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Abstract. Our goal is to map the rice areas of six South Asian countries using moderate-
resolution imaging spectroradiometer (MODIS) time-series data for the time period 2000 to
2001. South Asia accounts for almost 40% of the world’s harvested rice area and is also home to
74% of the population that lives on less than $2.00 a day. The population of the region is growing
faster than its ability to produce rice. Thus, accurate and timely assessment of where and how
rice is cultivated is important to craft food security and poverty alleviation strategies. We used
a time series of eight-day, 500-m spatial resolution composite images from the MODIS sensor
to produce rice maps and rice characteristics (e.g., intensity of cropping, cropping calendar)
taking data for the years 2000 to 2001 and by adopting a suite of methods that include spectral
matching techniques, decision trees, and ideal temporal profile data banks to rapidly identify
and classify rice areas over large spatial extents. These methods are used in conjunction with
ancillary spatial data sets (e.g., elevation, precipitation), national statistics, and maps, and a
large volume of field-plot data. The resulting rice maps and statistics are compared against a
subset of independent field-plot points and the best available subnational statistics on rice areas
for the main crop growing season (kharif season). A fuzzy classification accuracy assessment
for the 2000 to 2001 rice-map product, based on field-plot data, demonstrated accuracies from
67% to 100% for individual rice classes, with an overall accuracy of 80% for all classes. Most
of the mixing was within rice classes. The derived physical rice area was highly correlated
with the subnational statistics with R2 values of 97% at the district level and 99% at the state
level for 2000 to 2001. These results suggest that the methods, approaches, algorithms, and data
sets we used are ideal for rapid, accurate, and large-scale mapping of paddy rice as well as for
generating their statistics over large areas. C© 2011 Society of Photo-Optical Instrumentation Engineers

(SPIE). [DOI: 10.1117/1.3619838]
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1 Introduction

South Asia (Fig. 1), which comprises Bangladesh, Bhutan, India, Nepal, Pakistan, and
Sri Lanka, has been described as the “food basket” and “food bowl” of Asia. Agriculture
in the region provides employment and livelihoods for tens of millions of rural families directly
or indirectly. The region accounts for almost 40% of the world’s harvested rice area1 and almost
25% of the world’s population (circa 1.5 billion people).1–4 Almost 74% of the population lives
on less than $2.00 a day,2 and rice provides around 30% of the calorific requirements of the
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Fig. 1 Study area showing South Asia (Bangladesh, Bhutan, India, Nepal, Pakistan, and
Sri Lanka) and its segments. The South Asia study area showing classification segments, loca-
tion map, major rivers with river basins, and administrative units. An overwhelming proportion of
rice is grown in segment C3 (shown in green), indicating the high value of segmenting the image
before classification and class identification, thus making the class identification process easier
and accuracy higher.

population.3 The population of the region is projected to grow faster than its ability to produce
sufficient rice to meet the demand,4 making South Asia food insecure in coming decades. Thus,
rice-based agricultural systems are a vital component of any strategy to ensure food security
and alleviate poverty in the region. Rice agriculture, especially on this vast spatial scale, also
has important implications for natural resource management.5 The cultivation of paddy rice
on flooded soils requires large quantities of fresh water and thus has implications for water
security and water quality,6 while waterlogged soils are one of the largest sources of methane
gas emissions.7,8 Mapping and monitoring rice cultivation will provide important information
to planners, decision makers, and scientists on where exactly rice is cultivated, its intensities,
and changes over space and time. For example, substantial portions of rice croplands are lost
to urbanization, and biofuel plantations in recent times. Exact mapping of rice crop areas will
lead to more accurate assessments of their water use, crop productivity, and water productivity.
Exact mapping of rice areas will also help assess methane emissions far more accurately. The
interlinkage of rice-crop mapping to all these crucial agrological, ecological, and climatic factors
will have a substantial influence on food security assessment and planning.

Compilations of regional and subnational statistical data on rice areas and coarse-scale
rice maps in the 1980s and 1990s (Refs. 9–11) were followed in the 2000s by the automated
mapping of rice areas using medium spatial resolution remote sensing6,12–14 as well as more
sophisticated combinations of various data sources.5,15 Agricultural statistical data are invaluable
for understanding historical trends in rice agriculture, but the data are rarely available in a timely
manner and may not have sufficient spatial resolution, whereas automated remote-sensing
techniques can rapidly generate up-to-date maps of paddy rice on a large scale, but they are
difficult to validate on such a scale. Experiments by Sun et al.14 in China have demonstrated
that a single rice mapping algorithm with little field-plot and no crop calendar input may not be
appropriate for the accurate identification of rice areas across different rice agroecologies. Rice
is cultivated across a wide range of climatic conditions under many different crop-management
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Table 1 Country area and arable agricultural area in
South Asia for 2000-01. Note that 41% of the geographic
area in South Asia is arable.

Country Area (‘000 ha) Arable land, 2000 (‘000 ha)

Bangladesh 14,804 8,084
Bhutan 4,365 130
India 345,623 162,717
Nepal 16,210 2,354
Pakistan 89,167 21,292
Sri Lanka 6,453 915
Total 476,622 195,492

Source: World rice statistics
http://beta.irri.org/index.php/

techniques, and some degree of prior knowledge of the variation in these factors is essential to
produce an accurate map of rice-growing areas.

In this study, we present a method to identify and classify rice-growing areas in South
Asia (Fig. 1, Table 1) using a suite of methods, including spectral matching techniques (SMTs),
decision-tree algorithms, and an ideal temporal profile for rice classes. [Note: We deliberately use
the term “temporal profile” throughout this paper for seasonal patterns of normalized difference
vegetation index (NDVI). This is because we use 100’s of bands of data in a single megafile
data cube, which is akin to 100’s of bands of hyperspectral data. The megafile data cube is
described in Sec. 2.3.3, also see Refs. 16–19]. We use a time series of eight-day, 500-m spatial
resolution, seven-band reflectance data (Table 2) composite images for 2000 to 2001 from the
moderate-resolution imaging spectroradiometer (MODIS) sensor as well as ancillary spatial
data sets and field-plot observations to identify and classify rice areas over a large spatial extent.
We used data from 2000 to 2001 because this is the most recent “good” year for rice production
in South Asia,1 that is, there were no region-wide severe droughts or floods and no acute pest
or disease outbreaks. This also matches the information collected from field observations, and
detailed agricultural census data were available for this period for all six countries. As such,
this represents a contemporary picture of rice cultivation in South Asia under good conditions.
We demonstrate the accuracy of the approach in terms of classification accuracy for identifying
different rice agroecologies and by comparing the MODIS-derived physical rice area against
published national statistics.

