Methods

2.1 Satellite Imagery

Eleven ERS-2 images and two RadarSat images were used (Table 1). The ERS-2 SAR, launched
in May 1995, was operated by the European Space Agency (ESA) until September 5, 2011,
when it was retired. ERS SAR precision images were used, which were generated by ESA
and had been corrected for the in-flight effects of SAR antenna pattern and range spreading loss.

RadarSat (RadarSat-1, superseded by RadarSat-2 launched in 2007), operated by the
Canadian Space Agency, was launched in November 1995 and continued functioning until a
technical anomaly in April 2013. As with ERS-2, RadarSat was a C-band radar, but it received
and transmitted using a horizontal transmit, horizontal receive (HH) polarization. The satellite
was in a near-polar, sun-synchronous orbit at an altitude of 798 km and had a revisit rate of 24

Table 1 List of synthetic aperture radar (SAR) images acquired.

SAR image date Sensor Orbit Incidence angle (deg)

March 10, 2000 ERS-2 Ascending 19.5 to 26.4

September 12, 2000 ERS-2 Descending 19.5 to 26.4

November 21, 2000 ERS-2 Descending 19.5 to 26.4

December 26, 2000 ERS-2 Descending 19.5 to 26.4

March 6, 2001 ERS-2 Descending 19.5 to 26.4

March 6, 2001 RadarSat Ascending 24.0 to 31.0

August 28, 2001 ERS-2 Descending 19.5 to 26.4

October 2, 2001 ERS-2 Descending 19.5 to 26.4

February 19, 2002 ERS-2 Descending 19.5 to 26.4

March 26, 2002 ERS-2 Descending 19.5 to 26.4

April 30, 2002 RadarSat Descending 19.4 to 26.8

Crooks and Cheke: Soil moisture assessments for brown locust Locustana pardalina breeding potential. . .

Journal of Applied Remote Sensing 084898-3 Vol. 8, 2014



days. Two RadarSat images were acquired, one as a standard beam mode 1 (S1) image and the
second as a standard beam mode 2 (S2) image, chosen because they most closely resembled the
resolution and image scene size of the ERS-2 imagery. The RadarSat imagery was supplied in
CEOS format, which were 4-look images, which accounted for their slightly reduced resolution
compared with the ERS-2 imagery.

2.2 Surface Scattering and Surface Roughness

The ability of a material to propagate a pulse of microwave radiation depends on its dielectric
constant (ε) and the ratio of the pulse velocity in a vacuum to that through the material. When an
electromagnetic wave strikes an interface between materials with differing ε, some of the pulse
energy is reflected back (surface scattering) and another portion is transmitted through the target
material, with the ratio of reflectance to transmittance increasing as the relative difference in the
dielectric constants of the two materials increases. If the target material into which the pulse is
transmitted is not homogeneous, then the wave will be scattered (volume scattering) as it strikes
discontinuities in the target media.

Surface scattering is also affected by the roughness of the target surface (surface roughness)
by altering the local incidence angle and hence influencing the direction of the reflected com-
ponent. Whether the surface roughness plays a role in the amount and structure of the backscatter
response or not depends on the wavelength of the incident microwave in relation to the roughness
of the surface. Field measurements used to characterize surface roughness of soils are the stan-
dard deviation of surface height (s) and the surface correlation length (l). Provided that the ran-
dom surface variations are not superimposed on a periodically undulating surface, s can be
calculated from a set of surface height measurements made from a reference plane.23 The cor-
relation length (l) is a measure of the minimum distance between two statistically independent
surface heights (zi) and is essentially a measure of how quickly heights change along a profile. It
can be defined as the distance between points for which the autocorrelation function, ρðx 0Þ, is
equal to 1∕e.23–26 The Raleigh criterion states that a surface can be considered smooth if the
following condition is met:23

s <
λ

8 cos θ
; (2)

where s is the root mean square (RMS) height (average height variation over the surface, see
above), λ is the wavelength of the incident microwave, and θ is the incidence angle. For the two
SAR sensors used, the RMS heights would have to be less than ∼0.8 cm for the target surface to
be considered smooth in relation to the wavelength of the incidence wave (radiometrically
smooth), allowing the surface roughness to be ignored. The most significant impact of RMS
changes will occur as the surface alters from being radiometrically smooth, when coherent scat-
tering away from the sensor dominates, to a radiometrically rough surface when the scattering
becomes more diffuse.

