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ABSTRACT. Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa that
poses a quarantine threat and can restrict market access to fruits. It manifests
as lesions on the fruit surface and can result in premature fruit drops, leading to
reduced yield. Another significant disease affecting citrus is canker, which is caused
by the bacterium Xanthomonas citri subsp. citri (syn. X. axonopodis pv. citri); it
causes economic losses for growers due to fruit drops and blemishes. Early detec-
tion and management of groves infected with CBS or canker through fruit and leaf
inspection can greatly benefit the Florida citrus industry. However, manual inspec-
tion and classification of disease symptoms on fruits or leaves are labor-intensive
and time-consuming processes. Therefore, there is a need to develop a computer
vision system capable of autonomously classifying fruits and leaves, expediting dis-
ease management in the groves. This paper aims to demonstrate the effectiveness
of convolutional neural network (CNN) generated features and machine learning
(ML) classifiers for detecting CBS infected fruits and leaves with canker symptoms.
A custom shallow CNNwith radial basis function support vector machine (RBF SVM)
achieved an overall accuracy of 92.1% for classifying fruits with CBS and four
other conditions (greasy spot, melanose, wind scar, and marketable), and a custom
Visual Geometry Group 16 (VGG16) with the RBF SVM classified leaves with canker
and four other conditions (control, greasy spot, melanoses, and scab) at an overall
accuracy of 93%. These preliminary findings demonstrate the potential of utilizing
hyperspectral imaging (HSI) systems for automated classification of citrus fruit
and leaf diseases using shallow and deep CNN-generated features, along with ML
classifiers.
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1 Introduction
Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa (syn. Guignardia
citricarpa) that results in lesions on fruit surfaces and potential premature fruit drop, leading to
reduced yield.1,2 Many countries, including the European Union, prohibit the acceptance of fruits
with CBS lesions due to its classification as an A1 quarantinable disease. It is therefore crucial to
control and identify infected fruit to safeguard the profitability and marketability for Florida’s
growers.3 CBS was initially reported in March 2010 in Collier County, Florida, and it remains a
persistent concern in southwest Florida.4 Infected fruit peels exhibit five distinct lesion types,
including Hard Spot, False Melanose, Freckle Spot, Cracked Spot, and Virulent Spot. Hard spots
are round, sunken lesions with brick-red to brown margins and grey centers. Leaf lesions are rare,
mostly asymptomatic, but on younger leaves, they manifest as small (< 5 mm), round, reddish–
brown lesions. On older leaves, they present tan necrotic centers with dark brown margins and
yellow halos. Early detection of CBS-infected trees through fruit examination enables growers
to implement necessary mitigation measures, preventing disease spread within orchards and
minimizing long-distance transmission, thereby maximizing yields. Current recommendations
for CBS-affected Florida orchards include monthly fungicide applications from May to
September.5 Additionally, by identifying CBS-infected fruits, they can be separated during post-
harvest packinghouse operations to prevent accidental shipment, avoiding rejected loads and
potential bans in numerous countries. Presently, the detection of CBS-infected fruits, whether
in orchards or packinghouses, relies on manual inspection, a time-consuming process prone to
human error due to fatigue.

In addition to CBS, citrus canker is another significant disease; it is caused by the bacterium
Xanthomonas citri subsp. citri (syn. X. axonopodis pv. citri).6,7 This bacterium can infiltrate
citrus tree tissues through wounds and leaf stomatal openings. Citrus canker is highly contagious
and can result in premature fruit drops, leading to a decrease in yield. Symptoms of this disease
manifest as blister-like lesions on fruits and leaves. Early detection plays a crucial role in man-
aging the disease as it can help slow down fruit infection originating from the inoculum produced
by leaf infections. Similar to CBS, manual inspection of citrus canker symptoms on leaves is
a laborious and time-consuming process that may introduce human error, affecting detection
accuracy.8,9

Therefore, there is a need for automated systems that can tirelessly and accurately perform
the classification tasks and at faster speeds. Previous attempts to develop such automated systems
used hyperspectral imagery (HSI) systems with different image processing techniques including
ones with computer vision (CV) algorithms.3,8–11 HSI systems have been widely used in various
applications of disease detection and classification tasks by many researchers.8,11–13 HSI systems
are used widely in detection and classification of diseased fruits, vegetables, plants, crops, etc.
because they provide unique spectral signatures of these in a wide range of spectra.12 Recently
CValgorithms based on machine learning (ML) and its sub-class deep learning (DL) have found
immense success in disease detection and classification tasks. For instance, Nagasubramanian
et al.14 detected charcoal rot fungal disease on soybeans using images and a DL-based CV algo-
rithm at an accuracy of 95.73%. In another study by Zhang et al.,15 they detected yellow rust on
winter wheat at an accuracy of 85% using HSI and a DL-based CV algorithm. Similarly, Yadav
et al.11,16 used a DL-based CV algorithm with HSI to detect citrus canker and other disease con-
ditions on Ruby Red grapefruit at an average accuracy of 98.87%. Most of the image-based
classification and detection tasks using DL rely on convolution neural network (CNN) generated
features. CNN-based DL for image classification has found tremendous success in a wide range
of tasks. Gulzar17 used a CNN-based DL approach to classify 14 varieties of crop seeds at 99%
accuracy. In another study by Tiwari et al.,18 they classified plant leaf symptoms at an accuracy of
99.2% using CNN-based DL approach. The advantage of this method is that CNN can extract
spatial features automatically in each spectral band, providing the ability for real-time classifi-
cation and detection. However, using full spectrum of HSI with CNN for real-time applications
may be quite challenging as HSI usually consists of >100 bands or anything >10 bands in
general.19 In HSI, a large number of bands imply high-dimensional vector spaces corresponding
to the wavelengths. This makes normally distributed data concentrated at the tails and the
uniformly distributed data concentrated at the corners, making its statistical density estimation
difficult.19,20 High dimensional spaces can also decrease the rate of convergence of statistical
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density estimation.19–21 Combining both of these issues related to high dimensional data, for a
fixed sample size, classification accuracy may first increase with increasing features but then
starts to decrease beyond a certain optimal value, which is sometimes referred to as the curse
of dimensionality.19,21,22 This is why, in HSI, optimal band selection for dimension reduction is
usually preferred. An optimal band selection technique based on principal component analysis
(PCA) as shown by Kim et al.23 can be used for this purpose. A similar approach was successfully
used by Yadav et al.11 for selecting the five most important bands out of the 92 HSI bands for
classifying Ruby Red grapefruits with canker and five other disease conditions. In another study
by Zhao et al.,24 they used PCA for most discriminating band selection from the HSI and then
used those to train ML classifiers for detecting the severity of wheat leaves infected by powdery
mildew at an accuracy of >93%. Selecting optimal bands by reducing the high-dimensional
vector space to a reduced one using the PCA technique not only eliminates the issues posed
by curse of dimensionality but also provides an opportunity to develop a multi-spectral imaging
(MSI) system that is commercially viable option for fruit and leaf inspection.11,16 The optimal
bands selected by the PCA method can be used to train ML and DL-based classification algo-
rithms for detecting CBS-infected fruit and cankerous leaves from healthy ones or with other
conditions.