Table 2 MODIS data sets (seven bands): MODIS Terra seven-band, 500-m reflectance data
characteristics used in this study. (Source: adapted from Ref. 16.)

MOD09A1 product

MODIS
bands

Band width
(nm3)

Band center
(nm3)

Visible
range Potential application

b3 459–479 470 Blue Soil/vegetation differences
b4 545–565 555 Green Green vegetation
b1 620–670 648 Red Absolute land cover transformation,

vegetation chlorophyll
b2 841–876 858 NIR1 Cloud amount, vegetation land cover

transformation
b5 1230–1250 1240 NIR2 Leaf/canopy differences
b6 1628–1652 1640 SWIR1 Snow/cloud differences
b7 2105–2155 2130 SWIR2 Cloud properties, land properties
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2 Materials

2.1 Study Area

South Asia extends between 5◦38′39′′ and 36◦54′38′′ latitude and 61◦05′04′′ and 97◦14′12′′

longitude, with a land mass of 477 million hectares (Fig. 1, Table 1). The region lies within six
agroecological zones: humid tropics, subhumid tropics, semiarid tropics, semiarid, subtropics,
and arid.20 Rice is grown within all these zones but is concentrated in the semiarid tropics and
subhumid tropics. South Asia contains almost 200 million hectares of arable land area. Water
supply is either from irrigation (∼80 million hectares, where water is supplied via canals, water
tanks, or groundwater) or rainfall (∼120 million hectares).21 Figure 1 shows the major drainage
basins in South Asia and the command areas where irrigation is present in India.

Rice cropping occurs in three seasons across the region: the main kharif or aman during
the monsoon (June to mid-December), the rabi or boro in the postmonsoon dry season (mid-
December to March), and a summer-season aus crop (April and May). Rice is harvested on some
60 million hectares across all three seasons (Table 1). Irrigated areas include double cropping of
rice and other grains, single cropping of sugarcane, chilli, cotton, fodder grass, and some areas
of light irrigation of corn, sorghum, and sunflower. Rain-fed crops include grains (sorghum,
millet), pulses (red gram, green gram, and chickpea), and oilseeds (sunflower and groundnut).

2.1.1 MODIS surface reflectance data

The MODIS eight-day composite surface reflectance product from the Terra platform
(MOD09A1) is ideal for monitoring vegetation at a continental scale.16 The seven bands of
reflectance data (Table 2) at a resolution of 15 arc s (500 m), coupled with a high-repeat fre-
quency, can capture the seasonal variations in vegetation vigor, soil, and vegetation moisture,
and surface water that characterize the key stages of rice cultivation.16 The reflectance data
undergo several preprocessing steps, including algorithms for atmospheric correction. Further-
more, the rate of observation coverage, the viewing angle, cloud or cloud shadow coverage, and
aerosol loading are all assessed on a pixel-by-pixel basis to ensure that each pixel contains the
best observations during that eight-day period. MOD09A1 also includes two quality assessment
data sets at the pixel and band level, which are vital for user postprocessing to identify and re-
move areas of persistent cloud and snow cover. The MOD09A1 (Version 005) data are available
in a tile system, in which each tile covers 10 × 10 deg (1111.2 × 1111.2 km at the equator).
We downloaded 12 tiles, for every eight days, from Ref. 22 covering South Asia for all dates
between June 2000 and May 2001, which includes the rice crops in three seasons (kharif, rabi,
and aus) for every 12-month period.

2.2 MODIS Data Preprocessing

2.2.1 Blue-band minimum-reflectivity threshold for clouds

South Asia is subject to the influences of the oscillating subtropical convergence zone, which
include monsoonal activity from June to September (kharif season). It is during this part of
the year that there is a significant change in vegetation cover, rapid changes in the dynamics
of vegetation, and changes in biomass accumulation. It is also a period when cloud cover is
more frequent. To retain the highest possible number of pixels in the time series, the following
approach was adopted:16 (a) retain all images with <5% cloud cover and (b) apply a cloud-
masking algorithm in order to eliminate areas of cloud cover and retain the rest of the image in
an unchanged form.16,22 The cloud-masking algorithm applies a threshold to band 3, a simple
algorithm for band 3 cloud removal in ERDAS-ER Mapper (ERDAS, 2010) was: for band 3
(if b3 ≥ 18%, then null else b3) (see Table 2) in the MODIS imagery, where, if the reflectance
value is >18%, then this is considered as null (this cutoff value was arrived at by selecting
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several samples over cloud patches throughout the study area). For other bands, where band 3 is
more than 18%, then the values in all bands are replaced with a null value. For a more detailed
description of cloud-removal algorithms for MODIS, refer to Ref. 16.

2.2.2 Normalized-difference vegetation index and monthly maximum
value composite

An NDVI was generated using surface reflectance values of red and NIR bands in Eq. (1).
Monthly, three to four eight-day composites were available, for a total of 45 eight-day com-
posites. Monthly maximum value composites (MVCs) for June 2000 through May 2001 were
created using the eight-day images in order to minimize cloud effects during the monsoon season
in Eq. (2). The monthly MVCs were stacked into a 12-band megafile data cube (MFDC).

NDVI = λNIR − λred

λNIR + λred
, (1)

NDVIMVCi
= Max(NDVIi1, NDVIi2, NDVIi3, NDVIi4), (2)

where MVCi is the monthly maximum value composite of the i’th month and i1, i2, i3, and i4
are every eight days’ data in a month.

2.2.3 Megafile data cube data-set generation

A megafile data cube17 was composed for June 2000 through May 2001. The MFDC consisted
of 327 bands: 12 bands of MVC NDVI images (one MVC image per month) and a further 315
bands, composed from all seven bands in the eight-day composites. This MFDC was then used
to generate the ideal and class temporal profile (NDVI pattern) as follows.

