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Abstract. In ground-penetrating radar imaging, the classic back-projection (BP) algorithm has
an excellent reputation for imaging in layered media with convenience and robustness. However,
it is time-consuming and generates many artifacts, which have adverse effects on detection
and recognition. A self-correlation back-projection (SBP) algorithm is proposed, which is fast
imaging and can distinguish the object’s shape. It improves the existing BP algorithms in the
following aspects. First, the reflection echo signals of a specific imaging point obtained from its
nearest exploration point have high correlation with the one from its multiple nearest neighbors.
By setting up a correlation threshold, the valid echo information sequence of the imaging points
can be adaptively chosen, which enables the SBP algorithm to have faster calculation speed and
better resolution. Then, the imaging result is amended by using a depth energy compensation
algorithm. It can improve the imaging resolution of the deep underground objects. The exper-
imental results show that the proposed SBP algorithm is superior to the existing BP algorithms in
terms of computing speed and imaging accuracy, which can effectively recover objects with
complex shapes. It has a significant advantage in providing a rough outline of buried objects
without prior knowledge of the velocity distribution. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.9.095059]
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1 Introduction

Ground-penetrating radar (GPR) is a nondestructive method using electromagnetic radiation to
locate shallow geological subsurface features and underground utilities buried in the ground.
It has become a valuable tool in several applications,1,2 such as archaeological explorations,
environmental engineering, and geological problems. The effective imaging of buried objects
is a key part of GPR, and the efficiency and resolution of the imaging results are the measure of
the imaging algorithm.3 The theories of the present imaging methods are based on diffraction
tomography (DT), reverse time migration (RTM), range migration (RM), and back projection
(BP). The principle of the DT algorithm is based on the first-order Born approximation which
assumes that the buried object of interest is a weak scatterer.4 A few additional assumptions are
also invoked during the process of DT derivation to simplify and linearize the nonlinear electric
field integral equation. These assumptions incur a trade-off to the reconstruction of the buried
objects especially for the practical usage when noise is present in the collected field data. Taking
advantage of the multiple reflections in the propagation medium, the RTM algorithm allows
high-resolution focusing.5 However, the number of transmitting and receiving antennas must
be more than the number of scatterers in the medium. The RM algorithm can work well
only when the imaging scene can be modeled as a single homogeneous medium.6 When the
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GPR antennas and buried objects are distributed in different media, the imaging result of the RM
algorithm will be blurred or possibly not focused at all. The standard two-dimensional (2-D)
depth migrations7 can recover the location and shape of buried objects with arbitrary precision,
depending on the accuracy of the velocity model used. The BP algorithm is one of the most
practical imaging methods because of its convenience and robustness, particularly when the
imaging scene can be modeled as layered media.8 Based on the aforementioned theories,
some of the improvements and optimization imaging methods have been advanced to distinguish
the shape of buried objects in GPR imaging. A modified split-step method9 was applied to
extract structural information from a complex synthetic data set as accurately as possible,
based on the standard 2-D depth migrations. Furthermore, a synthetic aperture radar technique10

was implemented for GPR image reconstruction, which can recover the shape of buried objects.
However, the present imaging methods depend too much on the application environment or
prior knowledge of the medium being imaged, which limits the popularization and application
of GPR technology.

The BP theory can accurately compensate the distortion of the wave path caused by GPR
pulse signal when GPR pulse signal passes an interface of two media. It has become one of
the potential GPR imaging algorithms. In order to recover the shape of buried objects in GPR
imaging, the self-correlation back-projection (SBP) algorithm is proposed in this paper.
The following improvements are made in the proposed algorithm. First, the valid echo
information sequence of the imaging points is adaptively chosen by setting up a correlation
threshold. Then, the imaging result is postprocessed by the depth energy compensation algo-
rithm. Finally, the performance of the proposed algorithm is verified through serial contrast
experiment.

2 Self-Correlation Back-Projection Algorithm

For the convenience of discussion, the 2-D imaging configuration of the GPR system is shown in
Fig. 1. The scene is divided into two regions by z ¼ 0. The upper region is air with relative
permittivity ε1 and conductivity σ1. The lower region is a homogeneous medium with relative
permittivity ε2 and conductivity σ2. The GPR system works in a monostatic way. The antennas
transmit and receive signals in each of the M positions on a survey line l.

