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Abstract. A pattern recognition model for aerosol classification with atmospheric backscatter
lidars is proposed and studied in detail. The theoretical framework and the implementation proc-
ess of the proposed model are presented. Computer simulations have been carried out to verify
the practicability and robustness of this model. The k-fold cross-validation method is employed
in the process of classifier designing to choose the proper decision rule, which is mainly based on
statistical pattern recognition theory. At the same time, the validity of the model is evaluated. The
generalized self-validation is also carried out in the computer simulations to verify the stability of
the model. The analysis of the performances in reduced status, especially the instance of appli-
cation to Cloud-Aerosol Lidar with Orthogonal Polarization, demonstrates the generalization
ability and performance of this model. © The Authors. Published by SPIE under a Creative
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1 Introduction

Air pollution is becoming more and more serious in China and it is well understood that more
should be known before we could control it. Many methods have been proposed for component
analysis of haze. Using offline analysis means one can analyze the air samples comprehensively
and accurately, but the analyses are time consuming and cannot represent the original character-
istics of the aerosols as the chemical components of aerosols are susceptible to be changed. Real-
time online means, including mass spectrometry of single particle aerosols and some in situ
detection instruments (such as hygroscopic tandem differential mobility analyzers and cavity
ring down spectroscopy) may analyze the components of aerosol continuously.1,2 However,
these methods can only work by single-point sampling in a limited area and thus are impractical
to employ for analysis over a larger area.

On the contrary, remote sensing methods have very good prospects as they can obtain obser-
vation data on a larger scale and can detect the air pollution and distribution of aerosols rapidly
without being placed in the detected air.3,4 In particular, lidar is very suitable for remote sensing
of atmospheric aerosols because of its high spatial and temporal resolution, and can be developed
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for vehicular and airborne application.5,6 Many observation data have been obtained from the
lidar stations and airborne-lidar worldwide, and the optical characteristics of the aerosols can be
retrieved from the raw data. Aerosol type classification from atmospheric lidar remote sensing is
important to know more about the different effects of aerosols from one type to another type.

In the authors’ previous work, a coarse pattern recognition model was proposed for aerosol
identification with atmospheric backscatter lidars.7 In this paper, the principle and implementa-
tion process of this method is enriched and described in more detail. Computer simulation shows
dual-wavelength polarized high-spectral resolution lidar (HSRL) is better than other types of
lidars for the classification of aerosols. Moreover, validation and analysis using the data
from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) reveal that this model for
aerosol classification can be used widely in the analysis of the lidar data.

This paper is constructed as follows. The optical properties of aerosol that could be employed
to construct the optical feature vector of the pattern recognition model are briefly reviewed in
Sec. 2. Section 3 gives a detailed description of the construction of the pattern recognition model,
which is followed by simulation studies in Sec. 4. To validate the proposed model, the appli-
cation to CALIOP is analyzed in Sec. 5. Section 6 gives the conclusive remarks of this paper.

2 Optical Properties of Aerosol

With elastic backscatter lidar, some optical properties of aerosol can be retrieved, such as back-
scatter coefficient, depolarization ratio, color ratio, and so on. Some of these optical properties
are important for aerosol type classification, and are required input data for the pattern recog-
nition model.

a. Lidar ratio
Backscatter coefficient β and extinction coefficient α can be retrieved from the

standard elastic backscatter lidar equation8
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where Pk and P⊥ represent the backscatter signals from parallel and perpendicular
channels, respectively; Ck and C⊥ represent the system constants for the parallel and
perpendicular channels, respectively; r is the range of the scatter volume from the
lidar, Ψ is the transmitter-receiver geometric overlap function. The subscripts m and
a represent the molecule and aerosols, respectively. Standard elastic backscatter lidars
often need to assume the lidar ratio (aerosol extinction-to-backscatter ratio) in advance
as there are three unknowns (βka, β⊥a , αa) in two lidar equations,9 that is,

EQ-TARGET;temp:intralink-;e002;116;268Sa ¼ αa=βa: (2)

b. Optical depth
The aerosol optical depth (AOD) refers to the integral of atmospheric extinction coef-

ficient in vertical direction, which can be used to describe the attenuation effect to light of
the atmospheric aerosol. That is,

EQ-TARGET;temp:intralink-;e003;116;187τ ¼ τa þ τm ¼
Z

r

0

½αaðξÞ þ αmðξÞ�dξ: (3)

The extinction angstrom exponent is often used to parameterize the wavelength
behavior of AOD. The relationship between the AOD and the wavelength is described
as follows:10

EQ-TARGET;temp:intralink-;e004;116;107τaðλÞ ¼ Bλ−A; (4)

such that
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EQ-TARGET;temp:intralink-;e005;116;735A ¼ − ln½τaðλ1Þ=τaðλ2Þ�
lnðλ1=λ2Þ

; (5)

where B represents the turbidity coefficient of aerosols, λ1 and λ2 represent two reference
wavelengths, A represents the angstrom wavelength exponent, which is an important
optical parameter to describe the size of aerosol particles. The greater its value is,
the smaller the particle is and vice versa.

c. Color ratio
The backscatter-related angstrom exponent is often used to characterize aerosols, and

can be expressed as

EQ-TARGET;temp:intralink-;e006;116;615aβ ¼ − lnðβ532a =β1064a Þ= lnð532 nm=1064 nmÞ; (6)

where βia represents the aerosol backscatter coefficient at wavelength i, Ca ¼ β532a =β1064a

represents the backscatter color ratio, which is independent of the particle concentra-
tion.11 The Angstrom exponent αβ is related to the size of aerosol particles and is typ-
ically below 0.5 for larger dust particles, whereas it is bigger than 1 for anthropogenic
particles.12

d. Depolarization ratio
There are also two important parameters derived from the backscatter coefficient.