Among the many existing CNN-based DL algorithms, the Visual Geometry Group 16
(VGG16)25 has been successfully used in many image classification purposes ranging from
medical to agricultural applications. For example, Sholihati et al.26 used VGG16 to classify four
types of potato leaf diseases at an overall accuracy of 91%. In another research work by Cai
et al.,27 they used VGG16 to classify six different types of cotton trash at an overall accuracy
of 84.14%. Similarly, Gharakhani et al.28 used VGG16 to classify seven varieties of cotton plants
using under canopy images at an accuracy of 86%. The original VGG16 network architecture
consists of SoftMax29 as the classifier. The SoftMax classifier in the VGG16 network was chosen
for its suitability in multi-class classification tasks, its ability to provide a probability distribution
across classes, and its compatibility with the cross-entropy loss for effective training. The com-
bination of SoftMax and cross-entropy loss has become a standard choice for training deep neural
networks for classification. However, in many cases, it can be replaced by classical ML algo-
rithms such as support vector machine (SVM) that may yield a better performance, as seen in
many cases.30–32 It is known that SVMs are robust to outliers in the training data, which is why
SVMmay be more resilient than SoftMax, which tends to be relatively more sensitive to outliers.
In addition to this, results provided by SVMs are more interpretable as they provide a clear
decision boundary in feature space. This is why, in certain cases, replacing SVM with SoftMax
may be advantageous.

Just as replacing different classical ML algorithms in the CNN network can outperform the
original network’s performance in some cases, sometimes a deep CNN may not be required to
achieve higher classification accuracy. In other words, a shallow CNN may outperform deep
CNN when hyperparameter values are fine-tuned and optimized for the dataset used. For exam-
ple, Kim et al.33 showed that their shallow CNN outperformed VGG16 deep CNN in the detec-
tion of surface cracks on concrete structures in terms of accuracy as well as computation cost
(less for the shallow network). Similarly, Li et al.34 showed that their custom shallow CNN out-
performed Xception35 and InceptionV336 deep CNNs in classifying diseased images of maize,
apple, and grape in terms of precision, recall, and F1-score.

The overall goals of this study, which is a derivative of our previous study,16 are to explore
the application of shallow CNN with SoftMax and SVM to classify HSI images of CBS infected
“Valencia” orange fruit from four other conditions (greasy spot, melanose, wind scar, and mar-
ketable) and to use VGG16 deep CNN with SoftMax and SVM to classify citrus canker-affected
leaves from four other conditions (control, greasy spot, melanoses, and scab). The specific objec-
tives are as follows: (i) use PCA to select the top five discriminant bands from the 92 HSI bands
used in imaging CBS infected orange fruits, (ii) train a custom shallow CNN with SoftMax and
SVM classifiers using the selected five bands for the classification of orange fruits with CBS and
four other conditions, (iii) use PCA to select the top five discriminating bands from the 348 HSI
bands used in imaging citrus leaves affected with canker and four other conditions, and (iv) train
VGG16 with SoftMax and SVM classifiers using the selected five bands for classification of
citrus leaves with canker and four other conditions.
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2 Materials and Methods

2.1 Hyperspectral Imagery System
Two types of HSI systems were used in this study. The HSI system used for the CBS dataset on
“Valencia” orange fruits, previously described by Bulanon et al.10 (Fig. 1) and based on Kim
et al.37’s design recommendations, included an EMCCD camera (Luca, Andor Technology),
an ImSpector V10E imaging spectrograph, and a C-mount lens. Illumination was achieved using
halogen line lamps with a DC voltage-regulated power supply, housed within a dark box to
prevent external light interference. Reflectance measurements utilized a similar lighting setup.
The system’s software, based on Microsoft Visual Basic, facilitated parameterization and data
transfer, following the approach of Kim et al.23 Spectral calibration employed an Hg-Ne lamp,
focusing on the efficient wavelength range of 450 to 930 nm due to the system’s limitations in
the visible and NIR regions.

The second HSI system (Fig. 2) was developed recently and is an improved and portable
version of the previous one that comprised a total of 348 spectral bands in the wavelength range
of 395 to 1005 nm and was used for canker and four other conditions of leaf samples.

