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Abstract. Despite recent rapid advancement in remote sensing technology, accurate mapping
of the urban landscape in China still faces a great challenge due to unusually high spectral com-
plexity in many big cities. Much of this complication comes from severe spectral confusion of
impervious surfaces with polluted water bodies and bright bare soils. This paper proposes a two-
step land cover decomposition method, which combines optical and thermal spectra from differ-
ent seasons to cope with the issue of urban spectral complexity. First, a linear spectral mixture
analysis was employed to generate fraction images for three preliminary endmembers (high
albedo, low albedo, and vegetation). Seasonal change analysis on land surface temperature
induced from thermal infrared spectra and coarse component fractions obtained from the
first step was then used to reduce the confusion between impervious surfaces and nonimpervious
materials. This method was tested with two-date Landsat multispectral data in Shanghai, one of
China’s megacities. The results showed that the method was capable of consistently estimating
impervious surfaces in highly complex urban environments with an accuracy of R2 greater than
0.70 and both root mean square error and mean average error less than 0.20 for all test sites. This
strategy seemed very promising for landscape mapping of complex urban areas. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
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1 Introduction

Modern cities are necessarily diverse and complex in their physical compositions and morpho-
logical structures to support urban dwellers’ well-beings and development. In order to minimize
analytical uncertainty, many remote sensing studies on urban impervious surface extraction tend
to choose cities with simple urban structures and low fragmentations as their research objects in
Western countries.1–3 This strategy may not work well in Chinese cities with long histories,
which are often characterized by an unusually complex morphology of high-density buildings,
intermixed ground materials, and fragmented land use patterns; for instance, the city of
Shanghai. Due to the current accelerated urbanization in China, the dynamics of impervious
surfaces require accurate determination in a short time interval for comprehensive urban
planning and environmental management, which poses a great technical challenge to remote
sensing practitioners.4,5

A direct consequence of extreme urban heterogeneity is some serious interclass spectral
confusion.1 Among all possible confusion that may affect the quality of complex urban
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landscape characterization, two major issues raise our concerns. The first issue is related to the
identification and removal of water bodies from being involved in urban land cover characteri-
zation, which is a common practice when Ridd’s vegetation-impervious surface-soil (V-I-S)
model is adopted.3,6 This preprocessing task is, however, extremely difficult to conduct for
urban areas in China, especially when numerous water bodies with drastically diverse spectral
patterns in an image scene need to be processed. Failure in water removal may lead to unex-
pected errors in the subsequent analysis.7

The most commonly used strategies for extracting water bodies from remotely sensed images
are based on the threshold of a single spectral band8 or spectral indices (e.g., normalized different
water index and modified normalized different water index).9,10–12 However, it is very challeng-
ing to accurately define optimal thresholds for water extraction, because thresholds are scene-
based and mostly depend on the fractions of subpixel water/nonwater components.8 Water
bodies have spectral properties very similar to low-albedo (LA) impervious surface materials
and shadows.13 Therefore, relying solely on optical spectra is limited and insufficient for com-
plete separation of water bodies from other land cover features.

Recent studies have noted that the use of thermal infrared (TIR) data may be able to assist in
separating water bodies from impervious surfaces, because the latter can emit more heat than the
former, yielding an identifiable temperature difference between them. Lu and Weng13 scatter-
plotted land surface temperature (LST) against LA fraction images to separate water bodies from
LA impervious surfaces. In other studies, the TIR band was engaged in building new spectral
indices to enhance impervious surfaces by suppressing other land cover noises.7,14 Some more
recent studies further revealed that thermal properties could be detected at the subpixel level,
as LST variations can be closely related to land cover fractions.15–17 In short, LA impervious
surfaces and water bodies may be separated by considering their differential contributions
to LST.

The second issue in characterizing impervious surfaces is related to soil, one of the three
urban land cover components in Ridd’s model.18 Previous studies pointed out that bare soil
has spectral response patterns highly similar to high-albedo (HA) impervious surfaces.3,7

Spatial stratification by the urban/rural dichotomy was used to distinguish between HA imper-
viousness and bare soil by the location of the pixel under examination.19 This approach has,
however, proven to be much less effective in China’s cities under continual development, as
it is difficult to demarcate a definite boundary between urban and rural areas. Some other
attempts to separate urban built-ups from bare land include enhanced built-up and bareness
index14 and normalized difference bareness index.17 Due to high spectral variability among
different types of impervious surfaces, however, these spectral indices have failed to provide
satisfactory discrimination between impervious surfaces and bare soils in cities with extreme
structural and spectral complexity.