2.3 SAR Backscatter Response

The SAR backscatter response from sparsely vegetated areas is complex but can be modeled by
Eq. (3):27

σo ¼ Cσoveg þ ð1 − CÞσovegþsoil þ ð1 − CÞτ2σosoil; (3)

where σo is the backscatter response (dB), C is the fraction of the target area that is covered in
vegetation, σoveg is the backscattering due to the vegetation alone, σovegþsoil represents the multiple
scattering interactions between vegetation and the soil surface, and σosoil represents the backscat-
ter response from the bare surface. The latter term is qualified by a factor (τ2, the square of the
vegetation transmissivity) and accounts for the attenuation effect that the vegetation could have
on the electromagnetic wave as it is incident on the vegetation and reflected back through it from
the soil. In terms of SAR detection of soil moisture, the key factors governing the type of scatter-
ing that occurs are as follows:
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1. dielectric variation between the atmosphere and the soil surface
2. homogeneity of the soil profile (soil texture)
3. roughness of the soil surface
4. impact of complex scattering from vegetation.

2.4 Integral Equation Model

The theoretical IEM developed by Fung et al.28 was used to model the bare soil surface back-
scatter and chosen because of its accuracy under laboratory conditions.29 It has also been shown
to provide accurate and meaningful simulation of the SAR backscatter response from bare soil
surfaces.28–32 The IEM model can be broken into two sections depending on the frequency of the
incidence wave and the roughness level of the target. If ks < 3, where k is the wave number
(k ¼ 2π∕λ) and has a value of 1.11 and s is the RMS height, then the surface can be considered
small to moderate in terms of surface roughness. Using C band sensors, this criterion is met for a
surface with RMS heights <2.7 cm, making it suitable for most soil surfaces, including those
in the Karoo. For surfaces that meet the above criterion, the IEM backscatter response is
calculated as

σopg ¼
k2

2
expð−2k2zs2Þ

XN
n¼1

s2njInpqj2
Wnð−2kx; 0Þ

n!
; (4)

where kz ¼ k cos θ and kx ¼ k sin θ, Inpq ¼ ð2kzÞnfpq expð−s2k2zÞ þ knz ½Fpqð−kx; 0Þþ
Fpqðkx; 0Þ�∕2, and p, q indicate the polarization; with fvv ¼ 2R¼∕ cos ϑ;
fhh ¼ −ð2R⊥∕ cos ϑÞ, where ϑ is the incidence angle. R¼ and R⊥ are the Fresnel reflection
coefficients, for vertical and horizontal polarization, respectively, at incidence angle ϑ.
WðnÞðu; vÞ is the roughness spectrum of the surface related to the n’th power of the surface
correlation function ρ.

The IEM therefore expresses the backscatter response (σ) in terms of (1) SAR frequency,
polarization, and incidence angle; (2) soil dielectric constant (ε), and (3) RMS height (s), cor-
relation function (ρ), and the correlation length (l). It relies on the assumption adopted here that
the bare soil can be exclusively explained as a surface scattering problem with the volume scat-
tering from the soil volume ignored. The IEM model can be successfully calibrated to provide
accurate simulations of the backscatter response from natural surfaces using ERS-1, ERS-2, and
RadarSat SAR sensors. It is more sensitive to surface roughness variation, especially over
smooth surfaces (RMS < 5 cm), than it is to soil moisture variation.30–33

For the IEM model, it was necessary to determine ε for the soil, achieved by modeling the
dielectric constant based on in situ measurements of the soil texture and determined using a
modified version of the semiempirical dielectric mixing model,34 which calculates the real
part of the dielectric constant based on measurements of soil texture, bulk density ðρsÞ, and
volumetric soil moisture ðθÞ. Wang and Schmugge34 showed experimentally that the dielectric
constant increased at a slower rate with moisture content at the lower end of the soil moisture
spectrum, a rate that continues up to a specific level of moisture content termed the transition
moisture value, beyond which the rate of increase becomes faster with increasing soil moisture.
The transition moisture level ðθtÞ was empirically determined for several types of soils and,
following Wang and Schmugge,34 can be calculated using

θt ¼ 0.49θwp þ 0.165; (5)

where θwp is the permanent wilting point, which is calculated using

θwp ¼ 0.06774 − 0.00064 s × βsand þ 0.00478 × βclay; (6)

where βsand and βclay are the percentage sand and percentage clay contents of the soil.
For moisture levels below the transition value, the dielectric constant is then calculated as

ε ¼ θεx þ ðϕ − θÞεa þ ð1 − ϕÞεr; (7)
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where εa and εr are the dielectric constants for air and rock, respectively. A value of 1 for εa and
5.5 for εr was used, as recommended by Wang and Schmugge.34 ϕ is the porosity of the soil and
is calculated as a function of particle density. εx is the dielectric constant of the initially absorbed
water, which is calculated using

εx ¼ εi þ ðεw − εiÞ
θ

θt
γ; (8)

where εi is the dielectric constant of ice, set at 3.2,
34 and εw is the real component of the dielectric

constant of water, which was calculated using a modified Debye equation. 27

εw ¼ εw∞ þ εw0 − εw∞
1þ ð2πfτwÞ2

; (9)

where εw∞ is the high-frequency limit of water (set at 4.9, Ref. 27), εw0 is the static dielectric
constant of water (set at 80.1, Ref. 27), and f is the frequency of the incident wave (Hz). The
factor τw is the relaxation time of pure water and is calculated as27

2πτwðTÞ ¼ 1.1109 × 10−10 − 3.824 × 10−12T þ 6.938 × 10−14T2 − 5.096 × 10−16T3; (10)

where T is temperature (°C) (set at 20°C).