The leaf samples in the new HSI system were illuminated by two separate LED line lights
(Metaphase Technologies, Bristol, PA), which emit visible and near-infrared (VNIR) broadband
light for reflectance imaging and ultraviolet-A (UV-A) excitation light for fluorescence imaging.
The VNIR light employs LEDs at seven wavelengths, namely 428, 650, 810, 850, 890, 910, and
940 nm, whereas the UV-A light uses a single wavelength at 365 nm. Both units utilize an iden-
tical rod focal lens to generate a narrow line beam that is roughly 280 mm long and 15 mm wide
on the sample holder. The intensities of the LEDs at the eight wavelengths can be adjusted
through two digital dimming controllers, with three channels each. Specifically, four channels
are used to regulate the intensities at 365, 428, and 650 nm and a bundle of five NIR wavelengths
(810, 850, 890, 910, and 940 nm). The lights are angled at approximately 6 deg from the vertical
position to overlap their line illuminations on the sample surface. Reflectance and fluorescence
signals in the VNIR range are collected using a miniature line-scan hyperspectral camera (Nano-
Hyperspec VNIR, Headwall Photonics, Bolton, MA), which integrates an imaging spectrograph
and a CMOS focal plane array detector (12-bit and 1936 × 1216 pixels). To capture a wide-angle
view, a lens is attached with a 5-mm focal length (Edmund Optics, Barrington, NJ) to the camera.
Finally, a long-pass gelatin filter (>400 nm, Kodak, Rochester, NY) is attached to the lens to
remove second-order effects from the UV-A excitation.

Fig. 1 HSI system for acquiring reflectance images from “Valencia” orange samples.
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To facilitate the study of plant samples (leaves and fruits), a custom sample holder was
created in the new HSI system using a 3D printer (F370, Stratasys, Eden Prairie, MN). The holder
is made of black thermoplastic and measures 254 × 197 × 15 mm3. It is partitioned into four
identical sections (2 × 2), each of which can hold the samples such as citrus leaves and peels.
A reflectance standard panel, measuring 254 × 32 × 15 mm3 and supplied by Labsphere of
North Sutton, NH, USA, is mounted alongside the sample holder to enable flat-field correction
for reflectance images. For line-scan image acquisition, a linear motorized stage from FUYU
Technology of Chengdu, Sichuan, China, is used to move the sample holder and the reflectance
panel beneath the hyperspectral camera. The camera has a spatial resolution of 0.33 mm∕pixel
when set at a lens-to-sample distance of 285 mm. Each camera frame is scanned, and an 810 ×
348 (spatial × spectral) pixel region of interest (ROI) is extracted, covering a spectral range of
395–1005 nm and a 270 mm instantaneous field of view. To prevent the influence of ambient
light on the images, an enclosure was built from black aluminum composite boards with an
aluminum frame measuring 56 × 36 × 56 cm3. The enclosure houses the LED lights, camera,
sample holder, and reflectance panel, as well as the moving stage. The power supplies and con-
trollers for the lights and stage are located outside the enclosure. A powered four-port Universal
Serial Bus (USB) hub is used to connect the major hardware components (i.e., two lights,
a camera, and a stage) to a laptop computer. The compact HSI system, built on a 45 × 60 cm2

optical breadboard, is easily transportable, making it ideal for on-site and field experiments.
The system software for the new HSI system was developed using LabVIEW (v2022,

National Instruments, Austin, TX) and runs on a Windows 11 (Microsoft Corporation,
Redmond, WA) computer. A graphic user interface for the software was developed (Fig. 3) using
LabVIEW’s vision development module to enable image and spectrum display. To implement
parameterization and data transfer functions, software development kits from hardware manu-
facturers were used: these include user datagram protocol for LED light control, USB for camera
control, and serial communication for stage movement control. The hyperspectral camera con-
tinuously collects line-scan reflectance signals from the standard panel and samples passing
below as the sample holder is translated by a motorized stage. When the entire sample holder
passes the camera’s scanning line, the reflectance image acquisition is complete. The VNIR line
light is then turned off, and the UV-A line light is turned on for 10 s to stabilize the LED output.
The camera begins the continuous acquisition of line-scan fluorescence signals as the stage
moves back toward the starting position. When the stage reaches the origin, the UV-A light

Fig. 2 Portable HSI system for citrus disease classification on leaves.
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is turned off, completing a full imaging cycle that creates a pair of hyperspectral reflectance and
fluorescence images from the same samples. The spatial resolution along the translation direction
depends on the moving speed and the number of total scans for a predetermined scan distance.
A moving speed of 3.3 mm∕s can scan 250 lines for a one-way travel distance of 250 mm in
∼76 s, resulting in an ∼1 mm∕pixel spatial resolution. To synchronize continuous line-scan
image acquisition and translation stage movement, the stage moving speed is determined based
on the exposure time of the camera, with low speed for a long exposure time and high speed for
a short exposure time. An empirical reciprocal relationship was found between the moving
speed (V in mm∕s) and the exposure time (T in s) based on test results (i.e., V ¼ 0.99∕T).
For example, for exposure times of 0.3 and 0.6 s, the corresponding moving speeds were deter-
mined to be 3.3 and 1.65 mm∕s, respectively. In addition to the continuous moving mode, the
HSI system can also carry out incremental step-by-step line scanning (i.e., stop-and-go mode).
The software displays a pair of reflectance and fluorescence images along with an original spec-
trum and a spatial profile and updates them line by line to show the real-time scan progress during
image acquisition. After each measurement, the reflectance and fluorescence images acquired
from the same samples are saved into two separate data files using a standard format of band
interleaved by line. However, in this study, only the reflectance files, i.e., the files with HSI
cubes, were used.