Soil identification, on the other hand, may be better achieved with multitemporal imagery,
which has been widely used for distinguishing land cover types with similar spectral character-
istics on a single image.2,20 Plant phenology is hereby used as a primary basis for the soil-imper-
viousness distinction. Specifically, bare soils typically mix with leaf-off deciduous vegetation in
a spring image, whereas the latter reaches a full coverage in a summer image. The difference
between these two seasonal states is then derived to separate impervious surfaces from bare soils
that have similar spectral characteristics in springtime.2 Due to the widespread existence of
mixed pixels in a highly complex urban landscape,21 the effectiveness of this pixel-based tech-
nique suffers a great deal when applied in a city like Shanghai. Instead, change detection in the
form of fractions from using subpixel classification techniques may help to cope with the mixed-
pixel problem for better separation of impervious surfaces from bare soil.

In this study, a two-step land cover decomposition method is designed to combine sea-
sonal optical and TIR data for impervious surface mapping in highly complex urban land-
scapes. We hereby use Shanghai as a typical case of extreme confusion among water, soil, and
impervious surfaces to demonstrate the effectiveness of this new approach. In the main body
of this text, two key issues will be addressed in detail: (1) how to remove water bodies from
the LA fraction image, and (2) how to remove bare soils from the HA fraction image. This
will be followed by a comparative case study to demonstrate the advantage of this method
over the traditional ones.
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2 Methodology

The proposed land cover decomposition method is based on a two-step classification approach.
The first step extracts coarse land cover components (HA, LA, and vegetation) from optical
multispectral data of both spring and summer at the subpixel level with the most commonly
used linear spectral mixture analysis (LSMA). These coarse components contain a mixture
of targeted fine-level materials that are spectrally inseparable in the first round of classification.
In the second step, we integrated two-season coarse components (HA, LA, and vegetation)
extracted in the first step and LST retrieved from TIR data to remove water bodies from LA
as well as soils from HA for a better classification of impervious surfaces (Fig. 1). As a result
of this postdecomposition processing, the LA impervious surface fraction now ideally contains
only dark impervious surfaces, and the HA impervious surface fraction represents only bright
impervious surfaces. Details of the data processing methods in the decomposition scheme are
provided in Secs. 2.1, 2.2, and 2.3.

2.1 Derivation of Preliminary Land Cover Fractions

The proposed design requires preliminary land cover fractions of two chosen dates. These
products are obtained by applying LSMA to each of the two selected optical multispectral data-
sets. The LSMA model is formally expressed as

EQ-TARGET;temp:intralink-;e001;116;244Rm ¼
Xn
i¼1

fiRim þ εm; (1)

where i ¼ 1;2; : : : ; n, n is the number of endmembers; for each pixel, Rm is the reflectance for
band m; Rim is the spectral reflectance of band m for endmember i; εm is the error for band m; fi
is the fraction of endmember i; for a constrained unmixing solution, fi is subject to the following
restrictions:

EQ-TARGET;temp:intralink-;e002;116;153

Xn
i¼1

fi ¼ 1; (2)

EQ-TARGET;temp:intralink-;e003;116;107fi ≥ 0: (3)

Due to the spectral confusion between water and LA imperviousness and between soil and
HA imperviousness, the decomposition process at this step is intended to target only three coarse

Fig. 1 Framework of the two-step land cover decomposition method.
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endmembers of the scene, i.e., HA, LA, and vegetation. In this way, identifying pure pixels for
these three coarse components is much easier than the traditional attempt to directly split Ridd’s
V-I-S components. Equation (1) assumes that the reflectance of any pixel is a linear combination
of the reflectance of each endmember, i.e., HA, LA, and vegetation. The derivation process
follows the usual procedure. First, a minimum noise fraction (MNF) transform of the original
optical multispectral data is performed, and the first two MNF are mapped into a 2-D scatterplot
for visual identification of spectral features related to the three coarse components. Second, pix-
els comprising these three spectral features in the MNF space are extracted as endmembers to
build an LSMA model, which is in turn used to generate three fraction images, with each rep-
resenting the abundance of HA, LA, and vegetation, respectively.

2.2 Derivation of Fine Land Cover Fractions

Two of the three preliminary land cover fractions resulting from the above step contain
a mixture of targeted fine land cover fractions. Specifically, the LA consists of water and
LA impervious surface, and the HA is composed of soil and HA impervious surface. To
deal with these component mixtures, a postdecomposition classification was constructed
with two-season LST and coarse fraction images to detect water bodies from LA and soils
from HA.