2.1 Two-Way Traveltime

In the 2-D imaging configuration shown in Fig. 1, the current concerned antenna position is
represented by a black cube with sequence number k, the coordinates of which are ðxk;−hÞ.
For a given point A with coordinates ðx0; z0Þ in the imaging area, the transmitting signal travels
from ðxk;−hÞ to ðx0; z0Þ, with a turning at the inflection point ðxr; 0Þ, and returns along the same
path in reverse direction. According to Snell’s law, the geometry between the incidence angle θ1
and the refraction angle θ2 satisfies

Fig. 1 Imaging configuration.
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where c is the velocity of the electromagnetic wave in free space. Equation (1) can be turned into
Eq. (2) based on the coordinates in Fig. 1
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Then, xr can be obtained by solving Eq. (2). If xr is known, the two-way traveltime τA;k from
the imaging point A to the k’th antenna position can be given by
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2.2 Self-Correlation Back-Projection Algorithm Developing Steps

For a given point A with coordinates ðx0; z0Þ in the imaging area shown in Fig. 1, its projection
point on the survey line l is defined as B with coordinates ðx0;−hÞ. The i’th antenna position
with coordinates ðxi;−hÞ is the nearest to B on the survey line l. At the i’th antenna position,
the A-scan of GPR data can be given by

EQ-TARGET;temp:intralink-;sec2.2;116;472Si ¼ ½ si;1 si;2 · · · si;j · · · si;L �;

where L is the number of sampling points; tj is the sampling instant of si;j. The correlation
coefficient rðp; qÞ between the vector p and the vector q is defined as

EQ-TARGET;temp:intralink-;e004;116;416rðp; qÞ ¼
P

n
i¼1ðpi − p̄Þðqi − q̄ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðpi − p̄Þ2

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1 ðqi − q̄Þ2

p ; (4)

where n is the length of p and q, and p̄ and q̄ are the mean values of p and q, respectively. In the
following, the SBP algorithm will be described for GPR imaging.

Step 1: The two-way traveltime τA;i from the imaging point A to the i’th antenna position is
computed by Eq. (3). Both the valid echo information uA;i and the target related
sequence Ci are chosen from Si, where the length of Ci is N.

In vector Si, T1 is defined as a sampling point nearest to τA;i. The valid echo infor-
mation corresponding to τA;i is given by uA;i ¼ jsi;T1

j, where j · j is the absolute value
operator. Extracting vector Si sequentially from T1, we obtain N sampling points,
namely the target-related sequence Ci. Each A-scan signal is the stack of multiple reflec-
tion echo signals. For a given imaging point, the echo information extracted by the BP
algorithm from each A-scan signal may be the stack of the echo information of many
imaging points. For this reason, when N exceeds the permitted values, Ci may contain
additional echo information. Otherwise, when N is too small, Ci is unstable and cannot
characterize the features of the reflection echo signals from the same imaging point. A
Gaussian pulse, wideband Ricker wavelet, differentiated Gaussian pulse, and Blackman–
Harris window function are usually used as the pulse source signal of GPR. If the pulse
duration is T, the pulse source signal is symmetrical about its midpoint T∕2. On the basis
of the aforementioned considerations, N is defined as N ¼ dT∕ð2 · ΔtÞc, where d·c can
round the element · to the nearest integer, and Δt is the time interval of GPR sampling.

Step 2: For a given imaging point A, its valid echo information is chosen adaptively to the left
starting from the i − 1th antenna position, which is expressed as

EQ-TARGET;temp:intralink-;sec2.2;116;117UA;left ¼ ½ uA;i−L uA;i−Lþ1 · · · uA;i �.

By using step 1, τA;i−1, uA;i−1, and Ci−1 are computed. The correlation coefficient
rðCi; Ci−1Þ between Ci and Ci−1 is computed by Eq. (4). If rðCi; Ci−1Þ > ψ , uA;i−1
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is a valid echo information of the imaging point A, and then uA;i−2 will be judged.
Otherwise, the search to the left is stopped. ψ is the correlation threshold related to
the specific detection environment. The stronger the background noise, the smaller
the ψ . The more appropriate ψ is the more accurate the chosen valid echo information
sequence of the object and better resolution imaging results will be obtained. ψ is usually
adjusted by known objects in the specific detection environment before imaging process-
ing of GPR signals. It usually ranges from 0.85 to 0.95 per Ref. 2. Its value is 0.9 in
this paper.

Step 3: For a given imaging point A, its valid echo information is chosen adaptively to the
right starting from the iþ 1th antenna position, which is expressed as UA;right ¼
½ uA;i uA;iþ1 · · · uA;iþR �. It has the same process of problem solving as step 2.

Step 4: Calculating the temporary value E�
A of A for the imaging result.