2.2 Citrus Fruit Dataset
The citrus fruit dataset consisted of “Valencia” oranges that were hand-picked from CBS-infested
citrus grove near Immokalee in southwestern Florida in April 2010.38 The orange fruit samples
consisted of 90 marketable, 135 CBS, 90 greasy spot, 105 melanose, and 105 wind scars, for a
total of 525 fruit samples. Of these, training and validation datasets were split in the ratio 4∶1.
The oranges were washed and stored in an environmental control chamber maintained at 4°C.
The fruit samples were removed from the control chamber two hours prior to image acquisition
by the HSI system, shown in Fig. 1. In Fig. 4, pseudo RGB color images are shown for each of
the five orange peel conditions.

2.3 Citrus Leaf Dataset
Citrus leaf samples were collected from a citrus grove located at the University of Florida’s Citrus
Research and Education Center in Lake Alfred, Florida, in November 2022. The “Valencia” leaf
dataset included 16 with canker, 20 healthy∕control, 16 with greasy spot, 16 with melanose, and
12 “Furr”mandarin leaves with scab symptoms, for a total of 80 leaf samples. This was too small
of a dataset to train any ML or DL model, which is why image augmentation techniques were
applied to increase the dataset size for each of the conditions, resulting in 100 HSI images for

Fig. 3 Graphic User Interface of the software for the newly developed HSI system.
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each class totaling 500 HSI images. Even though the data size for each class was too small to
train ML and DL algorithms for classification, they were used as an exploratory approach for
the new HSI system, as shown in Fig. 2. HSI cubes with pseudo RGB images generated by the
new system for the five different leaf conditions are shown in Fig. 5.

Fig. 5 HSI cubes with single “Valencia” sweet orange or “Furr”mandarin (scab) leaf images for raw
spectral dataset with 348 bands for (a) healthy/control, (b) canker, (c) greasy spot, (d) melanose,
and (e) scab.

Fig. 4 RGB color images for each of the five “Valencia” orange fruit peel conditions. Several dis-
eases and disorders were present on the fruit: (a) CBS, (b) greasy spot, (c) melanose, (d) wind
scar, and (e) marketable peel.
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Unlike in Fig. 5, the HSI cubes in Fig. 6 were generated after the raw HSI cubes were cali-
brated using the reflectance panel and spectral binning to 116 bands from the original 348 bands.
Reflectance calibration provides correction for factors such as sensor response, lightning con-
ditions, etc. ensuring accurate measurements. These cubes were then resized to that of individual
leaf sized cubes for further processing.

2.4 Principal Component Analysis for Optimal Band Selection
PCA is a widely used method for dimension reduction to avoid the effects of the curse of dimen-
sionality, especially when dealing with high-dimensional spaces such as in the case of the HSI
system. Even though PCA is a feature extraction approach for dimension reduction, it can be
used for feature selection using a loading factor, i.e., by determining the most informative feature
on the variance.39,40 The reason for choosing PCA for feature selection rather than feature
extraction in this study was because, in the feature extraction approach, original features are
transformed along latent dimensions, i.e., along the principal components (PCs), which may
not be interpretable or at least may be less interpretable because of the Karhunen–Loève (KL)
transform that it uses.39,41

Considering a random variable B ∈ Rp representing spectral feature bands of the HSI
system with p ¼ 92 for the old system and p ¼ 348 for the new system, mean μB, and covari-
ance matrix

P
B, then after applying the KL transformation, the extracted features by PCA are

given as

EQ-TARGET;temp:intralink-;e001;114;147B 0 ¼ TðBÞ: (1)

Assuming n PCs, which are given as Z1: : : Zn, we rewrite Eq. (1) as

EQ-TARGET;temp:intralink-;e002;114;111B 0 ¼ ðZ1: : : ZnÞ; (2)

EQ-TARGET;temp:intralink-;e003;114;75B 0 ¼ WTðB − μBÞ; (3)

Fig. 6 HSI cubes with multiple “Valencia” sweet orange or “Furr” mandarin (scab) leaf images for
calibrated spectral reflectance dataset with 116 bands after spectral binning for (a) canker,
(b) healthy/control, (c) greasy spot, (d) melanose, and (e) scab.
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whereW ¼ ½u1: : : un� is the loading matrix. The greater values of ui imply a higher importance of
the corresponding feature vector. It is worth noting that each of the n PCs is orthogonal to the
others and is in the direction of the largest variance.

2.5 CNN with SoftMax and SVM Classifiers
Two types of CNN architectures were used in this study. For the “Valencia” orange dataset con-
sisting of CBS infected fruits and four other conditions, a custom shallow network was devel-
oped; it consists of four convolution layers, three batch normalization layers (BN), three fully
connected (FC) layers, and a SoftMax classifier (Fig. 7). The convolution layers perform a spe-
cialized type of linear operations called convolution that is used for feature extraction by apply-
ing a kernel (i.e., small array of numbers) across the input tensors (i.e., array of numbers).42 The
features are then propagated in a forward direction using a training dataset, and then learning
parameters such as kernels and weights based on the calculated loss values are updated through
backpropagation and gradient descent optimization algorithm. The BN layer was used to normal-
ize the input image data to zero-mean and constant standard deviation, which has been shown to
improve the accuracy and training speed of many CNNs.43 The first BN layer was used after the
first two convolution layers, and the second BN layer was used after another two convolution
layers. The output feature map of the fourth layer, i.e., the last convolution layer, was transformed
into a one-dimensional array by flattening it and then connecting it to the first FC layer (i.e., the
first dense layer). The FC layers connect each of the inputs to every output of the learnable
weights.42 Then the third BN was used, and the remaining two FC layers were used. The last
FC layer consists of five output nodes, corresponding to the output probabilities for each of the
five classes of orange fruit peel conditions. The input layer was designed to accept input images
of shape n × 211 × 210 × 5, where n represents number of input images in the dataset.