2.5 Water Cloud Model

The semiempirical vegetation scattering model used, known as the WCM, was proposed by
Attema and Ulaby.35 It is the only existing example of a semiempirical SAR vegetation scattering
model and has been extensively assessed in a variety of forms.36 The water cloud approach is
based on the proposition that a vegetation layer can be viewed as a cloud of water droplets held in
place by the plant components, assuming that the volume scattering is the predominant vegeta-
tion scattering mechanism and that the soil-vegetation scattering (σovegþsoil) is ignored. Based on
these inputs, an empirical expression of backscatter response from a vegetated surface was
described as

σo ¼ C

�
1 − exp

−DWh
cos θ

�
cos θ þ A exp

�
Bms −

DWh
cos θ

�
cos θ; (11)

where W is the vegetation volumetric water content, h is the plant height, ms is the volumetric
soil moisture, θ is the incidence angle, h is the plant height, C and D are empirically derived
parameters that are related to the scattering from the soil surface, and A and B are empirical
parameters that describe the vegetation scattering. This approach assumes that the vegetation
backscatter can be described exclusively in terms of volume scattering, but the inclusion of
empirically derived constants means that the effect of vegetation structure is included indirectly.
In its original form, the WCM used plant height and water content as the only vegetation inputs.

Prévot et al.36 assessed many additional parameters for suitability for use in the WCM. They
chose leaf area index (L) as the most suitable indicator since it is correlated with the backscatter
response and can be measured remotely. In addition, the use of a single indicator makes model
inversion easier. They concluded that L and soil moisture content could be measured through an
inversion of a calibratedWCM, provided that two suitable radar configurations were used (X and
C bands in this case). Using the same data set, Taconet et al.37 focused on canopy moisture
content as an input to the WCM and were able to simulate measured backscatter response
to within �2 dB. When this model was inverted, however, they were only able to obtain a
rough classification of the soil moisture levels into high, low, and medium. In a later project,
Taconet et al.38 used the WCM to derive a correction function for the effect of vegetation using C
band measurements with VV polarization. They found that vegetation accounted for a 1-dB
change in the backscatter response per 1 kgm−2 of canopy moisture and could provide a mea-
sure of soil moisture with an accuracy of within �0.05 cm3 cm−3.
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Attema and Ulaby35 suggested three assumptions to be made regarding the structure of the
vegetation under consideration: (1) the vegetation is assumed to be represented by a cloud of
identical, uniformly distributed water particles, (2) only single scattering need be considered, and
(3) the height and density of the cloud are the only factors. Given the unique nature and wide
diversity of the vegetation, both in height and structure, being considered within this study,
assumptions 1 and 3 may not be applicable. However, the model has been applied in similar
circumstances and proven to be useful in understanding the vegetation backscatter response.39,40

2.6 Field Studies

Field studies were undertaken in the Karoo region of South Africa in March 2001 and April 2002
to measure soil moisture levels, surface roughness, plant density and moisture content, soil tex-
ture, and soil bulk density in conjunction with SAR images from the RadarSat and ERS-2 sen-
sors. A 10;000-km2 site, recorded as an outbreak area of the brown locust for over 45 years,41

was selected within the Northern Cape province of South Africa near the town of Kenhardt
(Fig. 1). In addition to its history, the area was also chosen because of its relatively flat topog-
raphy, which varies by <300 m.

Each of the digital numbers in the SAR imagery represents a measure of the average back-
scatter response over a unit area (∼25 × 25 m in the case of ERS-2). This means that any infor-
mation derived from the imagery, such as a measurement of soil moisture content, will be an

Fig. 1 Location of study region in South Africa.
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average for that area. In the case of the ERS-2 sensor, the value of the backscatter response
should be derived from an average of at least 500 pixels in order to obtain an accurate estimate
and account for the effect of speckle.42 This changes the effective resolution of the imagery, and
therefore any measurements made from it, to ∼300 × 300 m. Thus, measurements made on the
ground must also represent an average value for a ∼300 × 300-m area if an accurate comparison
is to be made between image results and ground measurements. To achieve this, a two-tiered
field scheme was devised, which consisted of the establishment of large 90;000-m2 supersites.
Five supersites were established in the northwest section of the study region near Kenhardt.
During the 2001 study, three of these sites (supersites A, B, and C) were used and an additional
two were included during the 2002 study (supersites D and E) as shown in Fig. 2. Each supersite
was selected to include as much of the regional variability in vegetation and surface conditions as
possible (Table 2). Choices for site locations were limited to areas that could be easily reached in
a challenging environment with difficult access. The centers of all study plots were marked with
flagging tape, and global positioning system recordings were taken to ensure that they could be
accurately relocated in subsequent field studies and on the geocoded SAR imagery.

