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Abstract. Atmosphere causes delay distortions in synthetic aperture radar images. Numerical
weather prediction models, which compute the forecast stepwise, are beneficial in correcting
this distortion. After initialization, the model needs time to reach a balanced state, such that
first prediction steps contain errors. The imbalance causes false predicted precipitation, which
then affects the water vapor distribution. Correspondingly, the predicted zenith path delay (ZPD),
which depends on this distribution, is affected by the initial imbalances. The digital filtering
initialization (DFI) technique reduces these imbalances and the ZPD prediction disturbances,
respectively. The objective of this paper is the accuracy gain for ZPD predictions, which is
achieved by this technique. For the accuracy gain investigation, predicted ZPD time series
of the weather research and forecasting (WRF) model with and without DFI are compared
against Global Navigation Satellite System (GNSS)-derived time series from 233 GNSS stations
mainly located in Germany. Three conclusions are found. First, the experiment confirms that the
DFI technique improves the precipitation forecast. Second, the corresponding accuracy gain, i.e.,
the bias of ZPD predictions, improves by about 13%. Third, the accuracy gain is only valid for
the first 4 h of the prediction. © The Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.10.016007]
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1 Introduction

Synthetic aperture radar is a popular remote sensing technique for observing Earth’s surface. The
strength of a signal, which is scattered back, is independent of the actual weather condition,
whereas the wave propagation velocity depends on water vapor, pressure, and temperature.1

Differential interferometric synthetic aperture radar (DInSAR) images are made from subtracted
phase information from two synthetic aperture radar acquisitions and, therefore, are affected by
weather changes. This spatial effect on the phases is known as the atmospheric phase screen
(APS). Also affected is the absolute ranging technique, which considers the total delay of
the waves instead of the phase.2 In recent years, numerical weather predictions (NWPs)
have become state-of-the-art in mitigating the atmospheric delays independent of the radar
data. Different authors successfully demonstrated the mitigation of the APS using NWP for
deformation estimation.3–7 Similar to DInSAR, the delay correction using NWPs is also ben-
eficial for the absolute ranging technique to estimate displacement maps.8 Cong et al.9 demon-
strated a straightforward technique by using exclusively the European Centre for Medium-Range
Weather Forecasts reanalysis (ECMWF ERA-interim) data, which are also used for the NWP
initialization in this work. In comparison to this technique, the model-based prediction technique
enables the physical interpolation between time steps. In case of ECMWF ERA-interim data, the
time sampling is 6 h and a prediction interpolates temporally as well as spatially in a physically
correct way.
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Input weather data of a prediction are commonly of coarse resolution, and in this example it is
0.75 deg, which is ≈83 km. Therefore, the initial data must be spatially interpolated for higher
resolutions. This interpolation is physically unbalanced, as NWP needs prediction lead time to
stabilize.10 This time is called spin-up time. The weather research and forecasting (WRF) model
measures this imbalance by the diagnostic variable dpsdt, which is the domain averaged surface
pressure tendency. This variable converges with further integration duration against a stable
value, which represents the balanced state (see Fig. 2 at the end of this work). The imbalance
disturbs the precipitation forecast at the first prediction hours.11 This wrongly predicted precipi-
tation disturbs the water vapor distribution, which causes zenith path delay (ZPD) prediction
distortions, respectively. The digital filtering initialization (DFI) technique reduces this undesir-
able behavior11–13 by integrating backward and/or forward in time, and removes nonphysical
high frequencies by using a digital filter.10 This is particularly helpful for time-critical applica-
tions to save computational time. The DFI accuracy gain for ZPD predictions is unknown.

Similar to SAR acquisitions, Global Navigation Satellite System (GNSS)-measured time
delays are also affected by the atmosphere and are very accurate and well investigated.14–16

They provide the ground truth ZPD time series (Gi), because the best agreement between differ-
ent approaches was achieved by the GNSS and the very long baseline interferometry (with a
mean bias of −3.4 mm and a standard deviation of 5.1 mm).15 For the accuracy gain investi-
gation, the sample mean and the sample standard deviation of the residuals Di ¼ Fi − Gi are
computed, where Fi is the predicted ZPD. The sample means and the sample standard deviations
from residues (Di) of WRF running with and without DFI are then compared.