The SoftMax classifier (in the first approach) used in the last FC layer is used for multi-
class classification, which uses the SoftMax activation function to normalize the real-valued
outputs from the last FC layer in the range between 0 and 1 corresponding to class proba-
bilities.42 Assuming xi as the i’th element of the input feature vector, the SoftMax function is
defined as 44

EQ-TARGET;temp:intralink-;e004;117;245fðxiÞ ¼
exiP
K
j¼1 e

xj
; (4)

where K is equal to the number of classes and j ∈ ½1; K�. Then the SoftMax classifier is
defined as

EQ-TARGET;temp:intralink-;e005;117;183FðxiÞ ¼ max
i∈½1;K�

fðxiÞ; (5)

where fðxiÞ is the probability of xi belonging to class j and FðxiÞ is the largest calculated
probability of xi belonging to all j classes.

In the second approach, the SoftMax classifier was replaced by SVM, which tries to find an
optimal separating hyperplane with a maximum margin between classes by focusing on the train-
ing data located at the edges of the distribution.45 The SVM classifier was originally designed for
binary classification tasks; however, it can be used for multi-class problems. The basic linear
SVM classifier is defined as46

Fig. 7 Network architecture of the custom CNN that was used for the “Valencia” orange fruit data-
set consisting of CBS infection and four other (healthy/control, greasy spot, melanoses, and scab)
peel conditions.
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EQ-TARGET;temp:intralink-;e006;114;543ψnðxÞ ¼
�
1; ðw�ÞTxþ b� > 0

−1; otherwise
; (6)

where w and b are weights and biases, respectively, and x ∈ Rd is the input feature vector.
1 represents a positive class, and −1 represents a negative class. A non-linear SVM uses the
RBF kernel function given as46

EQ-TARGET;temp:intralink-;e007;114;475kðx; x 0Þ ¼ exp

�kx − x 0k2
2σ2

�
; (7)

where σ is the kernel width parameter, which plays a significant role in the performance of
the non-linear SVM classifier.45,46

In the case of a citrus leaf dataset for the classification of canker and four other conditions, a
custom VGG1625 with SoftMax and SVMwas used (Fig. 8). The VGG16 architecture consists of
13 convolution layers and three FC layers. The first two blocks consist of two convolution layers
each, and the third, fourth, and fifth blocks consist of three convolution layers each. Each block
is separated by a max-pooling layer. The last FC layer uses SoftMax as the classifier; it was
customized to output five nodes corresponding to the probabilities of five classes of citrus leaf
conditions. The input layer was customized to accept an input image of shape n × 123 × 99 × 5,
where n represents the number of input images in the datasets (Fig. 8).

2.6 CNN Model Training and Validation
All CNNs with SoftMax and SVM classifiers were trained on an NVIDIATesla P100-PCIE GPU
343 (Santa Clara, CA) running the Compute Unified Device Architecture (CUDA) version 11.2
and driver 344 version 460.32.03 using the Google Colab Pro+ (Google LLC., 342 Menlo Park,
CA) platform. The networks with SoftMax were trained from scratch using an adaptive learning
rate method called Adadelta.47 The custom shallow CNN with SoftMax was trained for 120
iterations, whereas the custom VGG16 with SoftMax was trained for 500 iterations. In the
shallow network, the learning rate was initially set to 0.05, but it was reduced by a factor of
two if no improvement in validation loss was observed for 10 consecutive iterations. Early stop-
ping functionality also monitored the validation loss, but with patience set to 20 epochs. The
learning rate in the case of custom VGG16, i.e., for leaf dataset, was set to 0.01. In the case
of using SVM as the classifier for the shallow network, the RBF kernel was used, implying
a non-linear SVM functionality with C regularization parameter value of 1. In the case of custom
VGG16 with SVM, feature vectors were extracted from the last Max Pooling layer, i.e.,
“block5_pool,” and then both linear and RBF SVMs were trained using C parameter values from
1 to 10,000,000.

2.7 Performance Metrics
The performance of each of the classifiers, i.e., shallow CNN with SoftMax and SVM as well as
custom VGG16 with SoftMax and SVM, were measured in terms of precision, recall, F1-score,
and accuracy, which are defined as

Fig. 8 Network architecture of the custom VGG16 that was used for the citrus leaf dataset
consisting of canker disease infection and four other conditions.
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EQ-TARGET;temp:intralink-;e008;117;736Precision ¼ TP

TPþ FP
; (8)

EQ-TARGET;temp:intralink-;e009;117;696Recall ¼ TP

TPþ FN
; (9)

EQ-TARGET;temp:intralink-;e010;117;667F1-Score ¼ 2TP

2TPþ FNþ FP
; (10)

EQ-TARGET;temp:intralink-;e011;117;638Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
; (11)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively. In addition to accuracy, area under the ROC curve (i.e., AUC) was also
used to measure the performance of the custom shallow CNN with SoftMax and the custom
VGG16 with SoftMax. This was done because it considers the entire range of threshold values
between 0 and 1 and is not affected by class distribution and misclassification cost.11,48,49 The
AUC can be treated as a measure of separability, and the lines belonging to a class that reaches
close to the top-left corner are the most separable one. Apart from these metrics, k-fold cross-
validation (CV) error estimation was used for the leaf dataset when custom VGG16 was used
with SVM as a very limited training dataset was available. One of the benefits of CV is that it
helps to reduce the risk of overfitting, which is a common problem when working with limited
training data.39,50

2.8 Workflow Pipeline for Citrus Fruit and Leaf Datasets
The entire workflow pipeline for the “Valencia” orange fruit dataset consisting of CBS and four
other peel conditions is shown in Fig. 9.