At supersite A, four smaller 25 × 25-m subplots were established ∼300 m from each other; at
three supersites (B, C, and D), two subplots were established and at supersite E, only one. All the
field measurements were then made within each of the subplots. This approach allowed for (1) an

Fig. 2 Location of the individual supersites within the study region.
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assessment of the spatial variability of each of the measured parameters across the supersite, (2) a
means of calculating an accurate average result for each parameter over each supersite, and (3) a
means of replicating the estimated backscatter response for a given supersite.

Soil moisture measurements were made using volumetric sampling and a capacitance probe
(Theta Probe ML #1, Delta-T Devices, Cambridge, UK). Gravimetric soil samples were taken
randomly from each of the subplots. The samples were stored in sealed containers, and the mois-
ture content was determined using the double weight method with a drying temperature of 105°
C.43 Two cores (5 cm in height and 5 cm in diameter) were also taken randomly from each
subregion for bulk density determination and soil particle analysis using a hydrometer method,
which allowed for the conversion of the results to a volumetric value.

Within the study region, the vegetation was dominated by dwarf shrubs (chaemaphytes) and
grasses (hemicryptophytes), the relative abundance of which are dictated mainly by rainfall and
soil.44 Shrub species, such as cauliflower ganna (Salsola tuberculata), dominated in sandy areas,
and others, such as thorny kapokbush (Eriocephalus spinescens) and three thorn (Rhigozum
trichotomum), occurred in more stony areas. The main grasses in the area were small bushman
grass (Stipagrostis obtusa) and tall bushman grass (S. ciliata). The presence of grasses and other
annuals, such as Pentzia annua and brakspekbos (Zygophyllum simplex), is directly related to
seasonal fluctuation in rainfall. Some trees occurred, such as quiver tree (Aloe dichotoma) and
bushman poison tree (Euphorbia avasmontana), but these were restricted to either the slopes of
kopjes (small hills or rocky outcrops) or to dry river beds, and there were no trees in any of the
supersites.

The vegetation on each plot was sampled for moisture content and percent canopy cover. The
canopy cover was measured using a line intercept method with a 10-m rope at random locations
and orientations.45 The distance along the rope that intersected with vegetation was recorded
together with the species involved and the average height of the vegetation. The total distance
along the 10 m that intersected with vegetation gave a measure of the canopy cover. Two such
line intercept measurements were made in each subplot. For moisture content and dry mass, the
vegetation from two 0.3-m2 quadrats per subregion was harvested from random locations, and
moisture content was determined using a double weight method. A measure of soil texture at
each of the subsites necessary for the IEM model was obtained using the hydrometer method
described by Gee and Bauder,46 and the analysis was conducted on the same soil samples gath-
ered for the volumetric soil moisture measurements.

Surface roughness was measured using a 100-cm high-precision profilometer, which con-
sisted of a set of 334 stainless steel pins set into an aluminum box tube through which they could
slide. Each pin was 1.5 mm in diameter, and there was an average spacing between each pin of
1.4 mm. At each sampling point, the profilometer was photographed against a reference grid.
The photographs were later digitized so that the relative heights between the points could be

Table 2 General description of each supersite together with a ranking of general veldt condition.
The higher the ranking out of 5, the healthier the veldt (grassland) is in terms of vegetation mixture
and density.

Supersite General description
Veldt condition
rating (max 5)

A Equal mixture of grass and shrubs providing an even
cover across the area. Elevation ∼930 m

3

B Situated in a nonperennial pan (a depressed area that
may contain standing water during part of the year and usually
has internal drainage). The pan areas have distinct surface roughness
conditions and vegetation structure. Elevation ∼1020 m

3.5

C Vegetation dominated by grasses, but the shrubs that are present are
larger than on any of the other sites. Some open areas with rocky soils.
Elevation ∼1030 m

3

D Equal mixture of grass and shrubs with large bare areas. Elevation ∼940 m 3

E Well covered by grasses with some shrubs with a few small open stony areas.
Elevation ∼940 m

4
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determined for calculations of the correlation length and RMS. The locations and orientations of
each transect for the profilometry were selected with random orientations. The vegetation pre-
vented the measurement of long successive profiles, so 20 profilometer measurements were
made in each supersite along a linear transect, and those sections along the transect that inter-
sected with vegetation were omitted. The narrow pins of the profilometer penetrated the loose
unconsolidated soil, which may have affected the accuracy of the surface roughness
measurements.