2.3 Field-Plot Data for Identifying, Labeling, and Assessing the Accuracy of
MODIS-Based Rice Maps

Field-plot data were collected during October 11–26, 2003, and August 30–September 28,
2005. Interviews with farmers and agricultural extension officers were conducted to determine
cropping types and conditions, including the collection of historical data as far back as 2000 to
2001. A total of 1004 locations covering the major crop-land areas (Fig. 2) were chosen based
on the knowledge of local agricultural extension officers to ensure that adequate samples of
rice as well as other crops were gathered. The local experts also provided information on crop
calendars, cropping intensity (single or double crop), and percentage canopy cover for these
locations. Of the 1004 data points, 75% (751) were used for class identification and calculating
rice fractions (within this, 149 rice points were used for ideal temporal profile generation) and
the rest of the points (253) were used for the following accuracy assessment.

The precise locations of the sample sites were recorded using a Garmin handheld global
positioning system unit. Ideally, 50 or more samples should be collected per land use class,23

but, due to limited resources, the sample size varied from 15 to 25 for each major crop-land
use/land cover (LULC) class.

At each of the 1004 locations, the following data were recorded for 2000 to 2001 based on
interviews with local agricultural extension officers and/or farmers:

1. Land-use parameters, including farm land, range lands, and open lands, which relate to
levels I, II, and III in the Thenkabail approach for land use/land cover classifications.17,18

As an example, level I includes detailed information such as scale (large-/small-scale
agriculture) and intensity (single crop, double crop, and continuous crop) with crop
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Fig. 2 Field-plot data-point locations in South Asia. There are 1004 field-plot locations where
crop type, cropping intensity, watering source (irrigated versus rainfed), and a number of other
parameters (e.g., digital photos, land cover distribution) were also collected.

type, irrigation type (groundwater, surface water, and conjunctive), and watering method
(irrigated, rainfed, and other LULC)

2. Land-cover types (percent cover): trees, shrubs, grasses, built-up area, water, fallow lands,
weeds, different crops, sand, rock, and fallow farms

3. Crops cultivated in the kharif, rabi, and summer seasons
4. Cropping calendars for kharif, rabi, and summer seasons
5. Irrigation sources (groundwater, surface water, and tank) at each location.

These class labels were assigned in the field, but additional class information was incorpo-
rated later on the basis of visual interpretation of the LandSat GEOCOVER 2000 data set.24

Most of the Google Earth images were very high resolution (submeter to 4 m; from IKONOS,
Quickbird satellites, and Landsat images) and were acquired in recent years. These data again
relate to the target mapping for the 2000 to 2001 season.

2.4 Ancillary Spatial and Statistical Data

Several ancillary (or secondary) spatial data sets were used to segment the MODIS data into
various components in order to augment the classification procedure and increase the accuracy
in identifying rice classes.

2.4.1 Elevation and slope constraints for rice cultivation

Rice is rarely grown at elevations above 2500 m; thus, the digital elevation model (DEM) was
used to remove these areas from the analysis. Slope is also a limiting factor, and although rice
can be cultivated on steep slopes by means of terracing, this is not a common system in South
Asia (except in Nepal and Bhutan). A series of thresholds were used to classify the terrain into
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flood plains and lower valley slopes with ≤2% gradient as one segment and >2% gradient as
another segment.

The Shuttle Radar Topography Mission (SRTM) obtained elevation data on a near-global
scale to generate the most complete high-resolution digital topographic database of the Earth at
a resolution of 3 arc s.25–28 The SRTM tiles were downloaded from Ref. 29 and mosaicked into
a regional DEM. A slope map was computed from this DEM, and both elevation and slope were
used as constraint maps to determine where rice could possibly be cultivated.

2.4.2 Irrigation command areas to segment them from the rest of the areas

Irrigated command areas are a clear indication of where surface (canal)-irrigated crops are
cultivated. We obtained irrigated command area maps from India and used them to further
split the ≤2% slope gradient segment into irrigated and nonirrigated areas (Fig. 3). Crop lands
within these command areas are almost always irrigated (with the possible exception of more
remote areas during drought periods). Naturally, there are always some LULC classes within
the command area segment that are not crop land, but the command area segment will still aid
classification accuracy with respect to irrigated rice areas.

2.4.3 Water body segment derived from Landsat Geo cover and elevation data

One straightforward land-cover class is permanent surface-water bodies, and it is desirable
to identify these prior to further analysis and classification. Water bodies were extracted from
Landsat Geocover data for the year 2000 and SRTM DEM. Water bodies accounted for 1,879,587
hectares in South Asia.

2.4.4 Very high-resolution imagery via Google Earth R© for class identification,
labeling, and accuracy assessment

Google Earth provides very high-resolution images down to submeter resolution with free
access, which is valuable for the visual interpretation of land cover, especially to ascertain
whether a class is irrigated or rainfed crop land. Google Earth data30 were also used to identify
the presence of any irrigation structures (e.g., canals, irrigation channels, open wells). Most of
the very high-resolution imagery (VHRI: <5 m; e.g., IKONOS, Quickbird, Geoeye) in South
Asia that is available in Google Earth was acquired between 2000 and 2010. The rice crop has
unique features, such as small bunds, along with very well-defined irrigation structures (e.g.,
canals, irrigation channels, open wells). These are clearly visible in Google Earth VHRI. This
study was conducted for 2000 to 2001, and Google Earth VHRI was available mostly between
2003 and 2010. However, the irrigation structures and other features (e.g., rice bunds) do not
change over time and space (except in highly insignificant very small fragments, which hardly
exceed 1% over such a large geographic area in such short time spans) in South Asia. Hence, it
is completely valid to use VHRI in identifying and labeling irrigated rice versus rain-fed rice.
Furthermore, it should be noted that the Google Earth VHRI was used along with other distinct
data sets described in various subsections of Sec. 2 and provides supplemental supporting
information. A combination of these measures was used in the protocol of class identification
and labeling. Using the same logic, VHRI was used in accuracy assessments17 using visually
derived analyst information from a large number of spatially well-distributed points, which is
akin to ground-truth data.