One of them is the particle linear depolarization ratio

EQ-TARGET;temp:intralink-;e007;116;485δa ¼ β⊥a =β
k
a; (7)

and the other is the spectral depolarization ratio

EQ-TARGET;temp:intralink-;e008;116;439 Ra ¼ δ1064a =δ532a : (8)

The atmospheric aerosols optical parameters (such as the depolarization ratio, lidar ratio and
so on) are closely related to the physical properties of the particles. These optical parameters of
different kinds of particles are not exactly the same at a single wavelength and each parameter
also varies with the wavelength. Taking the depolarization ratio as an example, researchers found
that pure dust has typically larger 532-nm depolarization ratio (up to 30% to 35%)13 and that of a
mixture of dust and spherical particles is about 8% to 10%.14 In terms of aerosol lidar ratio, it can
vary widely depending on aerosol size distribution and refractive index, and the aerosol lidar
ratio is highly variable (20 to 100 sr). The mean values of lidar ratio for urban aerosols and
biomass burning are much higher than those for aerosols from maritime or dust aerosols at
visible wavelength (550 nm of AERONET or 532 nm of Raman lidar), which make them
separable.15–17 Therefore, it is not hard to understand that these optical characteristic parameters
(such as depolarization ratio, lidar ratio and so on) play an indispensable role in aerosol
classification.

Moreover, it is necessary to point out how can obtain the aforementioned optical parameters.
Standard elastic backscatter lidars need to assume lidar ratio in advance, then a single-wave-
length polarized Mie lidar can retrieve the depolarization ratio δa and a dual-wavelength
Mie lidar with polarized sensitivity only at 532 nm, which is widely adopted in the AD-net and
satellite-based lidar (CALIOP) at present,18,19 can retrieve the depolarization ratio δa along with
the color ratioCa. It should be noted that even with elastic backscatter lidar, the optical properties
of aerosol can be retrieved with a certain degree of accuracy. However, HSRL, which is obtained
by adding spectral filters to standard Mie lidar, can solve the optical parameters of the aerosol
particles (extinction coefficient αa and backscatter coefficient βa) accurately without a priori
assumptions of lidar ratio because it can obtain an extra lidar equation by separating the
Mie scattering of the aerosols and the Rayleigh scattering of the atmospheric molecules.20–22

Thus, a single-wavelength polarized HSRL can retrieve the depolarization ratio δa and lidar
ratio Sa, and a dual-wavelength polarized HSRL can retrieve the depolarization ratio δa, spectral
depolarization ratio Ra, backscatter color ratio Ca, and lidar ratio Sa accurately as it can work
on two wavelengths.
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3 Model for Aerosol Classification with Atmospheric Backscatter Lidars

A pattern recognition model for aerosol classification with atmospheric backscatter lidars can be
built up based on measured optical properties of aerosols from lidars, as shown in Fig. 1. In
general, the main process of this model can be described as follows. First, one must design
the pattern recognition classifier for aerosol classification with atmospheric backscatter lidars.
Obtaining the decision function for pattern recognition is the key for this stage. To this end, the
pattern recognition characteristic database is divided into two parts, one of which is used as the
“database” and the other is used as the “training data,” so the proper decision function and rule
can be chosen according to the identification results. Then, input the samples to be identified into
the designed classifier, which consists of the pattern recognition characteristic database and the
decision rule. Finally, the classification results can be made according to the decision rule.

3.1 Characteristics Sample Database for Aerosol Identification

From the principle block diagram shown in Fig. 1, it is not hard to find that the establishment of
the pattern recognition characteristic database is an important step to implement the aerosol
identification. Figure 2 shows the process of establishing the pattern recognition characteristic
database. First, one can obtain the coarse optical feature vector X0 and aerosol coarse optical

Fig. 1 Principle diagram of aerosol classification with atmospheric remote sensing lidars based on
pattern recognition.

Fig. 2 The establishment of the pattern recognition characteristic database.
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property databaseH0 by analyzing the collected database of aerosols from lidars according to the
existing categories of aerosols. Then, considering the efficiency and complexity of the model in
the practical applications, we should reduce the dimension of X0 by dimension-reduction analy-
sis, and we can gain the final optical feature vector X used in the model. Finally, the pattern
recognition characteristics database H would be obtained by dealing with the aerosol coarse
optical property database H0 according to the final optical feature vector X.