The valid echo information sequence UA of A can be obtained by merging UA;left and
UA;right, which is formulated as

EQ-TARGET;temp:intralink-;sec2.2;116;572UA ¼ UA;left ∪ UA;right

¼ ½ uA;i−L uA;i−Lþ1 · · · uA;i−1 uA;i uA;iþ1 · · · uA;iþR �:

To suppress the artifacts, E�
A is calculated by adding an additional cross-correlation

procedure,8 which is given by

EQ-TARGET;temp:intralink-;e005;116;496E�
A ¼

XiþR−1

m¼i−L

XiþR

n¼mþ1

uA;m · uA;n: (5)

Step 5: When the high-frequency electromagnetic signal propagates in the medium, the signal
declines in an approximately exponential function. To improve the imaging resolution
of deeper underground objects, the imaging result in step 4 is amended by using a depth
energy compensation algorithm.11 The amended imaging result of point A can be for-
mulated as

EQ-TARGET;temp:intralink-;e006;116;389EA ¼ ηðzÞ · E�
A

��
z¼z0

¼ expðα · z0Þ · E�
A; (6)

where ηðzÞ ¼ expðα · zÞ is the depth energy compensation coefficient, and α is deter-
mined by the medium dielectric property.

If the received GPR data have been amplified, the depth energy compensation algorithm
will not be necessary. Otherwise, step 5 should be performed.

The aforementioned steps will be repeated until all the points in the imaging scene are
considered.

3 Experimental Results and Analysis

To verify the performance of the proposed SBP algorithm, we design a synthetic and a practical
field experiments for the objects imaging of complex shape. In addition, a serial contrast experi-
ments are performed with the classic BP, the fast back projection (FBP)8, the SBP, and the 2-D
depth migration algorithm with straight ray assumption.12 To solve Eq. (2), the binary search
algorithm is used by both the classic BP and SBP algorithms; the approximate algorithm pro-
posed in Ref. 8 is used by the FBP algorithm. We evaluate the imaging error by the absolute
cumulative error (ACE), which is defined as

EQ-TARGET;temp:intralink-;e007;116;152δACE ¼
X

jB − B�j ¼
X
i

X
j

jbi;j − b�i;jj; (7)

where B and B� are the normalized matrices of the objects position matrix and imaging results
matrix, and bi;j and b�i;j are the elements in the matrices B and B�, respectively. In this paper,
all the programs are run by MATLAB 7.1 on the same hardware.

Zhang et al.: Back-projection algorithm based on self-correlation for ground-penetrating radar imaging

Journal of Applied Remote Sensing 095059-4 Vol. 9, 2015



3.1 Tests with Synthetic Data

According to Fig. 1, the geoelectric model of synthetic GPR data is formulated. The antennas are
located 1 m above the surface of the surveyed structure. The scene is divided into two regions by
z ¼ 0. The upper region is air with relative permittivity 1 and conductivity 0 S∕m. The lower
region is homogeneous medium with relative permittivity 16 and conductivity 0.001 S∕m. The
buried objects are shown in Fig. 2 by the blue curve with relative permittivity 9. The GPR wave
fields of the geoelectric model are simulated by using a finite-difference time-domain13 solution
of the Maxwell’s equations. In the synthetic experiment, a Ricker wavelet is taken as a pulse
source with a center frequency of 100 MHz. The B-scans of the synthetic GPR data are shown in
Fig. 3. By using the mean removal algorithm, we can preprocess the synthetic GPR data to
suppress the interference partially from the terrain echo and the coupled wave between receiving
and transmitting antennas. The normalized imaging results of the classic BP, the FBP, and the
SBP are shown in Figs. 4, 5, and 6, respectively. The aforementioned imaging results are shown

Fig. 3 B-scans of the synthetic GPR data: (a) y -shape object and (b) z-shape object.

Fig. 4 Imaging result of the classic back-projection algorithm: (a) y -shape object and (b) z-shape
object.

Fig. 2 Geoelectric models of the synthetic ground-penetrating radar (GPR) data: (a) y -shape
object and (b) z-shape object.
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in Table 1. The velocity model of the 2-D depth migration algorithm is shown in Fig. 7, where
the electromagnetic wave travels at 3 × 108 m∕s in air and 7.5 × 107 m∕s in earth, respectively.
The normalized imaging results of the 2-D depth migration algorithm are shown in Fig. 8.
The theoretical distributions of buried objects are labeled with the white circle curve, which is
convenient to analyze the imaging results.

The experimental results show that the objects shape cannot be distinguished from Fig. 3. It
may be recovered by the GPR signal-processing techniques. Due to the fact that buried objects
have complex shapes in this experiment, each A-scan signal is the stack of multiple reflection
echo signals. For a given imaging point, the echo information extracted by the BP algorithm from
each A-scan signal may be the stack of the echo information of many imaging points. It reduces
the imaging accuracy of the classic BP and FBP algorithms. For the same B-scan in GPR im-
aging, at the same condition of imaging resolution, the larger the number of the sensing loca-
tions, the longer the running time of both the BP and FBP algorithms. The SBP algorithm
can adaptively choose the valid echo information sequence, with its running time related to
the specific B-scan. The larger the number of the valid echo information sequence, the longer
the running time of the SBP algorithm. However, the SBP algorithm usually has faster

Fig. 5 Imaging result of the FBP algorithm: (a) y -shape object and (b) z-shape object.