3 Results

3.1 Multitemporal Image Interpretation

The field measurements used for the modeling are summarized in Tables 3 and 4. Figure 3 shows
a compilation of three ERS-2 images composed of the September 12, 2000, November 21, 2000,
and December 26, 2000, ERS-2 images. The backscatter responses from several distinct image
features have been circled and labeled since they consistently returned a distinctive backscatter
response. Image area 1 is the backscatter response from a drainage basin containing several
distinct pans, dry riverbeds, and kopjes. Site 2 represents what is probably an erosion feature
characterized by densely arranged stones on the soil surface. Areas 3 and 4 are the responses
from low-lying hills and kopjes. The backscatter responses from these features dominate the
results for their zones in each of the images and are examples of areas for which the application
of this approach to soil moisture detection would not be appropriate.

Figures 4 and 5 show eight of the ERS-2 images classified on the basis of the backscatter
results. Prior to classification, the images were divided into ∼300-m pixels size by taking the
average in order to achieve a 95% confidence level in the estimate of the backscatter response.
This analysis was limited to these images since they have the same viewing geometry, making
surface conditions the only variable.

Between September and December 2000, the backscatter response across the region was
relatively uniform, which is consistent with reports of no rainfall over this period from nearby
rainfall stations. The March 6, 2001, image shows a much lower backscatter response across
most of the image, corresponding with the 2001 field study when the region had experienced
unusually low rainfall over the previous 6 months, except for the station at Mansrust, which
reported a 40.5-mm rainfall event in mid-February. The backscatter response around the
Mansrust station in the March 2001 image is higher than that for the areas around the other
stations. However, this area is also associated with an area that returns consistently higher back-
scatter due to its surface conditions. While the drought condition reported for the area would
explain the lower overall response, there are other images, such as the September 12, 2000, and
August 28, 2001, ones, that were also preceded by several weeks of low rainfall but which did
not show low backscatter responses.

The August 28, 2001, image shows a uniform increase in backscatter response across the
region in comparison with the March 6, 2001, image. During the intervening period, there were

Table 3 Estimated surface conditions.

Supersite

RMS (cm) Correlation length (cm)

Estimate Range Estimate

A 0.29 0.27 to 0.46 2.41

B 0.20 0.19 to 0.27 7.01

C 0.33 0.21 to 0.35 4.30

D 0.45 0.39 to 0.59 2.90

E 0.34 0.31 to 0.36 4.23
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several rainfall events, and each station recorded at least 70 mm of rain. Between the August and
October 2001 images, there was only one rainfall event that occurred between 17 and 18
September. While this rainfall event was recorded at each station, the amount recorded varied,
with Mansrust having the highest at ∼42 mm and Marydale and Klaarpraat the lowest with
∼13 mm each. This rain does not appear to be reflected in the available image results since
there was a general decrease in the backscatter response across the entire October 2, 2001,
image. Between October 2001 and February 2002, there were at least 14 reported rainfall events
with an even distribution across the region. On February 19, 2002, the Marydale station was the
only one to report a rainfall event (25 mm). As can be seen on the 19 February image, there is a

Table 4 Vegetation parameters measured.

Supersite Canopy cover (%)

Vegetation biomass
(kg∕m2)

Vegetation moisture content
(cm3 cm−3)

Estimate Range Estimate Range

A 18.1 0.49 0.07 to 110 0.10 0.01 to 0.41

B 30.2 1.1 0.28 to 2.71 0.15 0.01 to 0.32

C 26.7 0.33 0.06 to 0.26 0.13 0.01 to 0.07

D 32 0.45 0.22 to 0.74 0.15 0.07 to 0.24

E 26.7 0.34 0.21 to 0.29 0.05 0.01 to 0.09

Fig. 3 Combined ERS-2 images for September 12, 2000, November 21, 2000, and December 26,
2000. The areas circled highlight the backscatter from specific topographic features (see text for
details).
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marked increase in the backscatter response in the northeast corner near the Marydale station, but
the response near the other three stations remains similar to that recorded in October 2001.

Comparison of the image and IEM backscatter results for the March 2001 RadarSat and ERS-
2 images are shown in Fig. 6 and the results for the April 2002 RadarSat image in Fig. 7. There
was some correlation between the IEM and image backscatter results for both the 2001 results

Fig. 4 Classified ERS-2 images for September 12, 2000, November 21, 2000, December 26,
2000, and March 6, 2001. Images were first resampled into ∼300-m pixels prior to classification.