2.2.1 Identifying perennial water by comparing low albedo fraction-to-land
surface temperature ratio

The mixture of water and LA imperviousness is inevitable due to their close values in the optical
bands; however, the former is usually much lower in LST than the latter, since their thermal
behaviors can be drastically different. This LST difference can therefore be used to stretch
the contrast between water and LA imperviousness by a ratio of LA fraction to LST. It is
reasonable to assume that, for any specific pixel, the LA fraction-to-LST ratio will be low
with a high percent of coverage of LA impervious surface and high for LA composed of
water. The greater the ratio value, the higher the possibility of a pixel being mixed with
water. In this study, LA fraction and LSTwere adopted to produce a ratio map for each season.
An identical threshold value was determined for both the spring and summer ratio maps to
filter out perennial water bodies (e.g., rivers and ponds) from the LA fraction map.
Comparing the two ratio maps may also weed out shadows, as shadows may not maintain
high ratio values due to variations in shadow length and orientation from season to season.
To account for the uncertainty involved in derivation of component fractions for two different
seasons, a scheme was developed to determine a proper LA fraction-to-LST ratio threshold.
That is, the aerial photographs were utilized as the major reference data to derive the fine land
cover information, which was used to compare with the corresponding LA fraction-to-LST
ratio map, and a manual trial-and-error approach was applied to select the proper thresholds
for perennial water extraction in this study.

2.2.2 Identifying seasonal water by comparing seasonal low albedo
fraction maps

The threshold of LA fraction-to-LST ratio for filtering perennial water bodies in spring and
summer images may not work effectively for seasonal water bodies in suburban areas, such
as seasonally-submerged rice paddies and wetlands alternately covered by water and vegetation
throughout the year. Therefore, this study designed a change detection procedure that uses both
spring and summer seasonal LA fraction images to extract seasonal water features. It is based
on the rationale that the spring-to-summer transition of LA fraction might be able to signify
the difference between seasonal water bodies, such as flooded rice paddies and fish ponds, and
LA impervious surfaces. In early summer (June in the Yangtze River Delta), rice paddies are
filled with water (more than 5 cm deep) for seedling transplanting, making them spectrally
similar to shallow water. This situation usually continues through the first one-third of
the growing season of rice, including tilling, and jointing, which can last for two months.
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In comparison, the dominating crops in spring are winter wheat and rapeseed, both being
planted in dry fields and less likely to appear as water. In addition, some temporary man-
made ponds for fish farming in summer are usually dried up in spring, resulting in seasonal
water bodies on the images. In this work, an area was deemed seasonal water if the LA fraction
increases significantly from spring to summer, and this was determined through a carefully
selected threshold value for the seasonal LA fraction difference. Similar to the threshold deter-
mination for the LA fraction-to-LST ratio, a manual trial-and-error procedure was followed to
achieve this threshold.

2.2.3 Identifying soil by comparing seasonal high albedo fraction maps

Soil shares similar spectral characteristics with HA imperviousness, making them inseparable
during the usual LSMA in our study area. However, their separation can be achieved by com-
paring coarse land cover fraction maps across multiple seasons. The temporal trajectory of a
pixel across multitemporal land cover fraction images can provide important clues that a sin-
gle-date image may not exhibit. Specifically, in this study, vegetation phenology plays a key role
in revealing the identity of soil via HA change detected from a spring image and a summer
image. In spring, most of the soils located in urban-rural fringes were bare and dry, showing
up as part of the HA land cover. These pixels, however, changed into the vegetation cover type in
summer due to the blooming herbs in the field, leading to low HA fraction values in the summer
image. In this case, therefore, we assumed the pixels with spring-high and summer-low HA
fraction values to be soil pixels and verified this assumption through in situ data. Soil identi-
fication was thus achieved by a filter consisting of a low summer HA fraction and a large sea-
sonal HA fraction difference. Conversely, pixels with steady HA fraction values in both spring
and summer would be considered to truly contain imperviousness. The in situ data was com-
posed of a sample set of aerial photographs to obtain training pixels for establishing the change
patterns of the HA fraction from spring to summer. This training process resulted in a pair of
proper threshold values to separate the true HA impervious surface from soil.

2.2.4 Generation of impervious surface fraction map

The impervious surface fraction for each of the two seasons was generated by simply summing
the preprocessed LA and HA impervious surface fractions of that season, with water and soil
being removed in the previous steps.