Dimension-reduction analysis can be mainly achieved through feature extraction and feature
selection, which is an essential issue in the pattern recognition, and has been proven in both
theory and practice effective in enhancing learning efficiency, increasing predictive accuracy,
and reducing complexity of learned results.23 Feature extraction requires processing of data
fusion and creating new features based on transformations or combinations of the original feature
set.24 Feature selection aims to choose an optimal feature subset that contains just the relevant
and nonredundant features for the classifier from the input feature set. Many methods have been
developed for feature selection, which can be characterized as “embedded,” “filter,” or “wrapper”
approaches.25 As it is not the focus of this paper, readers can learn more about it from related
studies.23–27 It is worth noting that as many studies have been done and there is clear meaning for
the lidar retrieval results, feature selection should be employed if only lidar data were considered.
If multisource data have been used for aerosol classification, feature extraction should be con-
sidered first, as features can be extracted from the raw data after a series of translation. Thus, a
correlation-based feature selection method was adopted to aid the dimension-reduction analysis.
The correlation between any feature and the class (C-correlation) as well as the correlation
between any pair of features (F-correlation) should be considered. Then, relevant and nonredun-
dant feature subset can be gained by selecting the features that have high C-correlation as well as
low F-correlation with each other.23

In conclusion, the pattern recognition characteristic database H has been simplified and the
superfluous optical properties have been eliminated when compared with the aerosol coarse
optical property database. Thus, a more accurate and efficient pattern recognition can be realized.

3.2 Decision Rules

Once the pattern recognition characteristic database for aerosol classification has been estab-
lished, the classifier can be designed using a number of possible approaches, such as template
matching, statistical classification, syntactic or structural matching, neural networks, and so on.
Statistical pattern recognition is a very active area of study and research, which has been used
successfully to design a number of commercial recognition systems. In the statistical decision
theoretic approach, the decision boundaries are determined by the probability distributions of the
samples belonging to each class or estimated directly by the data without calculating the prob-
ability distributions.28 However, in some sense, most of the approaches in statistical pattern
recognition are attempting to implement the Bayes decision rule as the Bayes discriminant
method based on the Bayes theory has the minimum error rate compared with other classification
methods theoretically.29

If the feature vector of the sample to be identified is x, the probability of the sample belonging
to aerosol category ωi in all n-type aerosols can be described as

EQ-TARGET;temp:intralink-;e009;116;219PðωijxÞ ¼
PðxjωiÞPðωiÞP
n
j¼1 PðxjωjÞPðωjÞ

; i ¼ 1;2; 3; · · · n; (9)

where PðωiÞ represents the prior probability, which can be assigned as equal for all types of
aerosols or calculated statistically or even determined experientially, and PðxjωiÞ represents
the probability distribution of the aerosol category ωi. Burton et al.

30 and Cattrall et al.16 pointed
out that various kinds of aerosol characteristic sample database can be considered to obey the
multidimensional Gaussian distribution as

EQ-TARGET;temp:intralink-;e010;116;112PðxjωiÞ ¼ 1=½ð2πÞd=2jΣij1=2� exp
�
−
1

2
ðx − μiÞTΣ−1

i ðx − μiÞ
�
; (10)
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where x ¼ ðx1; x2; · · · xdÞT represents the d-dimension feature vector, μi ¼ ðμ1; μ2; · · · μdÞT
represents the d-dimension mean vector of class ωi, Σi represents the d × d-dimension covari-
ance matrix of class ωi, which is defined as Σi ¼ Efðx − μiÞðx − μiÞTg, and Σ−1

i represents the
inverse matrix of Σi.

As can be seen, if one estimates the parameters of the multidimensional Gaussian distribution
according to the experimental data, PðxjωiÞ can be gained by Eq. (10). Then, PðωijxÞ, the rel-
ative probability of the aerosol sample belonging to class ωi, can be obtained subsequently.
Decision rules can be set in two ways: one is to select the maximum relative probability to
be the result of aerosol classification. That is, if PðωijxÞ ¼ max

j¼1;2;: : : ;n
PðωjjxÞ, then x ∈ ωi.

However, the crosstalk between two different types of aerosols may be very strong in some
cases. The other is to set a threshold if a rejection decision is allowed. If the relative probability
of the aerosol sample belonging to class ωi is larger than the threshold, the aerosol sample can be
considered as this kind of aerosol.

Based on the preceding analysis, a refined pattern recognition characteristic database can be
obtained from the atmospheric backscatter lidar observation according to the method introduced
in the Sec. 3.1. Then, it is divided into two parts: one is treated as the database and the other is
used as a set of training data, as shown in Fig. 1. A satisfying self-validation would be obtained
by choosing a proper decision rule, and this decision rule combining with the pattern recognition
characteristic database forms the classifier. Therefore, the aerosol classification can be made.
As there are wrongly classified samples, the confident level of the classification results can be
evaluated by

EQ-TARGET;temp:intralink-;e011;116;480CðωiÞ ¼
Pðωi;ωiÞPðωiÞP
n
j¼1 Pðωi;ωjÞPðωjÞ

; i ¼ 1;2; 3; · · · n; (11)

where CðωiÞ represents the classification confident level of aerosol category ωi and Pðωi;ωjÞ
represents the relative probability of samples from class ωj classifying into class ωi. It is worth
noting that though classification accuracy is the primary evaluation criterion for the classification
results, the confidence levels should be taken into account as well.

4 Analysis of Computer Simulation

Computer simulation for the proposed pattern recognition model of aerosol identification has
been carried out and the results will be shown in this section.