2.4.5 Rice area statistics from national sources for accuracy assessments

A comparison data source (ideally, complete ground-truth information) is required in order
to assess the skill of the rice-mapping approach. The 253 points that were retained from the
ground-truth survey can be used to assess how well the classification performed for those areas
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Fig. 3 Methodology overview. Overview of the methodology for mapping rice areas using the
eight-day MODIS MOD09A1 data and other ancillary spatial data. There were six image segments
of a MFDC.

but does not indicate how well the classification performed in other areas. This is common to
all remote-sensing approaches that rely on limited point survey data sources. An alternative
or companion approach is to compare the rice area estimates from the map to area estimates
from another source, such as agricultural census statistics. This is a very different approach,
which—unlike the ground-truth points—is comprehensive in spatial coverage but restricted to
the spatial detail in the census data. It also says nothing about the spatial distribution of rice
within the census reporting units or about rice classification accuracy.
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In this case, the 2000 to 2001 kharif-season rice area statistics were obtained at the national
and subnational levels (analogous to a state, county, or district) from the six countries for
comparison against the MODIS-derived rice areas.

Data for India were obtained from the website of the Ministry of Agriculture’s Directorate of
Rice Development.31 Data for Bangladesh, Nepal, Pakistan, and Bhutan were obtained from the
national statistical departments. In total, rice area statistics were collected for 812 spatial units
across South Asia. The veracity of agricultural census data is often questioned, but, without
access to region-wide high-resolution rice maps (should they even exist), there is no other
realistic alternative source of independent information.

2.4.6 TRMM rainfall data

Monthly rainfall data for 2000 were downloaded from the Tropical Rainfall Measuring Mission
(TRMM) with 0.25-deg spatial resolution to separate mixed irrigated and rain-fed classes based
on rainfall.32 The main purpose of the rainfall data was to separate tank-irrigated rice areas from
rain-fed rice areas; however, some high-rainfall zones had a rice signature similar to that of
irrigated rice areas (see Sec. 4.5).

3 Methods

3.1 Overview of Methods

An overview of the methods is shown in Fig. 3, and each step is described in detail in this
section.

The process starts with the conversion of the MODIS data into GeoTIFF format, the removal
of clouds as documented in Ref. 16, and the generation of MFDCs (see Ref. 17 for a detailed
description), in which the multispectral time-series data are combined into a single-file data
cube involving numerous data layers (see also Sec. 4.1.3). The MODIS MFDC is divided into
distinct segments (see Secs. 3.3.1–3.3.3) to allow for easier class spectrum separation and class
identification.

3.2 Ideal Temporal Profile (Normalized-Difference Vegetation Index Curves)
Creation

The rice and nonrice fields were located exactly on the South Asia image (Fig. 4). The 149 rice
points represent distinct categories of rice (e.g., double crop, single crop). The sample sizes of
each category are indicated within the brackets of class legend in Fig. 5. The temporal profile
signatures (e.g., NDVI, reflectivity) gathered for the 149 rice fields were grouped according to
their unique categories and a typical ideal temporal profile (Fig. 5) of that particular category of
rice crop established. When there were classes within classes (e.g., when an irrigated-rice-double
crop has distinctly different signatures because of, say, cropping calendars), then we have two
ideal temporal profiles for this class. This resulted in an ideal temporal profile of 12 distinct rice
classes (Fig. 5) aggregated from the 149 sample locations.

3.3 Class Temporal Profile (Normalized-Difference Vegetation Index Curves)
Generation

The MFDC was divided into five distinct segments (see Fig. 3) based on elevation, slope, water
bodies, and command areas. The first set of segments was (a) water-body segment, (b) elevation
segment 1: >2500 m, and (c) elevation segment 2: ≤2500 m. Segment c was further divided
into three subsegments, which were c1 slope segment 1: >2% gradient, c2 slope segment 2:
≤2% gradient, and c3 irrigation command area. The main aim of the segmentation process was
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Fig. 4 Phenology of the rice crop. Typical phenologies of six types of rice crops (e.g., double
crop, single crop) of South Asia illustrated using NDVI signatures of MODIS time series. Top
image is a false color-composite image of South Asia based on MODIS bands 1, 2, and 4 from
October 31, 2000.

to focus more on the segments having higher amounts of crop-land classes such as the Central
Board of Irrigation and Power (CBIP) command areas (e.g., India), valley bottoms, deltas, and
river banks.

Unsupervised classification using the ISOCLASS cluster classification17,18 (ISODATA in
ERDAS Imagine 9.2

TM
)33 was applied to each of the MFDC segments. The classification was set

at a maximum of 100 iterations and a convergence threshold of 0.99. In this study, the number
of classes varied from 20 to 100 based on area spreading and complexity of segment. Segment
1 (elevation >2500 m) was classified into 20 classes because of lower complexity, and most of
the areas are forested, snow-/ice-covered, or barren. Slope segments 1 and 2 were classified into
50 classes each, whereas the irrigation command area segment, which covered a larger and more
complex area (with a mix of irrigated crops, irrigated dry crops, and rain-fed crops), contained
100 initial classes, making a total of 220 classes across all segments.

Class temporal profiles were generated using ISOCLASS k-means classification of each of
the segment MFDCs. Each segment was classified into 100 classes. The signature file of the
100 classes was plotted, and similar classes were then grouped [e.g., Fig. 6(b) illustrates a few
of the class temporal profiles]. The process of matching class temporal profile [e.g., Fig. 6(b)]
with ideal temporal profile [e.g., Fig. 6(a)] is illustrated in Figs. 6(c) and 6(d). The process is
repeated for other groups of classes, until all classes are resolved. The class temporal profiles
that do not have a match with any ideal temporal profile are resolved using other approaches
(e.g., Secs. 3.4 and 3.5). The quantitative approaches of SMTs are described in detail by
Ref. 19. The process is repeated for classes from all segments.
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Fig. 5 Ideal temporal signatures (NDVI curves) for the 12 rice classes. The ideal temporal profiles
of 12 rice classes were generated using MODIS time-series data. Note: Field-plot sample size
is shown in brackets (“sw” is surface water; “gw” is groundwater, “sc” is single crop, and “dc” is
double crop).