As seen in Fig. 9, the first step involves HSI cube dataset collection using the old HSI system
with 92 spectral bands and then using PCA with loading factors to select the top five discrimi-
nating bands, which are then used with custom shallow CNN for spatial feature extraction and
then to train the SoftMax and RBF SVM classifiers. The workflow pipeline for citrus leaf disease
with canker and four other conditions is shown in Fig. 10.

As seen in Fig. 10, the original HSI cubes of shape 200 × 800 × 348 consist of four leaf
samples, which were first calibrated and then converted into reflectance cubes. Using the spectral
binning technique, the original 348 bands were reduced to 116 bands. This resulted in HSI cubes
with four leaf samples of shape 250 × 200 × 116. After that, each of the cubes was clipped to
the shape of 123 × 99 × 116 to obtain HSI cubes of individual leaf samples for each of the five
conditions. Then the first six bands (399.3 to 425.8 nm) and the last eight bands (972 to
1009.1 nm) were removed pursuant to unusual spectral profiles due to sensor and light artifacts,
resulting in HSI cubes with 102 spectral bands, as can be seen in Fig. 12. These cubes were then
used for PCAwith a loading factor to determine the five most important bands of the 102, which
were then used with VGG16 for spatial feature extraction. Then SoftMax and linear and RBF
SVMs were used for classifications.

Fig. 9 Workflow pipeline for classifying “Valencia” orange fruits with CBS infection and four other
(market, melanose, greasy spot, and wind scar) peel conditions.

Yadav et al.: Automated classification of citrus disease on fruits and leaves. . .

Journal of Applied Remote Sensing 014512-11 Jan–Mar 2024 • Vol. 18(1)



3 Results and Discussion

3.1 Spectral Profiles of Fruit and Leaf Datasets
An example of spectral profiles of each orange fruit condition is shown in Fig. 11. These spectral
profiles were obtained from previous work by Kim et al.,38 as the same dataset is used. It can be
clearly seen that the reflectance values for the marketable fruit condition are the highest across the
spectrum, whereas they are lowest for the CBS symptomatic fruit throughout the range of spectra.
Between the 650 and 700 nm wavelengths, all five classes look distinct, whereas at the edges of
the spectrum, CBS, greasy spot, and melanose look similar.

The spectral profile of the leaf dataset is shown in Fig. 12 for four leaf samples of canker.
At the lower and upper wavelength edge boundaries of the spectrum, an unusual effect,

which is due to LED illumination attenuation and sensor degradation below 430 nm and above
970 nm, takes place, as previously described. For this reason, these edges were eliminated from
analysis. In between these boundaries, all canker leaf conditions look similar, as would be
expected for similar disease conditions. It is noted that leaf 3 seems to have an overall higher
reflectance than leaves 1, 2, and 4. As observed in the image cube, some leaves appear to have
a brighter reflectance, which could be due to leaf age or surface residues.

Fig. 10 Workflow pipeline for classifying “Furr” mandarin citrus leaves with canker disease and
four other conditions (control, greasy spot, melanoses, and scab).

Fig. 11 Spectral profiles of each of the five different fruit conditions. Adapted from Kim et al.38
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3.2 Band Selection Based on PCA
A scree plot was used to determine the total percentage of variance explained by each principal
component. Based upon the scree plot, it was found that the first five PCs explained a total of
91.79% of the variances and the bands that mostly contributed along each of the five PCs were
found to be 12 (509.22 nm), 28 (592.92), 36 (634.76 nm), 39 (650.46 nm), and 71 (817.86 nm).
Based on the PCs, two bands that lie between 600 and 750 nm were selected, which agrees with
the spectral profile seen in Fig. 10, where there is a local minimum for all fruit samples in this
range that make them distinguishable. These selected five bands were used to train and validate
the custom CNN for classifying fruit samples with all five peel conditions.

In case of the leaf dataset, based on the scree plot (Fig. 13), it was found that the top PC
could alone explain 73.28% of the variances, whereas the top five PCs could collectively explain
99.89% of the variances and the bands that most contributed toward these PCs were found to be
7 (431.1 nm), 8 (436.4 nm), 30 (553.1 nm), 54 (680.4 nm), and 95 (897.8 nm). Based upon these
five selected bands, custom VGG16 with SoftMax and linear and RBF SVMs were trained and
validated on the citrus leaf dataset.

3.3 Citrus Fruit Datasets
The custom shallow CNN with the SoftMax classifier took an average training time of 34 min
and an average inference of 20.2 ms on an NVIDIA Tesla P100-PCIE GPU using the Google
Colab Pro+ AI platform. The training and validation accuracy graphs are shown in Fig. 14.

Figure 14 shows that the custom CNN reached convergence between 100 and 120 iterations.
To avoid overfitting of the model, training was stopped before the 120th iteration, and the trained

Fig. 12 Example of spectral profiles of four-leaf samples belonging to canker condition.

Fig. 13 Example of the scree plot that was obtained when PCA was implemented on the citrus
leaf dataset.
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model was saved in “.h5” file format for further applications. The training and validation process
was repeated 10 times to evaluate the mean performances of the trained model. The summary of
the confusion matrix showing the values of precision, recall, and F1-score for each of the five
fruit peel conditions is shown in Table 1.

The overall mean accuracy for all five peel conditions was found to be 89.8%. The confusion
matrix heat map, which shows the number of correct and misclassifications for each of the fruit
peel conditions, is shown in Fig. 15.