4.1 Establishment of Model

4.1.1 Aerosol categories

Aerosols can be categorized in different ways and different databases can be built up correspond-
ingly. The aerosol categories should be chosen according to the regional real situation, and the
number of aerosol categories should neither too few nor too many. Here, in this study, aerosols
are divided into eight categories: ice particles, pure dust, dust mix, maritime, marine pollution,
urban aerosol, biomass burning, and fresh smoke, following Burton et al.30

4.1.2 Selection of aerosol feature vector

As we are classifying the aerosols, it is interesting to find that some optical characteristics of
aerosols, such as depolarization ratio, spectrum depolarization ratio, backscatter color ratio, and
lidar ratio, do not change over the concentration of aerosols.11,16,30 One or two of the four char-
acteristics are usually not quite similar among different kinds of aerosols. Therefore, it has a great
significance in the classification of aerosols.

As for quantitative analysis, a large number of measurements of known aerosol models were
carried out to gain the optical characteristics of various kinds of aerosols. Therefore, the aerosol
database can be built up with atmospheric backscatter lidars. After dimension-reduction analysis
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to the aerosol coarse optical property database according to the previous analysis, we found that
the four optical characteristic parameters particle linear depolarization ratio (at 532 nm), lidar
ratio (at 532 nm), backscatter color ratio and spectrum depolarization ratio have high C-corre-
lation and the correlation between any pair of these four features are quite low. Thus, feature
vector for aerosol classification can be selected as follows:

EQ-TARGET;temp:intralink-;e012;116;675x ¼ ðδ532a ; S532a ; Ca; RaÞT: (12)

Then, the four-dimension feature vector space of aerosol particles can be constructed. Thus,
we can focus on these four characteristics specifically in the process of establishing the sample
database. The database can be stored for later use.

4.1.3 Characteristics sample database for aerosol identification

The characteristics sample database for aerosol identification used in the computer simulation is
constructed from the experimental data of Burton et al.,30 which are obtained in the field task
over North America. There are 10,000 samples of ice particles, 3000 samples of pure dusts,
75,000 samples of dust mix, 13,000 maritime samples, 11,000 samples of marine pollution,
85,000 samples of urban aerosols, 22,000 samples of biomass burning, and 39,000 samples of
fresh smoke in the database. The projection distribution of the four-dimension feature space for
aerosol classification is shown in Fig. 3,7 where (a) represents the projection in 532-nm depo-
larization—532-nm lidar ratio space, (b) represents the projection in 532-nm depolarization—
backscatter color ratio space, (c) represents the projection in 532-nm depolarization—depolarization
spectral ratio space, and (d)–(f) represent the projection in 532-nm lidar ratio—backscatter color
ratio space, the projection in 532-nm lidar ratio—depolarization spectral ratio space, the pro-
jection in backscatter color ratio—depolarization spectral ratio space, respectively.

4.2 Self-Validation Accuracy

The aerosol classification system is operated in two steps: training (learning) and classification
(testing). Two self-validations were carried out in the computer simulations to test the validity

Fig. 3 Aerosol database used in computer simulation: (a) projection in 532-nm depolarization—
532-nm lidar ratio space, (b) projection in 532-nm depolarization—backscatter color ratio space,
(c) projection in 532-nm depolarization—depolarization spectral ratio space, (d) projection in 532-
nm lidar ratio—backscatter color ratio space, (e) projection in 532-nm lidar ratio—depolarization
spectral ratio space, and (f) projection in backscatter color ratio—depolarization spectral ratio
space.
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and stability of the pattern recognition model for aerosol identification with atmospheric back-
scatter lidars in these two processes, respectively.

In the process of classifier training, the strict self-validation was carried out to determine the
decision rule. As shown in Fig. 1, the characteristics sample database was divided into two parts:
one was treated as the pattern recognition database and the other was used as train data. We adopt
the k-fold cross-validation method31 considering that the number of pure dust sample points is
relatively few. First, the characteristics sample database was divided into 50 parts randomly;
second, a decision function was selected; third, we pick one part as the training data and
the remained 49 parts as the pattern recognition database to train the classifier. This is repeated
for 50 times with only picking different parts as the training data each time. In this way, the
accuracy of the classifier with a certain decision rule can be calculated by recording and adding
the results of 50 cycles.

At first, we adopt the first decision rule to design the classifier, that is, we calculate the
relative probability of the aerosols belonging to any kind of categories and label the aerosol
sample belonging to this category if the probability is maximal. The detailed analysis results
of strict self-validation are shown in Fig. 4(a). The vertical axis in the figure represents the
types of aerosol to be tested in the self-validation, and the horizontal axis represents the cat-
egories of aerosol in which the samples are classified into. The light and dark colors represent
the corresponding probabilities. For example, look at the row with a vertical axis of “ice,” the
first dark blue square with a horizontal axis of “ice” represents samples of ice is still classified as
ice, and how dark of the square represents the corresponding probability in proportion to the total
ice sample points according to the color bar in the bottom of the figure. The second light blue
square with a horizontal axis of “pure dust” represents the samples of ice are classified as pure
dust mistakenly, and the rest may be deduced by analogy. Some of the self-validation accuracies
are marked correspondingly in the figure, but the corresponding probabilities less than 1% are
not marked in the figure.

From the results of self-validation, we can find that the reidentification of urban aerosol is the
most difficult and only about 89% of the sample points can be correctly distinguished. The main
reason is that the overlapping area of urban with other kinds of aerosol categories is larger than
the others, especially in the 532-nm depolarization—backscatter color ratio space [see Fig. 3(b)]
and 532-nm lidar ratio—backscatter color ratio space [see Fig. 3(c)], where urban almost cannot
be separated from other kinds of aerosols. Meanwhile, the accuracies of maritime pollution aero-
sol and fresh smoke are relatively low, too. This is mainly because the feature vectors of these
two types of categories overlap with urban aerosol as the crosstalk among them is quite serious.
The reidentification accuracies of other five types of aerosols, such as ice and dust mixing, reach
94% or even more. The pure dust is reidentified almost without error.