2.3 Accuracy Assessment

In order to accommodate the spatial variability of the urban landscape in Shanghai, accuracy
assessment was performed on two selected areas, representing urban and rural types, respec-
tively. We stratified the samples by the areal proportion of each land cover class within the
study area. The impervious estimates resulting from the analysis of the ETMþ images were
compared to their much finer counterparts visually interpreted from the high-resolution digital
images of the same or adjacent year. To avoid geometric errors, the resolution of the aerial pho-
tography was downscaled from 0.6 to 9.0 m for the convenience of visual comparison. The size
of each sample was set to 10 × 10 pixels, which equaled 90 × 90 m, i.e., 3 × 3 ETMþ pixels. A
total of 100 sites for each typical area (i.e., urban and rural) were sampled randomly. The refer-
ence fraction is derived from the aerial photographs as follows. First, for each sample window
with size of 10 × 10 pixels, the impervious pixels were visually determined. Second, the total
number of impervious pixels in each sample window was calculated. Third, the impervious sur-
face fraction was computed by dividing the number of impervious pixels by the total number of
pixels within the sample window. Regression analyses and scatter plots were applied to evaluate
the fitness between the estimated impervious surfaces and reference data. Three indices were
utilized to evaluate the accuracy for the impervious surfaces estimation: the root mean square
error (RMSE), mean average error (MAE), and correlation coefficient of determination (R2),
using the following equations, respectively
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EQ-TARGET;temp:intralink-;e004;116;735RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðPi −OiÞ2

n

r
; (4)

EQ-TARGET;temp:intralink-;e005;116;699MAE ¼ 1

n

Xn
i¼1

jPi −Oij; (5)

EQ-TARGET;temp:intralink-;e006;116;656R2 ¼ ðPn
i¼1ðPi − P̄ÞðOi − ŌÞÞ2P

n
i¼1ðPi − P̄ÞPn

i¼1ðOi − ŌÞ ; (6)

where Pi is the estimated impervious fraction value for sample i, P̄ is the mean value of all
estimated samples, Oi is the reference value obtained from the aerial photographs for sample
i, Ō is the mean value of all reference samples; and n is the total number of samples.

3 A Case Study of Shanghai

3.1 Study Sites and Data

The aforementioned approach was tested in Shanghai, a megalopolis situated on the east coast of
China and geospatially ranging from 31°32′N-31°27′N to 120°52′E-121°45′E, with a land area
of more than 6340 km2 and a population of over 19 million in 2012. While the well-built central
area is confined inside the outer loop highway, the current urban boundaries have extended far
beyond the outer loop, with the recent major urban sprawl taking place outside the loop.22,23

Shanghai can be viewed as being composed of three different developmental patterns, including
a highly developed commercial and residential center (circumscribed by the outer loop) with
high-density population and buildings; suburban areas surrounding the city center, now
being converted to “new cities”; and rural areas located outside urban cores of various scales
and mainly characterized by crop fields (Fig. 2). After evolving through several different regimes
over more than a century, the city has now presented a typical amalgamation of old and new land
uses, ground materials, and urban structures. There is a heavy mixture of diverse land use types
in the urban and suburban areas, such as parks, settlements, croplands, grasslands, and forests.
Most buildings in the urban core are old and fragmented, whereas those in the newly developed
regions are more regularly shaped and oriented. The braided river system is intricate and highly

Fig. 2 Study area: (a) location in China and (b) geographical extent as illustrated with an RGB-543
color composite of Landsat ETMþ image.
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convoluted at the tip of the Yangtze Delta. After decades of land use change and urbanization,
this braided river system has been seriously severed into numerous isolated stream segments and
small ponds in the city. With variations in size, water depth, and pollution level, these water
bodies present a severe spectral complication. On the other hand, the agricultural features
vary with soil conditions and plant phenology. Rice is the dominant crop type in summer
and autumn, mixed with shallow water in the field for a long time during the growing season,
and rapeseed and winter wheat are the principal crops in winter and spring.

