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Abstract. Removing shadow effects remains a challenge in processing optical remote sensing
data. Shadows occur because of obstructions from the terrain topography or cloud cover, which
can cause errors for image classification. Shadow effects can be removed using a band-ratio
approach because the shaded areas in optical images have a nearly proportional variation in
the bands. We developed a calibrated band-ratio approach for shadow reduction. Before the
ratio approach was applied, a regression technique was used to obtain information for calibration
from the relative sensor gain and offset. After calibration, the ratio vegetation index (RVI) band
ratios were calculated to process the image data, which can simultaneously remove the shadow
effects and assist the search for vegetation. Real and synthesized images show that the calibrated-
ratio approach can improve vegetation detection compared with standard RVI and dark pixel
subtraction approaches. © The Authors. Published by SPIE under a Creative Commons Attribution
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1 Introduction

The solar zenith angle is usually not nadir when satellites or airborne sensors are collecting data.
The topographic effects, therefore, introduce shadows in remotely sensed images, especially in
mountainous areas. Similarly, most inhabited mountainous regions are usually covered by veg-
etation, which can be detected using vegetation indexes. Most of the indexes, ratio vegetation
index (RVI), spectral vegetation index (SVI), and normalized difference vegetation index
(NDVI), utilize the ratios of specific channels in multispectral or hyperspectral images.1 In
this study, a novel algorithm is developed to reduce topographic effects using the ratio approach,
similar to the approach used in the usual indexes. The proposed algorithm employs the character-
istics of mountainous regions that are usually covered by vegetation and can detect vegetation
and reduce shadow effects simultaneously.

Shadows characteristically have lower reflectance intensity than unshaded areas, and shadow
effects also influence the spectral character. Therefore, shadow effects cause errors in the iden-
tification and classification of terrain and vegetative cover so that shadow removal is necessary
before processing. Shadow effects in optical remote sensing have been discussed by several
groups.2–6 Because topographic effects are highly correlated with the terrain and geometry
between the solar zenith and sensor, using both measurements and simulation, the relationship
between topographic effects and spectral responses can be understood quantitatively. Digital
elevation models (DEM) are used to provide information on terrain for geometric and radiomet-
ric corrections.
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According to radiation transform theory, signals have three components for detection by
sensors, including an unscattered surface-reflected component, a downscattered surface-
reflected skylight, and an upscattered path radiance.1 The first component (unscattered
surface-reflected) includes information on the geometry between solar elevation and the topo-
graphic surface as a cosine term,7 and this information can be obtained from a DEM in rugged
terrain. Using a DEM simulation is a direct way to estimate shaded-relief images,7–9 which is
able to predict shadows in a mountainous terrain. There have been numerous successful
approaches to correct (lighten) shadow effects in multispectral images using DEM analy-
sis.10–17 The main principle uses the relationship between solar elevation and topographic surface
to calibrate shaded spectra to a normal level. This approach requires information on terrain to
help simulate or correct the spectral bands. Similar methods can also be applied to hyperspectral
images18 and use a Sun-canopy-sensor for forest images.19–21 The DEM shadow simulation
could also help radar measurements for aviation safety.22 However, because of heavy computa-
tional requirements and the lack of fine resolution of DEMs in mountainous regions, the DEM
approach may cause difficulties for topographic correction.

Another approach uses shadow detection. These methods only use information from the
images to eliminate shadows. The concept of this approach is similar to that for detecting a
shadow in the image and calibrating the shaded pixels to normal intensity.23–31 The challenge
of these approaches is that some spectra are similar to shadows (e.g., water or dark pixels) and are
difficult to discriminate. Most of the approaches use advanced mathematical methods to identify
shaded pixels and calibrate them precisely. With improvement in statistical techniques, these
approaches could provide less ambiguous results. By applying the shadow-detection technique
to cloudy and temporal images, a clear-sky composite image (less shadow and fewer clouds) can
be obtained.32 In addition to satellite and airborne remote sensing, visual intelligence also
employs similar principles to reduce or eliminate shadow effects, which does not need any topo-
graphic or spatial information.33,34 Even though the topographic information is not necessary in
these approaches, the complexity and computational needs are concerns.

The multispectral image for a shaded area causes a phenomenon where some channels
decrease proportionally. This phenomenon can be used to reduce shading effects by calculating
ratios among the bands.1,35–37 The band-ratio approach is the simplest method to reduce topo-
graphic effects; however, additional factors (from the atmosphere and instruments in Ref. 1) are
usually involved in the spectral signals. Before using the band-ratio approach, the spectral data
should be processed to remove these additional factors.38,39 There have been several approaches
applying multispectral ratios to reduce topographic effects.36,40–43 In addition to multispectral
ratios, the hyperspectral ratio approach also has been discussed,44 and studies of both systems
(multispectral and hyperspectral) are employed to determine spectral gain and offset before
processing. In this study, several simple relative parameters (combined path radiance and sensor
offset term) are developed to substitute for the absolute parameters (gain and offset, from atmos-
phere and instruments). The proposed algorithm utilizes a new concept using relative parameters
for band ratios to reduce topographic shadow effects. In addition, the algorithm uses only the
original digital number (DN) image and does not need any complex radiometric calibration, such
as radiance or reflectance.