3.4 Decision-Tree Algorithms

Several techniques were used simultaneously to group the classes in each segment. The first
reduction in classes used a decision tree34 based on the temporal NDVI MVC data. The
decision tree is based on NDVI thresholds at different stages in the season that define the
vegetation growth cycle, and these algorithms help to identify similar classes. The dates and
threshold values were derived from the ideal temporal profile. The decision tree for seg-
ment c3 is shown in Fig. 7. This first stage reduced the total number of classes from 220
to 127.
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Fig. 6 Decision-tree algorithm. The classes were also grouped and identified using the NDVI-
based decision-tree algorithms. Note: Illustrated here for segment c3 classes. Each plot is NDVI
(y) versus time (x).

The second and subsequent groupings used spectral matching techniques (SMT),17,18 such
as those used for hyperspectral analysis of minerals (e.g., Refs. 19, 34, and 35). Time-series
data, such as the eight-day MODIS NDVI data, are similar to such hyperspectral data with the
327 bands stacking a single instance of a hyperspectral image (or monthly NDVI values). These
similarities imply that the SMTs applied for hyperspectral image analysis also have potential
for application in identifying agricultural land-use classes from multiband time-series satellite
imagery.

The temporal profile signatures of the classes within each segment were further grouped
based on temporal profile similarity and compared against the ideal temporal profile in order to
identify and label the grouped classes (Fig. 6). Additionally, we used the field-plot data points,
imagery from Google Earth and GeoCover, as well as national statistical data as auxiliary data
in the class labeling. On the basis of one or more of these data, we clearly established that
irrigated crop lands have distinct phenological cycles compared to rain-fed crop lands. For
example, irrigated crops are often planted later than rain-fed crop lands, have a longer phe-
nological cycle, and often have a following crop. All these factors are monitored using the
MODIS time series. However, it must be noted that the magnitude of NDVI is not an indi-
cator in distinguishing between rain-fed and irrigated crops, because we found that, in some
cases, rain-fed crops actually have a higher magnitude of NDVI than irrigated crops. This may
happen, for example, in flood-irrigated crops, for which background water can substantially
absorb near-infrared reflectivity, thus reducing NDVI. Two main properties of class signatures
allow the separation of groundwater and surface-water irrigation: annual average NDVI, which
is a function of the irrigated fraction, and timing of the onset of greenness, which is a func-
tion of the timing of water availability for vegetation. Annual NDVI in both continuous and
double-irrigated systems exceeds annual NDVI in groundwater systems, reflecting the higher
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Fig. 7 Spectral matching technique (SMT). In SMTs, the class temporal profiles (NDVI curves)
are matched with ideal temporal profiles (quantitatively based on temporal profile similarity values)
in order to group and identify classes as illustrated for a rice class in this figure. (a) Ideal temporal
profile illustrated for “irrigated-surface-water-rice-double crop”; (b) some of the class temporal
profile signatures that are similar, (c) ideal temporal profile signature [Fig. 7(a)] matched with
class temporal profiles [Fig. 7(b)], and (d) the ideal temporal profile [Fig. 7(a), in deep green]
matches with class temporal profiles of classes 17 and 33 perfectly. Then one can label classes 17
and 33 to be the same as the ideal temporal profile (“irrigated-surface-water-rice-double crop”).
This is a qualitative illustration of SMTs. For quantitative methods, see Ref. 29.

irrigated fraction in areas irrigated with surface water. An example of spectral matching is shown
in Fig. 6 for the irrigated-surface-water-rice-double crop.

3.5 Resolving Mixed Classes

A rigorous class-identification and labeling process (Sec. 3.4) helped in identifying, grouping,
and labeling many classes. However, some complex classes remained unresolved as mixed,
because the purity of these classes could not be adequately validated using field-plot data and/or
very high-resolution imagery, and/or other means. The mixed classes have more than one class
in them. When classes continued to be mixed, in spite of the various methods and techniques
discussed in previous sections, we adopted GIS spatial modeling approaches to resolve the
classes. This involved taking mixed classes and applying spatial modeling techniques, such as
overlay, matrix, and recode,33 based on the theory of map algebra and Boolean logic.36–38 The
spatial data layers used included elevation zones and rainfall zones. Any one or a combination
of these data layers usually helped in separating the mixed classes. For example, when some
other agricultural areas mixed with rice classes, we ran a matrix with elevation classes as one
axis of the matrix and a mixed class as the other axis to obtain classes at different elevation
gradients. In such a scenario, we separate the mixed class into various elevation zones and rice
may be one of these classes. Similarly, we can use elevation with precipitation as one of the axes
of the matrix. All these different possibilities were attempted until the mixed class got resolved.
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Furthermore, a rule-based decision-tree algorithm was used to help split the mixed classes.
One sample application used NDVI variations in specific months in different parts of the same
class to separate the classes. Whenever spatial modeling and decision-tree algorithms were
unsuccessful, the mixed classes were masked out and the MFDC covering this area was used
to reclassify the image into a number of classes. This was followed by a repetition of the entire
class-identification and labeling process.

In spite of the rigorous class-identification process described in these sections, there were
still some mixed classes. Typically, the unresolved classes were then split up into 5–10 or more
subclasses (depending on the extent of area and complexity), reclassified using the masked
area of the megafile data cube and the class-identification and labeling process (as described
previously), and repeated.

3.6 Actual or Subpixel Area Calculations

The composite MODIS pixels cover an area of 21.5 hectares, which is larger than many agri-
cultural fields in the study area. Thus, many pixels contain more than one land-cover class
(Table 3). Any rice classification derived from such data will provide only the full pixel area
(FPA), whereas the actual rice area per pixel can be obtained only by computing subpixel areas
(SPAs) [Eq. (3)],17,19,39 which are defined as

SPAn = FPAn × RAFn (3)

where SPAn is the subpixel area of class n, FPAn is the FPA of class n, and RAFn is the rice area
fraction of class n as derived from the field-plot observation data. The RAFs of each class were
computed based on a large (30–60) sample size of points that are spatially well distributed in a
class. The RAFs were derived by a combination of ground observations and very high-resolution
(≤5 m) data. The SPA of each class (last column in Table 3) is computed by multiplying the
FPA of that class with the RAF of the class. Later, the SPAs of all classes are summed to obtain
the actual rice areas from all the classes (Table 3).