Obviously, the crosstalk between different types of aerosols will lower the confidence of the
classification results. Maybe adopting a rejection decision with a threshold as described in
Sec. 3.2 would make the classification results more confident. After a process of analysis, a
threshold of 55% was adopted in the classifier. That is, we use the k-fold cross-validation method
introduced earlier and calculate the relative probability of the aerosol sample belonging to any

Fig. 4 Details of the strict self-validation results: (a) the accuracies of strict self-validation without
decision threshold and (b) the accuracies of strict self-validation with decision threshold.
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kind of aerosol. Then, we can consider the aerosol sample belonging to this kind of aerosol if
the probability is over 55%. The detailed analysis results of self-validation with a proper
threshold are shown in Fig. 4(b).

From the self-validation result shown in Fig. 4(b), one can see that the reidentification accu-
racies of eight types of aerosols are lower compared to the self-validation results without a
threshold, but the crosstalk is reduced in the meantime. In the further analysis, it is noticed
that the effects of setting a threshold to the validation accuracies of ice, pure dust, dust mix,
and maritime samples are quite small, which means that the classification results of these
four types of aerosols are relatively confident. Thus, it is necessary to set a threshold if a con-
fident result is required. A best threshold should be decided by the data of repeated experiments
according to practical needs.

After the classifier is designed, the generalized self-validation was carried out in the clas-
sification mode. The testing data are simulated samples, which have the same distribution but
different values with the pattern recognition characteristic database. We still set the threshold
at 55% and the generalized self-validation accuracies of eight types of aerosols are shown in
Fig. 5(a). We carried out simulations four times and an average is calculated and marked
out correspondingly in the figure. It can be seen that the results of strict self-validation and
generalized self-validation are very close. Therefore, we believe that the results of self-validation
are close to a stable state. Thus, a change of the value of sample points would not affect the
reidentification results a lot as long as the distribution of the used database is the same. The
crosstalk between each type of aerosol in the generalized self-validation is similar to that in
the strict self-validation; thus, we will not discuss the crosstalk issue in the generalized self-
validation further.

In addition, we carried out a sensitivity analysis by perturbing each sample point in the pat-
tern recognition characteristic database 1000 times within different measurement uncertainties
as testing data, and the classification accuracies of eight categories of aerosols are shown in
Fig. 5(b). From the results, we can see that the effects of measurement uncertainties on clas-
sification accuracies of ice, dust mix, maritime, and biomass burn are relatively low. Never-
theless, the classification accuracies of pure dust and fresh smoke are affected relatively seriously
by the measurement uncertainties. In the whole, the effects of measurement uncertainties of less
than 15% are quite acceptable.

However, it should be pointed out that in order to obtain these four characteristic parameters
of aerosol at the same time, dual-wavelength polarized HSRL would be the best choice. Yet,
dual-wavelength polarized HSRL has not been widely accepted and used because of the restric-
tion of research depth and technology. The single-wavelength HSRL (at 532 nm) and other
atmospheric remote sensing equipment (such as single-wavelength polarization Mie scattering
lidar) are usually used together to obtain all of these optical characteristic parameters at present.

4.3 Behavior in a Reduced Dimension Status

As most lidars used currently are not dual-wavelength polarized HSRLs and a joint measurement
of different equipment is also hard to carry out, it is difficult to obtain all the four optical

Fig. 5 Results of the generalized self-validation and sensitivity analysis: (a) the generalized self-
validation accuracies of eight types of aerosols and (b) classification results of sensitivity analysis
with different uncertainties.
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characteristic (depolarization ratio δa, spectral depolarization ratio Ra, backscatter color ratioCa,
and lidar ratio Sa) at the same time. As mentioned earlier, a dual-wavelength Mie lidar with
polarized sensitivity at 532 nm can only retrieve the depolarization ratio δa and the color
ratio Ca, a single-wavelength polarized HSRL can only retrieve depolarization ratio δa and lidar
ratio Sa, and a single-wavelength polarized Mie lidar can only get depolarization ratio δa. These
limitations make it very difficulty to classify aerosol with atmospheric backscatter lidars.
Although the pattern recognition model for aerosol classification with atmospheric backscatter
lidars proposed in this paper can be applied to both dual-wavelength polarized HSRL and non-
double-wavelength polarized HSRL, the accuracy would have some differences compared with
the results of dual-wavelength polarized HSRL. The results of self-validation for nondouble-
wavelength polarized HSRL (such as dual-wavelength Mie lidar with polarized sensitivity at
532-nm, single-wavelength polarized HSRL, single-wavelength polarized Mie lidar, and so on)
without a decision threshold are shown Fig. 6.

Compared to the self-validation of the dual-wavelength polarized HSRL shown in Fig. 4(a),
the reidentification accuracies in a reduced dimension status is lower and the crosstalk becomes
worse. Therefore, we decided to adopt a rejection decision by setting a threshold. A threshold of
50% is set by balancing the self-validation accuracies and crosstalk between each type of aero-
sols. The detailed results of self-validation are shown in Fig. 7.