The primary data consisted of a temporal pair of cloud-free Landsat ETMþ images (path
118/row 38, path 118/row 39) acquired on 13 March 2001 and 3 July 2001. The data were
obtained from the USGS Earth Resource Observation Systems Data Center24 and rectified to
a Universal Transverse Mercator (UTM) coordinate system with the WGS84 datum and
UTM zone 51. The Landsat ETMþ optical data (bands 1 to 5 and 7) and thermal data
(band 6) are utilized in this study. Note that spatial resolution for the thermal infrared
(ETMþ band 6) during image acquisition is 60 meters, but this band was resampled to
a 30-m pixel size in this study to be consistent with the spatial resolution of optical bands.
A visual inspection of the overlaid optical and thermal bands indicated that they achieved
a good geometric matching precision with a registration error of less than one pixel. The
Google Earth high-resolution images of 2001 were used for visual reference, and a set of
0.6-m color-infrared aerial photographs, dated March and April of 2000, were used for the
quantitative validation purposes.

3.2 Image Preprocessing

The digital numbers of both optical and thermal data were first converted to at-satellite radiance
according to the Landsat science data user’s handbook, then were converted to spectral reflec-
tance by the FLAASH atmospheric correction model. The thermal data was converted to LST by
employing the single-channel algorithm.25

4 Results

4.1 Spatio-Temporal Patterns of Land Surface Temperature

The LST distribution patterns for both spring and summer of 2001 in Shanghai are shown in
Fig. 3, where the same symbolization was adopted to represent different value ranges due to the
fact that the spring and summer temperatures do not overlap (i.e., 285.6–290.8 k for spring and
293.6–300.9 k for summer). Despite the drastic difference in value ranges, the spatial patterns of
temperature distribution appear highly similar. In both spring and summer, the highest LST
values (displayed in red) are mostly clustered in the central business district (CBD) area.
The apparent hot spots in the suburban areas also signify the widespread development of
new cities. The exurban areas show a sporadic distribution of small hotspots, corresponding to
townships and large rural settlements where urbanization is minimal. It is observed that the
road networks connecting central urban areas and new cities exhibit an LST higher than
their surrounding vegetated areas. The low-LST pixels (displayed in blue) are found in non-
developed areas, in which water bodies, forest, and agriculture are dominant land covers.

In order to examine the LST variations in detail, two test sites, one in the CBD area and the
other in the rural area (shown in Fig. 2 within the blue rectangle), were selected for comparative
analysis [Fig. 3(c)]. Visual evidence provided further observations when the two seasons were
compared. For the urban site, the seasonal differences in LST were mostly induced by the sea-
sonal change of vegetation and shadow. It can be seen from the spring map that low temperatures
occurred in the vegetation, water, and shadow areas, but in the summer, the cooler pixels
increased with vegetation growth, and obviously decreased in the previous shadow pixels
due to shorter shadows in summer. For the rural site, the spring map displays a much higher
LST variability in vegetated areas than the summer map. This seems attributable to the fact that
spring farmlands were dominated by winter crops (i.e., wheat and rapeseed) mixed with dry and
bare soil in the background, resulting in a relatively high and uneven emissivity in the thermal

Wang, Yao, and Ji: Integrating seasonal optical and thermal infrared spectra to characterize urban. . .

Journal of Applied Remote Sensing 016018-7 Jan–Mar 2016 • Vol. 10(1)



band. In summer, however, most of the farmlands in the region were shifted to flooded rice
paddies, which possessed a lower and more evenly distributed LST, owing to shallow water
in the field.

4.2 Preliminary Extraction of Urban Compositions

The preliminary extraction of urban compositions was made by applying a three-endmember
LSMA. Endmembers were identified from the vertices of the MNF-based scatterplots, and
the number of selected pure pixels of HA, LA, and vegetation, respectively, is: 918, 1125,
and 1029 in spring and 877, 933, and 1392 in summer. Then, endmember fractions of HA,
LA, and vegetation were estimated for the two seasons following the procedure described in
Sec. 2.1. The seasonal difference maps of component fractions are provided in Fig. 4. HA
are associated with objects that have very high reflectance values, such as bright roofs, construc-
tion materials, bare soils, and newly built areas. The green color in Fig. 4(a) indicates little to no
HA fraction changes in those areas. But there is also a significant reduction of HA fraction in
agricultural lands that are bare soil or mixed with soil in spring and are changed to rice paddies in
summer [displayed in blue in Fig. 4(a)].