4 Accuracy Assessments

4.1 Classification Assessment Based on Field-Plot Data

A fuzzy accuracy assessment (Table 4) was performed using 25% (251 data points out of 1004)
of the field-plot data to derive a robust understanding of the accuracies of the data sets used in
this study. The field-plot data were based on an extensive field campaign conducted throughout
India during kharif and rabi seasons by International Water Management Institute researchers,
and they consisted of 1004 points. About 30% of the points were collected during the rabi
season.

Fuzzy accuracy assessment provides realistic class accuracies for which land cover is het-
erogeneous and pixel sizes exceed the size of uniform land cover units (see Refs. 16, 17, 39, and
40). For this study, we had assigned 3 × 3 cells of MODIS pixels around each of the field-plot
points to one of six categories: absolutely correct (100% correct), largely correct (75% or more
correct), correct (50% or more correct), incorrect (50% or more incorrect), mostly incorrect
(75% or more incorrect), and absolutely incorrect (100% incorrect). Class areas were tabulated
for a 3 × 3-pixel (nine-pixel) window around each field-plot point.

On the basis of the theoretical description given by Ref. 23, Eqs. (4)–(6) were used to
estimate accuracies and errors. Field-plot information was used to determine robust accuracies,
using Eqs. (4)–(6),

Accuracy of rice area classes = Ara = 100 × RFPCRA

TRFP
, (4)
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Table 3 Rice classes (irrigated and rain-fed) mapped in this study. The table shows FPA, rice-area fraction (RAF), and SPA or actual area.
SPA = FPA × RAF. Note: 12-class map in Fig. 8, signatures in Fig. 9.

Net areas (‘000 ha)
Class Rice classification (water application Sample Full pixel Rice
code in percent) size area fraction Trees Shrubs Grass Built-up area Water Weeds Other crops Ricea

RCL01 01. Irrigated 100%—Rice/Rice 36 4,109 90.5 57 23 49 17 11 1 232 3,718
RCL02 02. Irrigated 100%—Rice/Rice or Rice/Other 27 8,999 90.3 96 27 113 38 245 10 344 8,127
RCL03 03. Irrigated 100%—Rice 40 11,234 92.0 81 32 80 8 147 6 543 10,338
RCL04 04. Irrigated ≥60% / Rainfed ≤40%—Rice/Rice or Other 51 4,061 87.6 63 24 61 2 102 8 244 3,559
RCL05 05. Irrigated ≤30% / Rainfed ≥70%—Rice/Rice or Rice/Other 18 7,264 88.4 58 35 77 24 34 0 617 6,419
RCL06 06. Upland ≥80% / Rainfed ≤10% / Irrigated ≤10%—Rice 6 5,326 91.0 47 4 65 4 24 27 312 4,844
RCL07 07. Rainfed ≥60% / Irrigated ≤40%—Rice/Rice 2 2,015 93.3 31 3 50 1 0 0 50 1,879
RCL08 08. Rainfed ≥90% / Irrigated ≤10%—Rice 11 5,774 87.6 32 12 152 1 165 0 354 5,057
RCL09 09. Rainfed 100%—Rice 9 6,655 87.1 136 19 192 1 6 0 505 5,797
RCL10 10. Deepwater 100%—Rice/Rice 10 599 100.0 0 0 0 0 599 0 0 599
RCL11 11. Deepwater 100%—Water/Rice 10 450 100.0 0 0 0 0 450 0 0 450
RCL12 12. Wetlands 100%—Rice/Rice 10 337 100.0 0 0 0 0 337 0 0 337

aThe last column is actual (subpixel) area obtained by multiplying FPA × RAF.
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Table 4 Fuzzy accuracy assessment from field-plot data. Values in the table indicate the percent of field-plot windows in each class with a given correctness
percentage.

Absolutely Mostly Partly Partly Mostly Absolutely
Sample correct correct correct incorrect incorrect incorrect

Rice class number and class name size (100%) (76–99%) (51–75%) (26–50%) (1–26%) (0%)

01. Irrigated 100%—Rice/Rice 60 73.8 7.3 3.0 5.7 5.7 4.5
02. Irrigated 100%—Rice/Rice or Rice/Other 34 68.7 5.1 1.3 11.5 11.5 1.9
03. Irrigated 100%—Rice 61 64.9 0.3 2.3 15.6 15.6 1.2
04. Irrigated ≥60% / Rainfed ≤40%—Rice/Rice or Other 4 71.8 8.3 0.0 9.9 9.9 0.0
05. Irrigated ≤30% / Rainfed ≥70%—Rice/Rice or Rice/Other 38 69.1 2.0 0.0 11.2 11.2 6.5
06. Upland ≥80% / Rainfed ≤10% / Irrigated ≤10%—Rice 34 62.1 7.9 0.0 15.0 15.0 0.1
07. Rainfed ≥60% / Irrigated ≤40%—Rice/Rice 3 71.6 0.0 0.0 11.6 11.6 5.3
08. Rainfed ≥90% / Irrigated ≤10%—Rice 9 73.8 0.0 0.0 10.1 10.1 6.0
09. Rainfed 100%—Rice 10 66.7 0.0 0.0 13.9 13.9 5.4
10. Deepwater 100%—Rice/Rice 5a 100.0 0.0 0.0 0.0 0.0 0.0
11. Deepwater 100%—Water/Rice 5a 100.0 0.0 0.0 0.0 0.0 0.0
12. Wetlands 100%—Rice/Rice 5a 100.0 0.0 0.0 0.0 0.0 0.0

Total for Sample Size; Average for other columns 268 76.9 2.6 0.6 8.7 8.7 2.6

aExtracted from other secondary sources and high-resolution images.

JournalofA
pplied

R
em

ote
S

ensing
053547-16

V
ol.5,2011



Gumma et al.: Mapping rice areas of South Asia using MODIS multitemporal data

Errors of commission for the rice area class = Ec = 100 × NRFPRA

TNRFP
, (5)

Errors of omission for the rice area class = Eo = 100 × RFPNRA

TRFP
, (6)

where RFPCRA = rice field plots classified as rice areas (number), TRFP = total rice field
plots (number), NRFPRA = nonrice field-plot points classified as rice area (number), TNRFP
= total nonrice field plots (number), and RFPNRA = rice field plots classified as nonrice areas
(number).