According to the self-validation results, although a single-wavelength polarized HSRL can
only obtain depolarization ratio δa and lidar ratio Sa, the distributions of various types of aerosols
are relatively independent in the two-dimensional space consisting of depolarization ratio and
lidar ratio. Thus, the identification accuracies of various aerosols are still quite large: the
reidentification accuracies of ice, pure dust, dust mix, and maritime are all over 90% and the
reidentification accuracy of pure dust is up to 99%. However, the reidentification accuracies of
other four types of aerosols are quite low and the crosstalk between marine pollution and fresh
smoke as well as urban aerosol and biomass burn is quite serious. It seems hard to distinguish
urban aerosol from biomass burn only using the data from a single-wavelength polarized HSRL,
because these two almost overlap in the 532-nm depolarization—532-nm lidar ratio space, as
shown in Fig. 3. The marine pollution and fresh smoke are hard to be distinguished as their
overlapping area in the four-optical feature space is quite large, too.

Compared with single-wavelength polarized HSRL, dual-wavelength polarized Mie lidar has
a weaker ability to recognize the components of various types of aerosols. It can only distinguish

Fig. 6 Details of the self-validation analysis for nondual-wavelength polarized high-spectral
resolution lidar (HSRL) without decision threshold: (a) the self-validation accuracies analysis for
double-wavelength Mie scattering lidar (polarized at 532-channel), (b) the self-validation accura-
cies analysis for single-wavelength polarized HSRL lidar, and (c) the self-validation accuracies
analysis for single-wavelength polarized Mie scattering lidar.
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pure dust and dust mix better. However, the crosstalk between pure dust and ice particles is quite
serious, up to 16.5%, as the overlap of pure dust and ice particles is a little large in the 532-nm
depolarization—color ratio space as shown in Fig. 3. Although the self-validation accuracies of
maritime, marine pollution, and fresh smoke are all over 70%, the crosstalk between them and
other categories is very serious, which leads to the confidence of the identification results being
very low. However, the combination of maritime and marine pollution has relatively little cross-
talk compared with the others. Therefore, if we classify aerosols into five categories according to
the data from dual-wavelength Mie lidar (polarized at 532-nm channel), the results are quite
acceptable.

As for single-wavelength polarized Mie lidar, its ability to classify the aerosols is even
weaker. It can only reidentify pure dust and dust mix, and the crosstalk between ice particles
and pure dust is even more serious than dual-wavelength polarized Mie lidar. It cannot distin-
guish the remaining types of aerosols from each other very well just using the data from single-
wavelength polarized lidar, so we would consider the remaining of aerosol types (maritime,
marine pollution, urban, biomass burn, and fresh smoke) as one category. When setting a thresh-
old of 50%, the classification results are also acceptable.

4.4 Discussions

According to the results of computer simulation, we can conclude that the self-validation accu-
racies of dual-wavelength polarized HSRL are relatively high and the crosstalk is quite low. The
classification accuracies stay relatively stable when the measurement uncertainties are less than
15%, so the stability of the model has been demonstrated from the generalized self-validation
and sensitivity analysis. The analysis of the behavior in the reduced dimension status demon-
strates the generalization ability of this model, which means that it can be applied to different
polarization lidar configurations. As the crosstalk between marine pollution and fresh smoke as
well as that between urban aerosol and biomass burning are quite serious, aerosols can be divided
into six categories quite credibly by single-wavelength polarized HSRL. Similarly, a dual-wave-
length Mie lidar with polarized sensitivity at 532-nm channel can classify aerosols into five
categories at an acceptable confidence level. The ability to classify the aerosols of a single-wave-
length polarized lidar is quite weak, but it can distinguish ice particles, pure dust, and dust mix
from other aerosols using the method proposed in this paper. It should be noted that the database

Fig. 7 The details of self-validation analysis for nondouble-wavelength polarized HSRL with deci-
sion threshold: (a) the self-validation accuracies analysis for dual-wavelength Mie scattering lidar
(polarized at 532-channel), (b) the self-validation accuracies analysis for single-wavelength polar-
ized HSRL lidar, and (c) the self-validation accuracies analysis for single-wavelength polarized
Mie scattering lidar.
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used is not based on a real dual-wavelength polarized HSRL. In fact, the HSRL used by Burton
et al.30 in the field task adopts HSRL technology only at the 532-nm channel and the 1064-nm
channel is just a standard polarized Mie lidar that needs a prior assumption of the lidar ratio
before retrieving.32 If data from a real dual-wavelength polarized HSRL can be obtained, the
self-validation accuracy would be higher and the crosstalk would be suppressed as well.

It should also be mentioned that the aerosols database used in the computer simulation is
obtained by simulation through combining the data sets that were acquired from the 18 field
missions conducted by NASA LaRC over North America and the previous research of
Burton et al.30 Although the database has certain representativeness, it may show some differ-
ence with the concrete situation in other countries. Also, the classification of aerosols in differ-
ent situations may differ, e.g., the space-based lidar, CALIOP, adopts a classification of six
categories, which is quite different from the classification categories used by Burton et al.30

Therefore, the validation of the model’s universality is carried out using the data from CALIOP
in Sec. 5.