The LA mainly corresponded to the objects with very low reflectance. This component con-
tained multiple land cover types, including water bodies and shadows of vegetation canopies and
tall buildings, in addition to LA imperviousness. The performance of the perennial water bodies

Fig. 3 Spatial patterns of LST in Shanghai on (a) March 13, 2001, and (b) July 3, 2001. The
enlarged LST maps in the first row in (c) from left to right are urban area in spring, urban area
in summer, rural area in spring, and rural area in summer, respectively, and their corresponding
original ETMþ images with a color composite RGB ¼ 543 in the second row.
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was time-insensitive (highlighted in green), such as the Huangpu River, winding through the
heart of Shanghai, and Dianshan Lake, located in the western suburb of Shanghai. LA fraction
in the CBD and other major business centers, as well as old residential neighborhoods, dem-
onstrated insignificant seasonal variation as well [Fig. 4(b)]. The only subtle change in these
areas is the small but overall spring-to-summer decrease of fraction values due to the growth
of trees in July. The major seasonal difference in this category is evident in the rural areas,
where a general spring-to-summer increase in LA fraction was observed. This is because of
the crop rotation in the field: water-dependent rice in summer replacing the dry-climate winter
wheat and rapeseed in spring. Shallow water in the rice paddies produces high LA fraction
values, making these pixels stand out in the seasonal difference map [Fig. 4(b)].

Visually inspecting the seasonal difference fraction map of vegetation revealed that the frac-
tions changed more drastically in the rural areas than in the urban areas [Fig. 4(c)]. The minor
fraction increase in the urban core from spring to summer resulted from the vegetation phenol-
ogy, whereas the drastic decrease in the exurbs is more related to crop rotation. The summer
vegetation coverage in the rural areas apparently retreated from its spring counterpart as a result
of rice transplanting.

4.3 The Refinement of Urban Land Cover Components

Due to the confusion between soil and HA impervious surface and between water and LA imper-
vious surface, the conventional method of directly adding HA and LA fractions together to
estimate impervious surfaces may not work here. The refinement procedure devised a postpro-
cessing mechanism to separate the targeted land cover type (e.g., imperviousness in this case)
from the preliminary fractions by utilizing the LST and the coarse component fractions derived
from the two-season images.

The first task here is to eliminate perennial water bodies from LA fractions through an LA
fraction-to-LST ratio based filter. As discussed before, pixels with a high LA fraction-to-LST
ratio in both seasons can be assumed to be perennial water, since lakes and ponds are always
characterized with a high LA fraction and a low LST value, as evident in Fig. 3. The LA fraction-
to-LST ratio maps for the two test sites are shown in Fig. 5. It should be pointed out that urban
shadows existent in the spring map due to their relatively high LA fraction-to-LST ratio
[Fig. 5(a)] were suppressed in summer [Fig. 5(b)], ensuring their distinction from perennial
water. The perennial water bodies were separated by selecting an LA fraction-to-LST ratio
value of 0.003 as the threshold for both seasons with the help of visual interpretation of aerial
imagery.

The second task involved separating seasonal water bodies from LA via change detection
analysis. Rice paddies and temporary fish farming ponds are the major cause of the LA fraction
increase from spring to summer. Comparing the summer LA fraction to its spring counterpart
offered an easy removal of water-induced LA fraction. Similarly to the threshold determination

Fig. 4 Fraction difference maps from March 13, 2001, to July 3, 2001: (a) HA, (b) LA, and
(c) vegetation.
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for the LA fraction-to-LST ratio, pixels with a between-season LA fraction difference above
0.3 was considered seasonal water, whereas those below this threshold were deemed to be
impervious surfaces.

In the third task, the spring soil pixels covered by summer vegetation were subtracted from
the preliminary HA fraction so that the true HA imperviousness could hopefully emerge. HA
fraction decreased significantly from spring to summer in the rural areas due to much exposed
soil being later covered by full-blown vegetation [Fig. 4(a)]. As a result of empirical threshold-
ing, therefore, a pixel was reclassified as soil if it simultaneously met the following two criteria:
the amount of HA reduction from spring to summer was greater than 0.2, and the summer HA
fraction was less than 0.1. The HA soil fraction was then subtracted from the preliminary HA
fraction, leaving the rest as the HA impervious surface.

The above refining process generated five land cover fraction maps for each season (Fig. 6),
including LA impervious surface, water (perennial and seasonal water), HA impervious surface,
soil, and vegetation. The “rainbow” color ramp was used to represent the fraction variation, with
red for unit fraction (1) and blue for zero fraction (0). After removing water features, the remain-
ing LA fractions were considered a good representation of LA impervious surfaces, typically
showing up in urbanized areas and district town seats [Fig. 6(a)]. In Shanghai, old building roofs
and the ground paved with asphalt were usually the major contributors to the high level of LA
imperviousness. On the other hand, the HA impervious surfaces were dominant in the regions
around the outer loop and some new cities [Fig. 6(c)], where the new urban constructions took
place. Both LA and HA impervious surfaces appeared highly similar in both seasons, with just a
slight difference due to vegetation phenology for both urban or rural sites. In contrast, the sea-
sonal change of water distribution patterns varied drastically between the urban and rural sites.