4.2 Accuracy Assessment Based on Correlations between Census-Derived
Rice Areas versus MODIS-Derived Rice Areas

The field-plot data points were used to compute fractional rice areas for each rice class, that
is, the proportion of the “rice” MODIS pixel that was planted to rice, and this in turn was
multiplied by the number of MODIS rice pixels per subnational unit to derive a physical rice
area estimate to compare to published rice area statistics. This combined the strengths of both
“accuracy-assessment” approaches. We performed the comparison at the regional, national,
state, and district levels.

5 Results and Discussion

In this section, we focus on the resulting rice classification, vegetation phenology of various
rice classes, the derivation of the rice area fractions per rice class, the classification accuracy
assessment based on field-plot data, and a comparison between MODIS rice area estimates,
subnational statistics, and other published area estimates.

5.1 Rice Map and Area Statistics

Altogether, 12 rice classes were identified and labeled (Fig. 8). The final class name or label
(Fig. 8, Table 3) is based on the predominance of a particular rice class (e.g., single- or double-
season rice), and the dominant water source (e.g., irrigated or rain-fed). For example, the name
for class 1 is “01. Irrigated 100 percent—rice-rice (meaning first-season rice followed by a
second rice crop).” This means that rice class is dominated by rice cultivation in both the kharif
and rabi seasons, and the area is predominantly irrigated from surface-water sources. This class
occurs in the major command areas such as the Ganges, Indus, and Krishna. Similarly, class
9 is labeled “09. Rain-fed 100 percent—rice” because this is an intensely cropped rice class,
but heavily dependent on seasonal rains. This class is predominantly found in heavy-rainfall
areas such as those in Sri Lanka and some parts of eastern and southern India. Similarly, class
2 is labeled “02. Irrigated 100 percent—rice-rice or rice-other crop,” found predominantly in
the Indo-Ganges basin command areas and Godavari delta. Class 3 is called “03. Irrigated
100 percent—rice,” occurring primarily across Orissa, Chhattisgarh, and fragmented areas in
Uttar Pradesh in India and across Pakistan. Classes 4 and 5, “irrigated/rainfed rice areas,”
predominate in Tamil Nadu and Bangladesh. Class 6 is “06.Upland ≥80 percent/rain-fed ≤10
percent/irrigated ≤10 percent—rice” areas, which are found primarily in Madhya Pradesh,
Maharashtra, and fragmented locations across the study areas. Classes 10 and 11 (“Deepwater
100 percent rice-rice” and “Deepwater 100 percent water-rice”) and Class 12 (“Wetlands 100
percent rice-rice”) are predominant in Bangladesh and fragmented areas along the coastal regions
(Fig. 8, Table 3). The spectral separability in the temporal NDVI signatures for each of the rice
classes is shown in Fig. 9.
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Fig. 8 The 12 rice classes of six South Asian countries mapped based on MODIS 500-m seven-
band time-series data for 2000 to 2001. Note: Area statistics of these classes in Table 3, signatures
in Fig. 9.

5.2 Vegetation Phenology of Various Rice Classes

Rice-crop phenology was studied using NDVI time-series plots (Fig. 9). These NDVI time-
series profiles provided information on (Fig. 8): (i) cropping intensities (e.g., single or double
crop); (ii) crop calendar (i.e., when a crop begins and when it is harvested); and (iii) crop health
and vigor (indicated by magnitude of NDVI). Each rice class (Fig. 8) has a distinctly different
phenology depicted by the NDVI magnitude and/or seasonality (Fig. 9).

The NDVI time series also allows the separation of rain-fed rice from irrigated rice based on
factors such as when a crop calendar begins and the magnitude of NDVI. For example, class 2
(Fig. 9) shows a kharif crop beginning around June 20, NDVI peaking around August 15, and the
crop harvested by the end of October. The rabi crop begins around November 15, NDVI peaks
around February 15, and all crops are harvested by April 15. Around October 15 (Fig. 9), this
class 2 has the lowest NDVI and a uniquely high NDVI (compared to all other classes) around
December 15. Such distinctive features indicate a unique class with a firm set of characteristics
that define that class. This can be said of all classes depicted in Fig. 9.

5.3 Rice Area Fractions

Each rice class has several different land cover classes (Fig. 9, Table 3); however, all 12 rice
classes have more than a 90% rice-area fraction (RAF) (Table 3). Thus, all 12 rice classes are
relatively pure rice classes. However, when calculating actual rice areas (or subpixel areas), we
should use RAFs. For example, in class 2 (02. Irrigated 100 percent—rice/rice or rice/other),
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Fig. 9 The temporal mean MODIS 500-m NDVI signatures of the 12 rice classes derived using
data for 2000 to 2001. Note: The 12-class map is in Fig. 8 and area statistics in Table 3.

rice areas (90.3%; Table 3) dominate, but there are other land-cover types, including 1.1% trees,
0.3% shrubs, 1.3% grass, 0.4% built-up area, 2.7% water, and 3.8% other crops (Table 3).

Therefore, the actual areas or SPAs of class 2 in Table 3 = 8,999,360 hectares of FPAs
× (93.3/100 of RAFs) = 8,127,089 hectares. Using the same approach, the actual areas (SPAs)
of the other 11 rice classes are calculated (Table 3).
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5.4 Accuracy Assessment

The classification accuracies obtained from the 268 independent field-plot observation data
points (15 extracted from other secondary sources and high-resolution images) are summarized
in Table 4. The fuzzy classification accuracy varied between 67% and 100% across 12 classes,
with an overall accuracy of 80%. However, it must be noted that most rice classes intermix
among themselves. Thus, the uncertainty of ∼20% is due to the intermixing among the various
rice classes. Thus, rice versus no-rice class accuracy will be very high. The irrigated classes
generally have higher classification accuracies than the rain-fed or mixed irrigated/rain-fed
classes (Table 4).

5.5 Accuracy Assessment Based on Comparison to Subnational Statistics
and Other Published Rice-Area Estimates

Table 5 compares the summed RAFs across all classes against the published rice statistics by the
six countries. The comparison at the district level (812 spatial units) was performed across South
Asia, but, for reasons of space, we report only the tabulated areas at the state level (54 spatial
units), and the district-level comparison is shown in Fig. 10. Figure 10 shows the relationship
between the MODIS area summarized at district and state levels and the subnational rice areas
at the same level of spatial detail. The level of agreement between the MODIS area estimates
and the published statistics is very good, 97% at the district level [Fig. 10(a)] and 99% at the
state level [Fig. 10(b)]. This excellent match between MODIS-derived rice areas and national
and subnational statistics clearly illustrates the high accuracy with which MODIS data have
been classified.