5 Analysis of the Application to Cloud-Aerosol Lidar with Orthogonal
Polarization

CALIOP was launched on April 2006 aboard the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) satellite, which is a joint mission between NASA and the
French space agency (CNES). CALIOP is a system of dual-wavelength Mie lidar with polari-
zation sensitivity (532-nm channel) and its products can be employed in various applications
such as atmosphere studied and earth observation.32 The retrieval algorithm of CALIOP is sim-
ilar to the common elastic lidar as a priori assumptions are needed. The aerosol layers are
assigned to one of six aerosol types (desert dust, biomass burning, clean continental, polluted
continental, marine, and polluted dust), each having a characteristic lidar ratio that is mainly
based on the cluster-analysis of the AERONET data set.33,34 Therefore, CALIOP can provide
vertical structure and properties of thin clouds and aerosols over the global scale and the data are
available on the NASA website.35 In this study, the layer-integrated particulate depolarization
ratio, layer-integrated particulate color ratio, layer-integrated attenuated backscatter coefficient
(532 nm), and feature classification flags in the level 2 version 3-layer products, namely the 5-km
aerosol layer products, were used to verify the aerosol classification model proposed. The data
used are limited to the latitude-longitude grid of (3°N∼54°N, 73°E∼136°E) covering the geo-
graphical range of China and surrounding areas over the year 2014.

5.1 Data Quality Screening Strategy

As an estimated lidar ratio was used in the retrieval algorithm of CALIOP, an untrustworthy
retrieval result may be gained. In order to include only well-defined aerosol layers, a quality
filter was used in the data processing.36 The cloud-aerosol-discrimination (CAD) score was
adopted to assess the uncertainty of cloud aerosol discrimination algorithm. The standard
CAD score ranges from −100 (most confident to be aerosols) to 100 (most confident to be
clouds), but layers with CAD score between −20 and 20 are usually the results of erroneous
layer detection contaminated by noise. Therefore, a CAD score filter was set to determine aerosol
layers with CAD score between −100 and −20. In the meanwhile, bit 13 of feature classification
flags was limited to 1, which means the subtype of classification was with confidence.

As the lidar ratio is estimated with assumptions, the initial lidar ratio would be adjusted in
the retrieval processing, which usually occurs for complex features and induces instabilities in
the algorithm and larger uncertainties in the retrieved extinction. Therefore, a quality filter was
used to determine aerosol layers having extinction QC flag values of 0 or 1.

The third screening filter excludes samples where aerosol layer-integrated particulate
depolarization ratio uncertainty or layer-integrated particulate color ratio uncertainty is 99.99.
Uncertainty of 99.99 is a flag value assigned by the extinction retrieval algorithm when the error
estimates can become unstable, and the uncertainty calculation value can grow excessively large.
The data quality screening filters are shown in Table 1 in detail.
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5.2 Selection of Aerosol Feature Vector

Similar to the computer simulation in Sec. 4, the particulate color ratio and depolarization ratio
were selected in the feature subset as they are relevant to the classification. Considering that
the SNR of satellite-based lidar is relatively low, the integrated particulate depolarization ratio
(IPDR)

EQ-TARGET;temp:intralink-;e013;116;572δp;layer ¼
Xbase
k¼top

β⊥;pðzkÞ
. Xbase

k¼top

β��;pðzkÞ; (13)

and integrated particulate color ratio (IPCR)

EQ-TARGET;temp:intralink-;e014;116;508χp;layer ¼
Xbase
k¼top

βp;1064ðzkÞ
. Xbase

k¼top

βp;532ðzkÞ; (14)

are used for aerosol classification instead.
According to the retrieval algorithm, we can see that the integrated attenuated backscatter at

532 nm (γ 0
532 or IAB) is helpful for aerosol classification. γ 0

532 has a high correlation to clas-
sification and low correlation to IPDR or IPCR as well, so γ 0

532 is selected into the feature subset

EQ-TARGET;temp:intralink-;e015;116;413γ 0
532 ¼

Z
base

top

βðzÞTðzÞdz; (15)

where β is the total (molecular + aerosol) backscatter coefficient and T is the atmospheric trans-
mittance due to both the molecules and aerosols.

Thus, the feature vector for aerosol classification can be selected as follows:

EQ-TARGET;temp:intralink-;e016;116;333x ¼ ðδp;layer; χp:layer; γ 0
532ÞT: (16)

Then, the 3-D feature vector space can be gained by analyzing the CALIOP data for year
2014. There are about 130,000 samples of clean marine, 85,000 samples of desert dust, 35,000
samples of polluted continental, 6700 samples of clean continental, 146,000 samples of polluted
dust, and 53,000 samples of biomass burning. The projection distribution of the 3-D feature
space for aerosol classification is shown in Fig. 8, where (a) represents the projection in
IPDR—IPCR space, (b) represents the projection in IPDR—IAB space, and (c) represents
the projection in IPCR—IAB space.

5.3 Identification Results

The analysis of the application to CALIOP is quiet similar to the computer simulations in Sec. 4.
We use the data over 2014 as a database to design the classifier, and the k-fold cross-validation
method is also adopted in the processing of classifier design as the sample points of clean
continental are relatively few. At first, we adopt the first decision rule to design the classifier;
the results of strict self-validation accuracies of six types of aerosols without rejection decision
and detailed analysis results are shown in Fig. 9.