The objective of this paper is to investigate the accuracy gain of delay predictions derived by
the DFI technique, exemplarily at the test site in Germany.

2 Methods

The ground truth in this work is provided by 233 GNSS stations mainly in Germany, their loca-
tions are displayed in Fig. 1(b). E-GVAP17 provides the corresponding ZPD time series (Gi)
which were processed by GeoForschungsZentrum. Related to the GNSS time series, the
WRF prediction data set consists of 44 predictions with and without DFI. The NWP dates
are in-between 14 August, 2011, and 20 June, 2013. All 6-h predictions were initialized at
12 o’clock GMT, have a horizontal resolution of 2.7 km, and cover Germany. This is illustrated
by the domain d02 in Fig. 1(a). ECMWF ERA-interim data18 with 0.75 deg resolution and 6-h
time sampling were used as initialization data.

The well-tested parameterization in Chapter 5 of the WRF User’s Guide was used.19 The
actual three-dimensional state of the simulated atmosphere was sampled correspondingly to
the ground truth Gi. A predicted ZPD time series Fi with a time lag of 15 min was finally
derived. This was achieved by the following integration, whereby the temperature as well as the
water vapor data were trilinearly interpolated within the grid cells. For pressure, the horizontal
data were bilinearly interpolated and, finally, exponentially interpolated in the vertical direction.

(a) (b)

Fig. 1 (a) NWP domain configuration and (b) GNSS station locations.
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The predicted ZPD at time i was computed by

EQ-TARGET;temp:intralink-;e001;116;723Fi ¼ 10−6
Z

~zs

~z0

Nað~zÞd~z; (1)

where

EQ-TARGET;temp:intralink-;e002;116;666Na ¼ K1

P
T
þ K2

e
T
þ K3

e
T2

; (2)

where P is the pressure, e is the partial pressure of water vapor, T is the temperature, and ~zs is the
position of 80 km above the GNSS station location ~z0. The contribution above 80 km
is negligible, because at higher altitudes (higher than 6 km) there is hardly any water vapor
present, and pressure decreases exponentially. Used coefficients are K1 ¼ 77.6890 K∕mbar,
K2 ¼ −6.3938 K∕mbar, and K3 ¼ 3.75463 × 105 K2∕mbar, and are derived by Rüeger.20

The sample means and the sample standard deviations of the residuals Di ¼ Fi − Gi are
computed twice, one with and one without DFI. Respectively, both are compared for the accu-
racy gain investigation. That the DFI technique is useful for the ZPD prediction follows on from
the fact that the DFI technique allows a more realistic initialization of cloud water content, pre-
cipitation, and vertical velocity fields.11–13 The threat score, which is a measure for correctly
predicted precipitation, is better if DFI is used.13 Since precipitation affects the water vapor
distribution, it also affects the ZPD prediction and the related residuals. Correspondingly,
the DFI technique reduces the residual Di, which is shown in the following Sec. 3.1.

3 Results

The accuracy gain investigation of the DFI ZPD prediction is divided into two parts. First, the
accuracy gain is derived; second, the significance of the statistics is shown.

3.1 Accuracy Gain Investigation

WRF predictions without DFI are affected more by physical imbalances in comparison to WRF
predictions with DFI.10,12,13 For the DFI predictions, 1-h backward integration, 1∕2-h forward
integration, and a Dolph filter (dfi nfilter ¼ 7) setting were used. The imbalance is measured by
the diagnostic variable dpsdt and is averaged over the 44 WRF (version 3.5) predictions at differ-
ent dates without DFI (DFI OPT ¼ 0) and with DFI (DFI OPT ¼ 3). Corresponding pressure
tendency functions are shown in Fig. 2. The dashed line corresponds to WRF predictions with
DFI and converges quickly against a stable value which represents the balanced state. In com-
parison, the solid line, which corresponds to the WRF predictions with common initialization,
converges more slowly. Finally, both functions come close together at the fourth hour of the
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Fig. 2 Domain-averaged surface pressure tendency.
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prediction. This point illustrates the average pressure tendency spin-up time of predictions
without DFI.