These rice maps and statistics produced in this study were a clear advancement over the early
rice maps9–11 in which remote-sensing data were not used. Those early maps were produced
by putting together maps and statistics of varying scales and accuracies obtained from different
countries and regions using distinctly different approaches to mapping.9–11 Later rice maps6,12–14

used remote sensing and were vast improvements over earlier9–11 maps. However, these later
efforts used a single methodological approach (e.g., vegetation indices as in Ref. 6) that left
considerable uncertainties.5,15 As a result, this study used not only multitemporal remote sensing
from MODIS but also a suite of methods to decrease uncertainties and achieve a high degree of
accuracy in spatial maps and/or statistics derived from them.

6 Conclusions

This study demonstrated a suite of methods, approaches, and algorithms to accurately map a
rice “footprint” and classify rice areas using the temporal profile and temporal characteristics
of the MODIS eight-day, 500-m, seven-band surface-reflectance data across South Asia lead-
ing to three main accomplishments. First, a baseline rice map of South Asia with 12 classes
(Fig. 8) with their statistics (Table 3) and signatures (Fig. 9) was produced based on data for the
years 2000 to 2001. Second, a fuzzy classification accuracy showed that the 12 rice classes were
mapped with absolute accuracy ranging from 67% to 100% for individual classes and an overall
classification accuracy of 80% for all 12 classes. Almost all the intermixing was between rice
classes. The overall classification accuracy when all 12 rice classes were pooled into a single
class of rice crop was ∼95%. Furthermore, the accuracy was also determined by correlating
the MODIS-derived rice areas with subnational statistics obtained from the six South Asian
countries. For this, the R2 values were 97% at the district level and 99% at the state level for
2000 to 2001. Thus, we can state that all the rice classes can be mapped with an accuracy of
∼95% and the 12 individual rice classes can be mapped with accuracy of 67–100%. Third,
the results suggest that the methods and approaches including area calculations, data sets, and
algorithms used in this study are ideal for rapid, accurate, and large-scale mapping of paddy rice
as well as generating their statistics at the national and subnational levels of South Asia.
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Table 5 Comparison of MODIS rice area estimates with subnational statistics, by state.

Country State MODIS rice area (‘000 ha) Subnational statistcs (‘000 ha)

Bangladesh Barisal 680.1 728.4
Bangladesh Chittagong 921.9 1,138.9
Bangladesh Dhaka 1543.5 1,562.2
Bangladesh Khulna 864.2 871.9
Bangladesh Rajshahi 1863.7 1,917.8
Bangladesh Sylhet 665.8 568.4
Bangladesh 6539.3 6,787.6
Bhutan 20.9 19.1
India Andhra Pradesh 3564.7 3,956.3
India Arunachal Pradesh 119.1 108.2
India Assam 2113.7 2,646.2
India Bihar 3270.3 3,656.2
India Chandigarh 1.7 - NA -
India Chhattisgarh 3540.7 3,794.1
India Dadra and Nagar Haveli 11.9 - NA -
India Daman and Diu 0.7 - NA -
India Delhi 6.7 - NA -
India Goa 52.7 68.0
India Gujarat 681.8 634.6
India Haryana 983.2 1,049.0
India Himachal Pradesh 90.8 79.1
India Jammu and Kashmir 272.8 244.1
India Jharkhand 1408.7 1,463.7
India Karnataka 1238.6 1,481.4
India Kerala 333.3 346.6
India Lakshadweep 0.6 - NA -
India Madhya Pradesh 1674.2 1,699.0
India Maharashtra 1389.4 1,511.5
India Manipur 180.4 212.4
India Meghalaya 102.8 106.8
India Mizoram 44.6 67.2
India Nagaland 130.0 150.5
India Orissa 3854.3 4,437.3
India Puducherry 18.6 28.0
India Punjab 2567.1 2,611.0
India Rajasthan 155.9 166.1
India Sikkim 0.4 - NA -
India Tamil Nadu 2125.5 2,113.3
India Tripura 100.1 241.2
India Uttar Pradesh 5512.2 5,817.5
India Uttaranchal 227.7 285.5
India West Bengal 4540.9 5,041.4
India 40315.8 44,016.1
Nepal Central 476.1 531.8
Nepal East 471.5 505.5
Nepal Far-Western 162.3 138.9
Nepal Mid-Western 152.2 157.7
Nepal West 291.7 309.6
Nepal 1553.9 1,643.4
Pakistan Baluchistan 101.9 124.3
Pakistan Khyber 12.3 50.4
Pakistan Kashmir 51.2 - NA -
Pakistan Punjab_Pak 1213.9 1,217.7
Pakistan Sind 585.3 613.4
Pakistan Tribal areas 10.9 11.2
Pakistan 1975.5 2,017.0
Sri Lanka Central 41.2 43.4
Sri Lanka Eastern 131.5 117.8
Sri Lanka North Central 149.3 138.5
Sri Lanka North Western 95.3 102.4
Sri Lanka Northern 55.5 38.2
Sri Lanka Sabaragamuwa 37.1 37.9
Sri Lanka Southern 102.9 87.3
Sri Lanka Uva 52.5 33.9
Sri Lanka Western 55.3 57.1
Sri Lanka 720.7 656.5
South Asia 51,126.0 55,139.6
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Fig. 10 Rice areas of South Asia derived using MODIS 500 m compared to agricultural census
data for 2000 to 2001: (a) district-wise and (b) state-wise (below). (Administrative boundaries are
shown in Fig. 1.)
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Mapping rice areas is the first step in characterizing important rice-growing environments
of South Asia. Detailed and up-to-date maps and statistics such as these are important inputs for
assessing the impact of abiotic stresses, such as droughts and floods, which regularly affect the
region and are predicted to increase in frequency and intensity in a changing climate scenario.
The study used MODIS data from one good year and demonstrated that it is possible to produce
highly accurate maps and statistics of rice maps using a suite of methods. The need to test the
rice maps and statistics using approaches and methods advocated in this study using data for
non-normal years has been recognized.41
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