Fig. 6 Fraction maps of five land cover types [(a) LA impervious surface; (b) water; (c) HA imper-
vious surface; (d) soil, and (e) vegetation]. The first row denotes the spring results and the second
row represents the summer situation.

Fig. 5 The LA fraction-to-LST ratio maps of two selected test sites in different seasons [(a) urban
area in spring; (b) urban area in summer; (c) rural area in spring; and (d) rural area in summer].
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Urban water bodies are mostly perennial, so little change can be seen from season to season,
whereas seasonal water features are mostly located in the rural area in summer, leading to a
significant increase in water fractions from spring to summer [Fig. 6(b)]. Spring soils were
found scattered in the rural area, while bare soil became minimal in summer [Fig. 6(d)].
This is due to the regrowth of vegetation in the urban area and mainly owing to crop rotation
in the rural area. Vegetation fraction maps [Fig. 6(e)] remained the same as the coarse land cover
decomposition results.

4.4 Evaluation of Estimated Impervious Surfaces

The end products of impervious surfaces were generated by adding together the HA and LA
impervious surface fraction images for each season.3 These products are shown in Fig. 7,
along with their original ETMþ images. Overall, the spatial pattern of the impervious surface
fractions seemed to agree well with the visual features on the original images. The impervious-
ness concentrated in the urban center areas inside the outer loop, district seats scattered in the
rural areas, and the road network connecting the metropolitan area and district seats. On the other
hand, the distribution patterns of impervious surfaces were relatively consistent between the two
seasons, except that this feature seemed much more intensified in spring than in summer,

Fig. 7 Fraction maps of impervious surface on (b) March 13, 2001, and (d) July 3, 2001, and
the original ETMþ images with the color composite RGB ¼ 543 on (a) March 13, 2001, and
(c) July 3, 2001.
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especially in the urbanized areas. This difference could be attributed to the low canopy closure of
urban vegetation in spring and the full-blown canopy closure in summer, as shown in the original
ETMþ images [Fig. 7(a) and 7(c)]. The significant increase of pixels mixing vegetation and
imperviousness in the summer image seemed to be the major cause for the degradation of imper-
viousness detection.

In addition to visual comparisons, quantitative accuracy assessment was performed to
evaluate the estimated results of impervious surfaces derived using the proposed approach.
For the purpose of cross-method comparison, imperviousness fractions directly derived using
a four-endmember LSMA model (HA, LA, soil, and vegetation) with a single image3 (termed
“traditional method” hereafter) were also evaluated. Three quality indicators, RMSE, MAE, and
R2, were calculated for the impervious surfaces fraction images for the two seasons at the typical
urban and rural test sites. The results are summarized in Table 1 and Fig. 8.

Several important observations can be made from the assessment results. First, the overall
accuracy of the imperviousness fractions derived using the proposed approach is rather high, as
both RMSE and MAE are below 0.20 and R2 values are greater than 0.70 for all test sites for both
seasons, indicating that the two-step decomposition strategy was effective and reliable.
Compared with the proposed method, however, the estimates made by the traditional method
were much less accurate. The overall RMSE and MAE for the traditional method were signifi-
cantly higher than those for the two-step method (ranging from 45% to 59%), and R2 was sig-
nificantly lower (ranging from 19.8% to 37.2%). In terms of scatter plot analysis, the summer

Table 1 Accuracy measures of different methods used in urban and rural areas.

Metric Test Site

Two-step decomposition Traditional method

Spring Summer Spring Summer

RMSE Urban area 0.147 0.137 0.249 0.162

Rural area 0.179 0.147 0.267 0.246

Overall 0.166 0.140 0.242 0.206

MAE Urban area 0.119 0.116 0.215 0.129

Rural area 0.140 0.116 0.230 0.202

Overall 0.129 0.116 0.206 0.168

Fig. 8 Scatter plots of the actual fraction versus predicted fraction derived from the spring and
summer images by the (a) new method and (b) traditional method in the urban and rural area
(the dashed line is the 1:1 reference line, and the solid line is the regression line).
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map seems more accurate than the spring map. For both the proposed and traditional methods,
the statistical accuracy of the summer fractions was higher than that of spring, indicating that
the summer image was a better choice for impervious surfaces estimation. Second, urban areas
present lower RMSE and MAE values than the rural test sites regardless of season.