The following accuracy gain investigation is divided into three parts. First, it is shown that the
DFI results in a higher water vapor concentration than that of the common initialization. Second,
it is shown that this DFI characteristic leads to higher ZPD predictions and, third, that this results
in a lower ZPD bias.

3.1.1 Digital filtering initialization effect on the water vapor concentration

It is known that WRF predicts too wet forecasts during the first 6 h of integration.21 It is also
known that the threat score of precipitation forecasts is better if the DFI is used instead of the
common initialization.13 In other words, the precipitation forecasts get better if the DFI is used
instead of the common initialization. After the initialization, the model builds up clouds, i.e.,
water vapor condenses. The common initialization results in a higher cloud density and, cor-
respondingly, in a lower water vapor concentration than the DFI. This is illustrated by the histo-
gram in Fig. 3(a). Therefore, the precipitable water vapor (PWV) differences R̂i ¼ Rc

i − Rd
i of

the first prediction hour are computed, where Rc
i and R

d
i are the PWV data from the common and

the DFI technique, respectively. This histogram shows that the PWV Rd
i is mostly slightly larger

than Rc
i (Rc

i < Rd
i ), because R̂i is mainly negative and close to zero. In other words, the DFI

results mainly in higher water vapor concentrations than those of the common initialization.

3.1.2 Digital filtering initialization effect on the zenith path delay prediction

The ZPD Fi can be divided into a hydrostatic Hi and wet component Wi by

EQ-TARGET;temp:intralink-;e003;116;446Fi ¼ Hi þWi; (3)

whereHi is related to the first term andWi to the next two terms in Eq. (2). Thereby,Wi is related
to the PWV Ri by the rule of thumb16
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Fig. 3 Difference histogram between the common initialization and the DFI predictions with
respect to (a) PWV, (b) pressure, and (c) ZPD.
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EQ-TARGET;temp:intralink-;e004;116;735Wi ¼ 6.4Ri: (4)

Since Rc
i < Rd

i is mainly valid and because of Eq. (4), Wc
i < Wd

i is mainly valid, where Wc
i and

Wd
i are the wet ZPD components of the common and the DFI technique, respectively.

Additionally, the hydrostatic component can be approximated by22,23

EQ-TARGET;temp:intralink-;e005;116;677Hi ¼ 10−6K1

Rd

gm
Ps; (5)

where Rd ¼ 287.053 JK−1 kg−1, gm ¼ 9.8 m∕s2 and Ps is the surface pressure in hPa. Similar
to R̂i, the surface pressure difference P̂si ¼ Pc

si − Pd
si is computed, where Pc

si and Pd
si are related

to the common initialization and the DFI, respectively. The corresponding histogram is shown
in Fig. 3(b) and displays a centered Gaussian distribution with variance of 0.05 hPa2.
Correspondingly, the hydrostatic ZPD change due to the DFI technique is negligible because
of the tiny variance and Eq. (5). Consequently, the ZPD delay differences F̂i ¼ Fc

i − Fd
i , where

Fc
i and Fd

i are related to the common initialization and the DFI, respectively, result mainly from
PWV differences R̂i. Therefore, the F̂i histogram in Fig. 3(c) has the same shape as the R̂i histo-
gram in Fig. 3(a), and Fc

i < Fd
i is mainly valid. In other words, the DFI ZPD predictions are

inclined toward larger values than the common ZPD predictions.