Fig. 5 Classified ERS-2 images for August 28, 2001, October 2, 2001, February 19, 2002, and
March 26, 2002. Images were first resampled into ∼300-m pixels prior to classification.
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(r2 ¼ 0.78; P < 0.01) and (r2 ¼ 0.42; P ¼ 0.17) for the March 6, 2001, RadarSat and ERS-2
images, respectively. There was little correlation, however, between the IEM and image results in
2002 (r2 ¼ 0.05; P ¼ 0.47). In almost all of the subsites in both years, the IEM underestimated
the backscatter response. An exception was for supersite A on March 6, 2001, when the ERS-2
image results and those for the IEM model were very similar. The standard error between IEM
and image results was 4.7 and 7.1 dB for the March 2001 and April 2002 RadarSat results,
respectively, representing errors of ∼0.1 and 0.14 cm3 cm−3 in terms of volumetric soil moisture.
For the ERS-2 results, the standard error between the model and image was 2.6 dB, which rep-
resented an error of ∼0.06 cm3 cm−3.

As shown by the IEM results for supersite B in 2001, the model appears to overrespond to the
effect of measured in situ variation in surface conditions between supersites. In both of the March
2001 images, the backscatter response from site B is lower than from sites A and C, which may
be attributed to the lower RMS at this site. However, the IEM appears to have overresponded to

Fig. 6 Integral equation model (IEM) simulation of the backscatter response using the in situ
results from the 2001 field study compared with the results from (a) the March 6, 2001,
RadarSat image and (b) the March 6, 2001, ERS-2 image. The error bars represent the maximum
error due to variation in the in situ measurements of RMS and dielectric constant measurements
on the IEM modeling results.

Fig. 7 IEM simulation of the backscatter response using the in situ results from the 2002 field
study compared with the results for the April 30, 2002, RadarSat image. The error bars represent
the maximum error caused due to variation in in situmeasurements of RMS and dielectric constant
measurements on the IEM modeling results.
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this variation as well. In the 2002 results, the IEM again underestimated the backscatter response
in relation to the image results, particularly for supersites B and C, where the model was respond-
ing to a measured decrease in the RMS in relation to the other supersites. The measured vari-
ability in surface roughness conditions between the supersites is not as evident in the image
backscatter as it is in the IEM results.

Even when accounting for the measured variability among the in situ measurements of the
RMS and the dielectric constant, the model results were lower than those from the RadarSat
image for both years and for site B in the ERS-2 results. Variation in the correlation length
has a minimal impact and could not account for the model results. While variation in the dielec-
tric constant could account for the variation, there is no evidence based on the field measure-
ments that the calculated dielectric constants were not accurate. However, an inversion of the
IEM for the dielectric constant, using the image backscatter as input along with the in situ mea-
surements of surface roughness, showed that resulting dielectric constants were unrealistically
high for the conditions encountered in the field. The two remaining variable factors are the shape
of the autocorrelation function and the estimates of the RMS height. As seen in Fig. 8, for the
2001 RadarSat image, changing the shape of the autocorrelation function to Gaussian improved
the IEM simulation for supersite A but had little impact on the results for sites B and C. These
inconsistent results were also obtained for the 2002 RadarSat results and the 2001 ERS-2 image.

3.2 Water Cloud Model

Analysis was restricted to the use of the March 6, 2001, ERS-2 and the two RadarSat images
(March 6, 2001, and April 30, 2002) since these were the only dates for which field data on
vegetation conditions were available. Before applying the model, it was necessary to make
the assumption that the vegetation over each of the study sites was similar in structure and
that any variation between plots was attributable to measurable in situ factors. Unfortunately
in situ data from the Karoo for parameters such as leaf area index, leaf surface area, and density
were not available due to difficulty in measuring them in the field. Plant height was recorded as
part of the line intercept study, but the variation caused by the wide variety of plant types made it
an impractical model input. However, the following potential vegetation inputs were available:

1. plant biomass per unit area—measured from the vegetation quadrats
2. plant moisture per unit area—measured from the vegetation quadrats
3. percent canopy cover—measured from the line intercept.

A linear regression analysis was conducted between the SAR image backscatter from each of
the field sites and the above three field parameters, based on which plant biomass and plant
moisture were chosen for evaluation as an input into the WCM, as they were the only variables
with values of R2 consistently >0.50. It should be noted that soil moisture variability was not
included as part of this regression analysis since it was not possible to separate its effects from
that of the vegetation. If moisture variability is a factor, then the significance of any one of these
factors may be underrepresented using this analysis method.

Fig. 8 IEM results using a Gaussian shaped correlation function with the 2001 RadarSat input
data compared with 2001 RadarSat image results for each subsite. The error bars represent
the maximum error caused due to variation in RMS and dielectric constant measurements.
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If the soil-vegetation scattering (σovegþsoil) component is ignored, Eq. (3) can be simplified to

σo ¼ σoveg þ τ2σosoil. (12)

In its original form, the WCM relies on a generalized linear relationship between soil mois-
ture and backscatter from the soil surface in order to derive values for parameters C and D. This
approach ignores the significance of the other variables, such as surface roughness and soil tex-
ture, which have already been shown to be significant factors in the backscatter response. To
avoid this problem, the IEMwas used to model the bare surface soil component by first assuming
that the ratio between the image backscatter results (σoimage) and IEM (σoiem) simulations results is
equal to the square of the vegetation transmissivity (τ2). In optical terms, the transmissivity is
equivalent to transmittance and is the ratio between transmitted and incident power.