Fig. 6 Imaging result of the self-correlation back-projection (SBP) algorithm: (a) y -shape object
and (b) z-shape object.

Table 1 Performance comparisons table about different imaging methods.

Imaging methods

y -shape object z-shape object

Absolute cumulative
errors (ACEs) Running times (s) ACEs Running times (s)

Classic back-projection 616.4 52.92 1017.4 52.95

FBP 250.3 3.71 471.1 3.72

SBP 28.9 2.53 51.6 2.54
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calculation speed because the valid echo information sequence is generally located in the multi-
ple nearest neighbors of the imaging point. The 2-D depth migration algorithm can distinguish
the objects shape effectively. However, the locations of the objects are moved upwards compared
with their theoretical distribution. The GPR antennas and objects are distributed in different
media. The precision of velocity model is reduced by the air between the GPR antennas

Fig. 7 Velocity model of the two-dimensional (2-D) depth migration algorithm.

Fig. 8 Imaging result of the 2-D depth migration algorithm: (a) y -shape object and (b) z-shape
object.

Fig. 9 Field maps in the detecting location.16
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and the earth. It is the main reason for the aforementioned imaging error. The experimental
results illustrate that the proposed SBP algorithm is superior to the existing BP algorithms
in terms of computing speed and imaging accuracy. Compared with the 2-D depth migration
algorithm, the proposed SBP algorithm has a significant advantage in providing a rough outline
of buried objects without prior knowledge of the velocity distribution.

3.2 Field Test Case

The experimental data are collected at the Georgia Institute of Technology14 and is publicly
available in Ref. 15 in MATLAB format files, and the field map in the detecting location is
shown in Fig. 9. The data consist of different burial and no-object scenarios, and are taken
with a multistatic stepped-frequency continuous-wave GPR. The GPR is scanned over a 1.8 m ×
1.8 m region at a constant height above the surface of the ground. The scan region is discretized
into a grid of 91 points. At each scan position, GPR takes 401 equally spaced frequency
measurements from 60 MHz to 8.06 GHz with 20-MHz increments. The pulse source is
a differentiated Gaussian pulse with a center frequency of 2.5 GHz. The GPR B-scan is
shown in Fig. 10, which is selected from the aforementioned experimental data. There are
five buried objects at −45, −20, 0, 20, and 45 in cross-range (x) dimension and y ¼ −40.
The distance between the transmitting and receiving antennas is 12 cm. The height of antennas
is 27.8 cm above the surface of the surveyed structure. Each A-scan is acquired every 2 cm.
The electromagnetic wave travels at 2.998 × 108 m∕s in air and 1.5 × 108 m∕s in sand.16

The field GPR data are preprocessed by the removing mean value method to suppress the inter-
ference partially from the terrain echo and the coupled wave between receiving and transmitting
antennas. The normalized imaging result of the SBP algorithm is shown in Fig. 11. The theo-
retical distributions of buried objects are labeled with the black curve, which is convenient to
analyze the imaging results.

The experimental result shows that the proposed SBP algorithm can effectively recover
the multiple objects’ position information. The calculated ACE for Fig. 11 is 426.5, and the
running time of the SBP algorithm is 3.5 s. It further validates the effectiveness of the proposed
SBP algorithm.

4 Conclusion

Based on the existing BP algorithms, the SBP algorithm is proposed in this paper, which can
reconstruct the shape of buried objects in GPR imaging. By setting up the correlation threshold,
the SBP algorithm can adaptively choose the valid echo information sequence of the imaging
points, which improves the image resolution. Because the valid echo information sequence is

Fig. 10 B-scan of the field GPR data.

Fig. 11 Imaging result of the SBP algorithm.
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generally located in the multiple nearest neighbors of the imaging point, the SBP algorithm
usually has a faster calculation speed. In addition, the imaging result is postprocessed by
the depth energy compensation algorithm to improve the imaging resolution. The experimental
results show that the SBP algorithm is superior to the classic BP and FBP algorithms in terms of
computing speed and imaging accuracy. It has a significant advantage in providing a rough out-
line of buried objects without prior knowledge of the velocity distribution. The application of
the proposed SBP algorithm is valuable in the imaging of underground objects with fast speed
and high quality.
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