The reidentification of clean marine, desert dust, clean continental, and polluted dust is rel-
atively acceptable, especially since the self-validation accuracy of clean continental aerosol is
over 95%. However, the crosstalk between different types of aerosols is quite serious at the same
time. The crosstalk between polluted continental and biomass burning is up to 58%, which

Table 1 The data quality screening strategy of Cloud-Aerosol Lidar with Orthogonal Polarization.

Parameters
Cloud-aerosol-

discrimination score

Extinction QC
(532 and 1064

channel)

Layer-integrated
particulate depolarization

ratio uncertainty

Layer-integrated
particulate color
ratio uncertainty

Filter ½−100;−20Þ 0 or 1 Exclude 99.99 Exclude 99.99
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means that it is fairly difficult to distinguish between polluted continental and biomass burning.
When a rejection decision is adopted and the threshold is optimized according to the self-val-
idation, the detailed results are shown in Fig. 10. Comparing the results shown in Figs. 9 and 10,
we can conclude that the application to CALIOP can reidentify clean marine, desert dust, clean
continental, and polluted dust quite well with a relatively high confidence level. However, the
serious crosstalk between polluted continental and biomass burning leads to a rejected decision
for most of the polluted continental and biomass burning layers.

Fig. 9 Details of the self-validation results without decision threshold using CALIOP data.

Fig. 10 Details of the self-validation results with decision threshold using CALIOP data.

Fig. 8 Aerosol database from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) analy-
sis: (a) projection in IPDR—IPCR space; (b) projection in IPDR—IAB space; and (c) projection in
IPCR—IAB space.
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5.4 Discussion

According to the analysis of application to CALIOP, an acceptable classification result of clean
marine, desert dust, clean continental, and polluted dust can be achieved, and the self-validation
accuracies of desert dust and clean continental is over 80%, but the crosstalk between polluted
continental and biomass burning is too serious to be distinguished. The main reason is that the
two aerosol models (polluted continental and biomass burning) used in CALIOP have similar
compositions.34 Moreover, the lidar ratio assigned to these two kinds of aerosols are similar, 70 sr
at 532 nm and 40 sr at 1064 nm for smoke, and 70 sr at 532 nm and 30 sr at 1064 nm for polluted
continental.31 Thus, the overlapping area of polluted continental and smoke is very large in the
optical features space. On the other hand, the CALIOP retrieval algorithm uses a decision tree,
which takes into account not only the measured optical feature but also aerosol location, height,
and surface type to classify aerosol layers into six types. Therefore, the serious crosstalk between
polluted continental and smoke is not a surprise. Since polluted continental and biomass burning
almost overlap in the current optical feature space and the separation of them cannot be realized
only through these optical features, we combine them under the label “urban” to perform the
classification processing. That is, we classify aerosol samples into five catalogs (clean marine,
desert dust, combined urban, clean continental, and polluted dust) according to CALIOP data.
The results of strict self-validation accuracies of classification into five catalogs with a rejection
decision after an optimized decision threshold is adopted are shown in Fig. 11. As one can see,
the reidentification results are quite acceptable when aerosols are classified into five categories.

6 Summary and Conclusions

A pattern recognition model for aerosols identification with atmospheric backscatter lidars is
studied and the feasibility of using lidars to detect the components of aerosols is discussed
in this paper. This model has good generalization ability and can be applied to various database
and classifications of aerosols. The process of building the characteristics sample database for
aerosol classification, the aerosol optical characteristics vector, and the pattern recognition model
are described in detail. Meanwhile, computer simulation for the proposed pattern recognition
model of aerosol identification has been carried out. The model has a good stability when
the number of the sample points in the aerosol database is big enough according to the results
of self-validation. Reidentification accuracies and crosstalk between each type of aerosol par-
ticles were analyzed, and the role of the threshold for aerosol classification in suppressing the
crosstalk is studied and proved.

In addition, the applicability of this model in a reduced dimension status is analyzed in detail.
Therefore, we can conclude that single-wavelength polarized HSRL has a better ability to iden-
tify the components of aerosols than dual-wavelength polarized Mie lidar, and single-wavelength
polarized Mie lidar has the weakest ability to identify the components of aerosols in these three
kinds of lidars. Single-wavelength polarized HSRL has a better capacity for the reidentification
of ice particles, pure dust, dust mix, and maritime. Dual-wavelength polarized Mie lidar has

Fig. 11 Details of the self-validation analysis of classifying CALIOP data into five catagories with
decision threshold.
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a good ability to distinguish ice particles, pure dust, and dust mix, but single-wavelength polar-
ized Mie lidar can only reidentify pure dust and dust mix well. It is also helpful in understanding
the main optical characteristics that contribute to classify different kinds of aerosols.

The application to CALIOP was then carried out and analyzed in detail to illustrate the gen-
eralization ability of the model proposed in this paper. The desert dust and clean continental can
be reidentified correctly with high confidence, but the crosstalk between polluted continental and
biomass burning is too serious to be distinguished as there are many similar characteristics
between them. When we label polluted continental and biomass burning as one catagory, we
can classify aerosols into five catagories quite acceptably.

In short, pattern recognition model for aerosol classification with atmospheric backscatter
lidars studied in this paper has good generalization ability and also good performance. It
thus provides an alternative method for aerosol classification. At the same time, the huge
advantages of polarized HSRL, especially dual-wavelength polarized HSRL, in the applica-
tion of aerosol classification is highlighted after the analysis of this model in the reduced
dimension status.
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