The vegetation constant B can then be calculated from39

σimage

σiem
¼ τ2 ¼ exp

�
−2BXy

cos θ

�
; (13)

where Xy is the vegetation input parameter, moisture (mv), or biomass (bv).
The vegetation scattering σoveg is then calculated, following Prevot et al.,47 using

σoveg ¼ AXy cos θð1 − τ2Þ. (14)

Under this interpretation, the vegetation parameter A can be seen as a vegetation density
parameter and B as measure of the vegetation attenuation. Two forms of the WCM were para-
meterized separately using both vegetation moisture and vegetation biomass as the sole input.
Since polarization is a factor and not explicitly included in the derivation of the model, param-
eters would have to be unique for each of the two sensors.

The water cloud results were then assessed against the 2001 ERS-2 and RadarSat backscatter
results and, in the case of the RadarSat configuration, independently assessed by using the 2002
in situ and image data using both parameters. The regression coefficient (Fig. 9) between the

Fig. 9 Scatter plots of measured backscatter response from the ERS-2 and RadarSat synthetic
aperture radar sensors and estimates generated by the water cloud model using vegetation mois-
ture [(a) and (c)] and vegetation biomass [(b) and (d)] as model inputs. Model parameters A and B
were generated using the 2001 data set.
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WCM simulations and the 2001 image results is reduced in comparison with the value for a
direct regression between the vegetation parameters and image results, except in the case of
the RadarSat image when biomass was used as a model input. For the RadarSat results, the
regression between water cloud results when vegetation moisture was used is also lower
than between the bare surface IEM results and the image. In the case of the ERS-2 results,
the regression is approximately the same using the WCM as was found for the bare surface
IEM results. For the ERS-2 results, the application of the WCM only resulted in a slight improve-
ment in the standard error from 2.9 dB for the IEM alone to 1.51 and 2.05 dB with use of
vegetation moisture and biomass, respectively. In the case of the RadarSat results, there was
a much larger reduction in the standard error from 4.7 dB from the IEM alone to 0.64 and
0.34 dB with use of vegetation moisture and biomass, respectively.

Figure 10 shows the modeled results for each of the subsites. The addition of the WCM did
not substantially improve the overall modeling results for the ERS-2 image. When vegetation
moisture was used, the WCM caused the backscatter response to be overestimated for supersite
A. For site B, the model did improve the net comparison but was not able to fully account for the
lower IEM results. In the case of the RadarSat results, the WCM accounted for almost all of the
variation between the IEM and image results using either of the vegetation inputs, including the
results for subsite B where the largest variation occurred. For some plots, such as supersite C, the
WCM overcompensated, resulting in an overestimation of the backscatter response. Overall,
however, the application of the WCM was able to account for variation both within and between
supersites based solely on in situ measurements of vegetation.

When the model was used in forward application with the 2002 in situ results and the 2002
RadarSat image, there was once again no improvement in the correlation between model and
image results (data not shown). Both versions of the model did, however, provide a net improve-
ment compared with the original IEM in the standard error and could account for up to 60% of
the variation.

4 Discussion

An explicit calibration of the IEMmodel based on the in situmeasurements of the surface rough-
ness conditions in the Karoo showed that theoretically the model can provide estimates of the
volumetric soil moisture content with an accuracy of approximately �0.06 cm3 cm−3 if RMS
(average height variation over the surface) is treated as the only variable. The relatively smooth
conditions of the measured soil surfaces in the Karoo meant that slight variations of RMS over
time and location can have dominant impacts on the backscatter response. Prior knowledge of
the surface roughness over the regions would therefore be necessary before the model could be
extrapolated for use in areas beyond those used in this study. A direct assessment of the IEM
capabilities by comparison with images from the ERS-2 SAR sensor found that the theoretical
level of accuracy is achievable, but due to a series of ERS-2 imager failures, the analysis was
limited and this result needs confirmation. A more comprehensive assessment using the
RadarSat SAR sensor indicated that a significantly larger error of �0.14 cm3 cm−3 in estimates
of volumetric soil moisture could be expected.

The IEM modeling process showed that some portion of the increased level of variability
encountered in the RadarSat and ERS-2 assessments could be attributed to errors in the in situ
measurement of the RMS and possible impact of additional factors such as vegetation, the
amounts of which could potentially have an impact on the backscatter response. A further indi-
cation that vegetation over the study sites was contributing to the SAR backscatter response was
provided by the parameterization and application of modified versions of the WCM using veg-
etation biomass and vegetation moisture as inputs. A sensitivity study of the resulting vegetation
scattering models found that there was a positive relationship between increasing backscatter and
both vegetation biomass and vegetation moisture. For the RadarSat imagery, the WCM was able
to account for up to 80% of the variability between IEM and image results for some sites.