As seen in Fig. 15(a), the confusion matrix is based on the number of test datasets available
for the trained model. The values of precision, recall, F1-score, and accuracy are determined from
this, and in the case of uneven distribution of dataset among different classes, these metrics may
become biased toward the majority class. Therefore, for such cases ROC-AUC [Fig. 15(b)] may
represent the performance of the classifier in a more trustworthy way.48 Based on the ROC-AUC,
wind scar was the most separable class followed by melanose, greasy spot, CBS, and marketable.
However, based on the available test dataset, CBS was the most accurately classified based on its
F1-score value (Table 1).

In the second approach, the SoftMax classifier was replaced by RBF SVM, and the process
was repeated 10 times to determine the mean accuracy, precision, recall, and F1-score values, as
shown in Table 2. The mean overall accuracy was determined to be 92.1%, which is 2.56% times
higher than the accuracy obtained by the SoftMax classifier. This result was similar to the one by
Dey et al.51 who showed that using the SVM classifier with VGG19 CNN improved pneumonia
detection in chest X-rays. Similar improvement was found in early detection of glaucoma by Raja
et al.52 when using CNN with the SVM classifier.

Fig. 14 Training and validation accuracy graphs for custom CNN with the SoftMax classifier when
used for classification of CBS infected and four other “Valencia” orange fruit peel conditions.

Table 1 Summary of the confusion matrix showing values of
precision, recall, and F1-score for each “Valencia” orange fruit
peel conditions, including one with CBS infection after training the
custom CNN with the SoftMax classifier.

Peel conditions Precision Recall F1-Score

Marketable 0.85 0.89 0.86

Melanose 0.87 0.87 0.86

Greasy spot 0.94 0.88 0.89

CBS 0.95 0.92 0.93

Wind Scar 0.88 0.89 0.88
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Table 2 shows that wind scar and CBS were the most precisely classified fruit samples,
whereas melanose had the least precision. The confusion matrix heat map, which shows the
number of correct and misclassifications for each of the fruit peel conditions using RBF SVM,
is shown in Fig. 16.

From Fig. 16, it can be seen that all of the CBSs were misclassified as greasy spot, whereas
majority of the marketable fruits were misclassified as wind scar. Even though marketable and
wind scar fruits look spectrally different in the spectral profiles (Fig. 11) of the collected fruit
samples, in the majority of cases, they look similar, which explains their misclassifications seen
in the confusion matrix (Fig. 16).

3.4 Citrus Leaf Dataset
The custom VGG16 CNN with SoftMax and linear and RBF SVMs was also trained on an
NVIDIATesla P100-PCIE GPU using the Google Colab Pro+ AI platform. Because this dataset
was limited, augmentation during the training process was used using the “ImageDataGenerator”
class of Keras deep learning application programming interface. The parameters used for this
class were as follows: rotation_range ¼ 20, zoom_range ¼ 0.15, width_shift_range ¼ 0.2,
height_shift_range ¼ 0.2, and shear_range ¼ 0.15. The graphs for training and validation accu-
racy along with their corresponding loss are shown in Fig. 17.

Based on the validation accuracy graph, the network was found to converge around 500
iterations. The overall accuracy based on the validation dataset was found to be 82%; the values
for precision, recall, and F1-score are summarized in Table 3.

Fig. 15 (a) Confusion matrix heat map for custom shallow CNN with the SoftMax classifier show-
ing the number of correct and misclassified images for all five conditions of “Valencia” orange fruit
peels. (b) ROC curve showing different areas under the ROC curves for each of the five different
fruit peel classes.

Table 2 Summary of the confusion matrix showing values of
precision, recall, and F1-score for each “Valencia” orange fruit
peel conditions, including one with CBS infection after training the
custom CNN with the RBF SVM classifier.

Peel conditions Precision Recall F1-Score

Marketable 0.91 0.89 0.89

Melanose 0.87 0.92 0.92

Greasy spot 0.92 0.92 0.92

Citrus black spot 0.95 0.95 0.95

Wind scar 0.98 0.85 0.85
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Fig. 16 Confusion matrix heat map for custom shallow CNN with the RBF SVM classifier showing
the number of correct and misclassified images for all five conditions of “Valencia” orange fruit
peels.

Fig. 17 Training and validation accuracy graphs for custom CNN with the SoftMax classifier when
used for classification of CBS infected and four other “Valencia” orange fruit peel conditions.

Table 3 Summary of the confusion matrix showing values of
precision, recall, and F1-score for each “Valencia” orange leaf
conditions, including one with canker infection after training the
custom VGG16 with the SoftMax classifier.

Class label Leaf conditions Precision Recall F1-Score

CK Canker 1.00 0.73 0.85

C Healthy/control 1.00 0.94 0.97

GS Greasy spot 0.65 0.54 0.59

MN Melanose 0.65 0.94 0.77

SB Scab 0.90 0.93 0.91
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Table 3 shows that control, scab, and canker were the most accurately classified images
with F1-score values of 97%, 91%, and 85%, respectively, whereas greasy spot was the least
accurately classified with an F1-score of 59%. Greasy spot and melanose had similar perfor-
mances in terms of precision, whereas the latter had a much better sensitivity (recall) than the
former.

Because of the limited and imbalanced original dataset, the confusion matrix and the per-
formance values shown in Table 3 may not be a reliable and true representation of the trained
model. Hence, ROC-AUC is shown in Fig. 18(b), which shows that scab condition leaves were
the most separable followed by healthy/control, melanose, canker and greasy spot.

In the second approach, similar to the case of the fruit dataset, the SoftMax classifier was
replaced by SVM. In the fruit dataset, the RBF SVM performed better, which is why only the
result of RBF SVM is shown. Similarly, in the case of the leaf dataset, RBF SVM performed
slightly better at the C-regularization parameter value of 1,000,000 (Fig. 19).