3.1.3 Digital filtering initialization effect on the biased zenith path delay
prediction

Up to now, it has been shown that the DFI prevents a stronger condensation of water vapor than
that of the common initialization, and results mainly in a higher ZPD prediction. The following
shows that the structural higher DFI ZPD prediction reduces the bias of common ZPD predic-
tion. Therefore, the residual Di sample means are shown in Fig. 4(a) depending on the forecast
duration. The DFI sample mean is about 13% better than its counterpart during the first hour.
This means that the bias is reduced if the DFI is used instead of the common initialization. This is
also illustrated by the residual Di histogram in Fig. 4(b). The gray-colored histogram corre-
sponds to the common initialization and the over-plotted histogram to the DFI technique.
This shows that the gray histogram is more negatively biased than the over-plotted histogram.

I do not compare the sample mean and standard deviation in time, because the accuracy is
related to a time of day which influences the prediction accuracy. This is because heating or
cooling effects are differently well presented relative to the time of day by WRF.

3.2 Significance of the Bias Difference

The following describes the significance of the sample means related to the first integration hour
in Fig. 4(a). Commonly, the sample means are close to the real means. This is expressed by a
confidence interval around the sample mean that contains the real mean. Unfortunately, this is
only true for a given confidence level (1 − α), i.e., in 100α% of test cases the confidence interval
does not include the real mean. The confidence interval is given by

F
re

qu
en

cy

Residuals (mm)Integration hour(a) (b)

S
ta

nd
ar

d 
de

vi
at

io
n 

(m
m

)

A
bs

ol
ut

e 
m

ea
n 

(m
m

)

13
Standard deviation DFI_OPT = 0
Standard deviation DFI_OPT = 3
Absolute meanDFI_OPT = 0
Absolute meanDFI_OPT = 312

11

10

9
0 2 4 6

2

3

4

5

6 5000

4000

3000

2000

1000

0

–60 –40 –20 0 20 40 60
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EQ-TARGET;temp:intralink-;e006;116;735c ¼ x̄� zð1−α
2Þ

sffiffiffi
n

p ; (6)

where x̄, s, n, and zp are the sample mean, the sample standard deviation, the count of obser-
vations, and the p-quantile of the standard normal distribution, respectively. In Fig. 4(a), there is
s ≤ 9.6 mm for the first integration hour, and at least n ¼ 9077 observations were available.
For the superset cu of the confidence interval c, a confidence level of 1 − α ¼ 0.95 is assumed.
In doing so, c ⊆ cu ¼ x̄� 0.2 mm. The confidence intervals are illustrated by bars in Fig. 4(a).
The real means are distinct because the confidence intervals do not overlap. Therefore, the
difference is significant.

4 Discussion

The ZPD bias reduction indicates a bias reduction with respect to the precipitation forecast. After
the fourth hour of the prediction time, the accuracy gain of the DFI technique is vanished, which
states that the precipitation forecast quality is then the same for both. Correspondingly, if the time
of interest is from 4 to 6 or 10 to 12 either a.m. or p.m. GMT, then the DFI technique is not
beneficial for the ZPD and precipitation prediction, because the ERA-interim time sampling is
6 h and starts at midnight GMT. In contrast to the means, the standard deviations in Fig. 4(a) of
the DFI and the common initialization are close together. This means that the bias of the pre-
cipitation forecast is reduced but the uncertainty with respect to precipitation remains the same.

5 Conclusion

The objective is to investigate the accuracy gain of predicted ZPDs by using the DFI technique at
the test site in Germany. Finally, the following three implications are derived. First, the consid-
ered experiment confirms that the DFI technique improves the precipitation forecast because the
negative bias of the residual Di is reduced. Second, the accuracy gain of the DFI is a 13% bias
reduction of the ZPD prediction. Correspondingly, the biased position estimates, using the abso-
lute ranging and the ZPD prediction technique, improve if the DFI technique is utilized. Third,
if the SAR acquisition is from 4 to 6 or 10 to 12 either a.m. or p.m. GMT, then the needed
prediction duration is larger than 4 h. Hence, the model is balanced anyway and thus the
DFI accuracy gain is invalid. Correspondingly, the common initialization is recommended at
that time to save computational time.
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