The sensitivity of the IEM to slight changes in RMS over the Karoo along with the dem-
onstrated role of vegetation biomass and moisture means that concurrent information on these
factors is needed to derive accurate quantitative estimates of volumetric soil moisture using the
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Fig. 10 Modeled backscatter from the water cloud model for each subsite along with the image
results and bare surface IEM model results for the March 6, 2001, ERS-2 results [(a) and (b)] and
the March 6, 2001, RadarSat results [(c) and (d)].
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sensors and methodology outlined here. Currently, there is no readily available means of acquir-
ing this type of spatial information, which limits the potential use of the IEM model alone for the
Karoo since there is no means of assessing accuracy if the model is extrapolated to areas where
there is no prior knowledge of the surface roughness and vegetation conditions.

Directly relating the results of this research to the needs of brown locust researchers and
controllers is currently difficult due to the lack of quantitative information on the moisture
dynamics of brown locust egg development. Specific information on the egg moisture require-
ments measured in terms such as volumetric soil moisture is necessary in order to assess the
applicability of tools such as SAR imagery. Based on the moisture requirements for the egg
development of the Australian plague locust, the SAR used in this study can theoretically pro-
vide soil moisture measurements with an accuracy that is meaningful to locust forecasters. The
level of error in the SAR estimates of soil moisture that was directly identified as part of this
study means that further research is necessary to identify means of accounting for factors such as
vegetation and surface roughness.

Two key points that require further investigation are methods of assessing both surface
roughness and vegetation in terms that are relevant to SAR backscatter from space-borne sen-
sors. For surface roughness, the possible errors that may have been introduced by the profil-
ometer could be avoided through the use of a laser profilometer such as the one described
by Davidson et al.,48 which would not require physical disruption of the soil surface. Lu
and Meyer49 used repeat-pass ERS-1 SAR imagery to separate backscatter due to surface rough-
ness from backscatter changes assumed to be due to a rainfall event and so successfully estimated
soil moisture at a site in Mexico. There is also the possibility of assessing the surface roughness
directly from SAR using

• Multiangular imagery from sensors such as RadarSat, ENVISAT, and RadarSat-2. Since
the incidence angle has a direct impact on the backscatter response, the variation between
two images can be used as a measure of surface roughness.50,51 Also, at higher incidence
angles (>40 deg), the effect of surface roughness from bare soils becomes the dominant
factor in backscatter responses,27,52,53 which can provide a means of classifying the target
area into roughness types. In addition, SAR interferometry has also been shown to have the
capability of assessing surface roughness.54

• The European Space Agency’s ENVISAT sensor with its dual channel capabilities must
also be assessed, particularly the cross-polar vertical-horizontal (VH) capabilities, which
have been shown to have a distinct surface roughness response.28

Any additional studies in the Karoo will need to attempt to measure in situ vegetation param-
eters that could be used in a theoretical vegetation scattering model. Given the mixed vegetation
in the Karoo, a multilayered approach would be required in which distinct vegetation types are
grouped and assessed separately. For examples of the types of parameters needed, see Chiu and
Sarabandi55 and Macelloni et al.31

Another area that has received little attention is the use of ancillary imagery in the assessment
of the SAR response to vegetation. Novel optical indices, such as the global vegetation moisture
index (GVMI), have been developed specifically to assess vegetation moisture56 and may prove
useful for assessing the impact of vegetation on the SAR backscatter response. Also, higher-
resolution optical imagery from platforms such as Landsat may also provide more meaningful
results since they provide a resolution closer to that of the SAR imagery.

The future applicability of SAR imagery in brown locust forecasting will depend on the
technical feasibility of acquiring imagery on a spatial and temporal scale that is useful for fore-
casters. Even with the more advanced SAR sensors aboard ENVISAT and RadarSat-2, it is
unlikely that high-resolution images such as the ones used in this study could be acquired
on a regular basis for the entire brown locust outbreak area due to the limited scene size.
Other SAR image producers such as the RadarSat ScanSar and ENVISAT wide swath images
should be the focus of future research for soil moisture detection in the Karoo since they offer a
more realistic means of acquiring imagery on a more meaningful repeat cycle and image scale.
Once achieved, such a system could provide short-term forecasts in conjunction with longer-
term forecasts based, for instance, on sea surface temperatures.57 Future work on the biology of
the brown locust needs to define soil moisture requirements in terms of soil moisture availability,

Crooks and Cheke: Soil moisture assessments for brown locust Locustana pardalina breeding potential. . .

Journal of Applied Remote Sensing 084898-18 Vol. 8, 2014



rather than using rainfall alone, so that the required sensitivity of instruments such as SAR for
soil moisture monitoring can be more clearly defined.
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