From Fig. 19, the best accuracy for RBF SVM was 93%, which was obtained at
C ¼ 1;000;000 and remained constant for any values of C beyond that. The classification
summary of this is shown in Table 4.

From Table 4 and the confusion matrix in Fig. 20(a), canker and scab were the most accu-
rately classified with the highest F1-score values of 97% each. Canker had one misclassification
belonging to the control class, whereas scab had none. Melanose had the least classification
F1-score value of 0.89, which resulted from the five misclassified images. The CVerror estimate
chart [Fig. 20(b)] shows that k-fold of 2, 3, and 8 resulted in the lowest estimated error for the

Fig. 18 (a) Confusion matrix for the citrus leaf dataset when used with custom VGG16 and
SoftMax classifier. (b) ROC curves show the area under ROC curves for five different leaf
conditions when used with custom VGG16 and SoftMax classifier.
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Fig. 19 Different classification accuracies obtained at different values of C-regularization param-
eter for RBF SVM for the classification of five conditions of citrus leaves.
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RBF SVM classifier. The k-fold cross-validation error estimates based on accuracy metrics
were included as an additional aid to analyze overfitting and optimistic classification issues
because the original leaf datasets were very small.53,54 Similarly, the different accuracies that
were obtained for linear SVM at different C-regularization parameter values are shown in
Fig. 21.

For the linear SVM, the overall accuracy reached a maximum value of 92% when the
C-regularization parameter value was 10,000, and for any values beyond this, no further
improvement was observed. The classification summary for this is shown in Table 5.

Table 4 Summary of the confusion matrix showing values of
precision, recall, and F1-score for each “Valencia” orange leaf
conditions, including one with canker infection after training the
custom VGG16 with the RBF SVM classifier for C ¼ 1;000;000.

Class label Leaf conditions Precision Recall F1-Score

CK Canker 1.00 0.94 0.97

C Healthy/control 0.83 1.00 0.90

GS Greasy spot 0.91 0.95 0.93

MN Melanose 1.00 0.80 0.89

SB Scab 0.95 1.00 0.97
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Fig. 21 Different classification accuracies obtained at different values of the C-regularization
parameter for RBF SVM for the classification of five conditions of citrus leaves.

Fig. 20 (a) Confusion matrix for the citrus leaf dataset when used with custom VGG16 and RBF
SVM classifier. (b) Graphs showing values of cross-validation error estimates for different values
of k-fold used between 0 and 10.
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As seen in Table 5 and the confusion matrix in Fig. 22(a), scab was perfectly classified with
no misclassification and an F1-score value of 97%, whereas canker had the second highest
F1-score value of 94% with a single misclassification, as seen in the case of RBF SVM.
Similar to the case of RBF SVM, the linear SVM had minimum error estimates at k-fold values
of 2, 3, and 8.

4 Conclusions
This study successfully demonstrated the practicality of employing two HSI systems for the
classification of “Valencia” orange fruits with CBS and four other peel conditions, as well
as “Furr” mandarin leaves with citrus canker and four other conditions. The results indicate
that, even with a shallow CNN with properly tuned parameters, accurate classification of CBS-
infected orange fruits was achieved, with a moderately high accuracy of ∼90%. Moreover, by
replacing the SoftMax classifier with RBF SVM, an overall accuracy improvement of 2.56%
was observed, resulting in a value of 92.1%.

Furthermore, the newly designed HSI system proved effective in classifying citrus leaves
with canker and four other conditions. The VGG16 model with SoftMax achieved a weighted
average accuracy of 85% and an overall accuracy of 82% for canker leaves, including the remain-
ing four classes. Notably, replacing the SoftMax classifier with linear and RBF SVMs led to
a substantial overall performance improvement of 10% to 11% points and 12.19% to 13.41%,
respectively. This could be because the leaf dataset might have more complex and non-linear
patterns, i.e., the different conditions on leaves were not linearly separable. Based on these find-
ings, it is recommended to utilize VGG16 for feature extraction and RBF SVM for classification

Table 5 Summary of the confusion matrix showing values of
precision, recall, and F1-score for each “Valencia” orange leaf
conditions, including one with canker infection after training the
custom VGG16 with the linear SVM classifier for C ¼ 1;000;000.

Class label Leaf conditions Precision Recall F1-Score

CK Canker 0.94 0.94 0.94

C Healthy/control 0.82 0.95 0.88

GS Greasy spot 0.91 0.95 0.93

MN Melanose 1.00 0.80 0.89

SB Scab 0.95 1.00 0.97

Fig. 22 (a) Confusion matrix for the citrus leaf dataset when used with custom VGG16 and linear
SVM classifier. (b) Graphs showing values of cross-validation error estimates for different values
of k-fold used between 0 and 10.
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as this combination achieves a weighted average accuracy of 97% for canker leaves. Importantly,
the results were based on whole fruit and leaf HSI image samples rather than isolated sub-image
ROIs, demonstrating that excellent results can be obtained without the need for sub-imaging.

Future work will involve collecting a larger dataset of actual fruit and peel conditions to
minimize the reliance on excessive sample augmentation. Additionally, the utility of generative
adversarial network-based augmentation will be evaluated and compared with geometry-
based augmentation. Furthermore, the study aims to explore and compare the effectiveness
of extracting features solely from diseased regions of leaf samples, and training and testing the
custom VGG16 model with SoftMax and SVM classifiers using the expanded dataset captured
by the new HSI system. These efforts aim to develop a more robust and reliable CV algorithm
for autonomous detection of citrus diseases on both fruits and leaves.
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