5 Discussion

When remote sensing is used to map urban imperviousness, spectral resemblance among differ-
ent land cover types is the first issue to be considered.1 The major confused cover types include
water and soil. The very essence of the two-step decomposition design is to introduce multi-
temporal optical and thermal data to improve both the precision and accuracy of impervious
surface coverage by eliminating spectral confusion from water and soils. The relatively high
RMSE and MAE and low R2 values for the results based on the traditional method might
be caused by the following problems: the misclassification of bare soils as bright impervious
surfaces and the confusion between water and LA imperious surfaces. These are exactly the
problems that have been properly handled by the proposed method in this study (Fig. 8 and
Table 1).

The improved results of this study further confirmed the findings of other scholars who also
utilized temporal change detection analyses for estimating land covers.19,26–28 In comparison
with these studies, we focused on change detection using the fraction images developed
from LSMA, which can provide more accurate land cover features than pixel-based original
spectral,28 NDVI or other vegetation indices.26,27 The only exception is the study of Powell
et al.,19 where they used time-series fraction images to identify impervious surfaces, but
their large temporal interval (years) was inadequate for rapid-growth cities like Shanghai.
Change detection based on temporal fractions in the two-step decomposition procedure was
similar to the conventional fractions change detection analysis but served a different purpose,
i.e., to refine extraction of certain land cover that has significant spectral confusion with other
land cover types.29

It should also be noted that the two-step decomposition analysis was performed on images
acquired within a one-year period (2001/03/13 and 2001/07/03), ensuring that the true change of
impervious surfaces fractions was kept minimal. However, seasonal effects on impervious sur-
face estimation were still observed, and the better performance was achieved with the summer
image, which was similar to the conclusion reported in other studies.1,30,31 The reason for this is
because LSMA partitions data variance by a principal component transformation of multispectral
imagery and mixing space characterization.32 The summer image may optimize the mixing space
(HA, LA, and vegetation) with the full growth of vegetation, thus leading to a more accurate
estimation of impervious surfaces. On the other hand, the function of the spring image in the
proposed method is to provide seasonal cues for eliminating water, soil, and shadow pixels from
the HA and LA induced from the summer image. Therefore, pairing images of two seasons in the
analysis to detect imperviousness by best utilizing information from plant phenology and local
farming practices is a feasible and effective strategy to detailed and accurate land cover
classification.

The potential applications of LST to identify water from LA were demonstrated in many
previous studies.1,13 However, a single LST threshold is insufficient to fully delineate water
bodies because they are not unique in thermal properties among other urban features. In this
study, the ratio of LA fraction and LST was proved more adequate for removal of water
from the LA fraction image, thus achieving a more reliable impervious surfaces estimation
(Table 1 and Fig. 8). It is worth noting that the spectral and thermal characteristics of some
shadows in urban areas are nearly identical to water bodies (Fig. 3), but the two seasonal
LA fraction-to-LST ratio maps are capable of distinguishing shadow from water because of
the season-to-season change of shadow length and orientation. As can be observed in the
water fraction maps in urban areas (Fig. 6), shadows cast by tall buildings in CBD were not
misclassified as water bodies. The shadow problem in land cover classification has been pending
for a long time, especially for high-resolution satellite images.33 The successful application of
temporal LA fraction-to-LST ratio in this study may shed some light on future shadow detection.
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6 Conclusion

This research focused on improving urban impervious surface mapping by developing a two-step
land cover decomposition method. The method exploited optical and thermal data from two
seasons to eliminate water from LA impervious surface and soil from HA impervious surface.
This approach was tested in Shanghai using two Landsat ETMþ images acquired in spring and
summer of 2001, respectively. Validated by reference data derived from aerial photographs, the
test results showed a noticeable improvement in impervious surface estimation with the two-step
decomposition method. Although only validated with data from Shanghai in this case study, the
approach is not location specific and can be applied elsewhere. The development of new satellite
remote sensing missions has led to an increasing amount of multitemporal data, and the fusion of
multisource remote sensing data has been demonstrated as a promising approach to provide more
useful information. Future research should focus on the combinations of multitemporal and mul-
tisource data for land cover sub pixel decomposition, especially in the highly heterogeneous and
complex urban environments.
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