In tropical and subtropical zones, vegetation coverage is very important to understand the
potential for landslide and debris flow, especially in mountainous regions. However, topographic
shadows can cause serious errors in interpreting remote images from mountainous areas. We
propose a novel algorithm to eliminate shadow effects using a well-known property (band
ratio) of multispectral images. The algorithm does not use any topographic information or
shadow-detection approaches. Instead, we use a simple way to reduce shadows and detect veg-
etation coverage at the same time. The results presented here show that the algorithm deals with
the shadow-removal problem effectively in a mountainous terrain.

2 Methods

Most mountainous areas (from tropical to temperate zones) are usually covered by vegetation,
and remotely sensed images suffer from shadow effects. The vegetation indexes (i.e., RVI, SVI,
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and NDVI) not only amplify vegetation signals, but also reduce shadow effects using a band
ratio. Here, the proposed algorithm uses the band-ratio approach to enhance signals for vegetated
areas and reduce shadow effects.

Theoretically, in a bispectral scatter plot, the pixels of one material should concentrate on a
point, and this property can be used to classify the spectra using a distance calculation (i.e.,
Euclidean and City Block distance). However, in rough terrain, the spectra will form a straight
line (Fig. 1) and spectra along the line have the same slope (band ratio).1,36 Therefore, the ratio
plots should contain information on the topographic shadows that enable the reduction of the
shadow effects.

Reference 36 showed that using the band ratio can reduce terrain effects by removing the
cosine factor (the angle between solar and topography), provided the gain and offset (the con-
tribution from path radiation and satellite sensors) are estimated before calculating the ratio.39,40

Figure 2 explains the influence of classification (or detection) performance using a ratio
approach before and after additional factors (gain and offset) are subtracted.39 Figures 2(a)

Fig. 1 Bispectral scatter plot for a rugged surface. The spectra distributed along the axes re-
present the shadow; m1 and m2 represent two different spectra, respectively.

Fig. 2 Bispectral scatter plot and histogram corresponding to the ratio image.39 (a) The yellow
region (△ f m1 m2) shows a scatter plot (unadjusted), the blue region (△ o f m1) represents
the ratio of spectra 1, and the green region (△ o f m2) represents the ratio of spectra 2.
(b) Histogram for ratios corresponding to m1 and m2. (c) Scatter plot shows the image after adjust-
ment. (d) Histogram for ratios corresponding to m1 and m2.
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and 2(b) show the ratios before subtraction. Some pixels might not be separated with the ratio
approach. After additional factors are subtracted, the ratio approach is capable of correctly sepa-
rating the two spectra [Figs. 2(c) and 2(d)].

In traditional approaches, the parameters (gain and offset) are obtained by direct measure-
ments or by searching the images.36 These methods can obtain absolute gain and offset required
for unbiased analysis of images. However, the values of atmosphere-pass radiation and sensor
contribution may not be obtainable. We, therefore, utilize a novel concept to estimate the relative
gain and offset when calculating the ratio of the spectral bands. Figure 3 shows the flow chart of
the proposed algorithm. By assigning the vegetated and nonvegetated pixels as training samples,
the relative parameters (relative gain and offset) can be estimated. Then these relative parameters
can be used with the images to compute the band ratio or other vegetation indexes, enabling the
shadow effects to be reduced while the vegetated area is enhanced.

2.1 Band-Ratio Approach

In multispectral images, observations for a shaded region usually decrease proportionally in all
bands. This property can be used to reduce shadow effects using a ratio. Equation (1) shows a
simple two-dimensional radiation-transform function that includes several elements affecting
the observation value by satellite sensors:

DNðx; yÞ ¼ aρðx; yÞ cos½θðx; yÞ� þ b: (1)

DNðx; yÞ is the DN observed from the satellite sensor, a and b are the gain and offset of the
sensor representing the atmosphere and instrument contribution, ρðx; yÞ is the radiance
(W∕m2∕sr∕μm), which corresponds to the energy of the response from the ground, and
θðx; yÞ is the angle between the topographic surface and the sun.

From Eq. (1), cos½θðx; yÞ� can be regarded as the effective portion of the value from the
topography and solar position. The band ratio is a well-known approach1 to divide two
bands to remove this angular element.

RATIO ¼ ½DNmðx; yÞ − bm�∕am
½DNnðx; yÞ − bn�∕an

¼ ρmðx; yÞ cos½θðx; yÞ�
ρnðx; yÞ cos½θðx; yÞ�

: (2)

In Eq. (2), the sensor observation has been calibrated with additional factors (gain and offset).
After dividing either of the two bands (m and n), the cos½θðx; yÞ� terms cancel and the shadow
effects should be eliminated. The RVI method1 uses the principle of Eq. (2).

Fig. 3 Flow chart of the proposed method [calibrated ratio vegetation index (RVI)].
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RVI ¼ ρNIRðx; yÞ
ρredðx; yÞ

: (3)

The RVI method utilizes the property of vegetation spectra where the near-infrared-light
(NIR) band is usually higher than the red-light band, and detecting or enhancing the vegetation
signal can be accomplished using Eq. (3). Equation (3) also shows the cos½θðx; yÞ� terms can-
celled by division; therefore, the RVI not only detects vegetation, but also lightens or removes
the shadow effects.

2.2 Gain and Offset Acquisition

From Eq. (2), an unbiased ratio should include a calibrated gain and offset [Eq. (2), a and b]
before any signal processing.39,40 The traditional approach measures these factors in the field or
using instruments. In addition to actual measurements, some approaches utilize statistical meth-
ods to estimate the parameters using only remote-sensing images.36 In this study, a relative gain
and offset concept is defined by selecting training samples in certain areas. The relative param-
eters can then be estimated and used as an unbiased ratio without incorporating atmospheric or
other instrumental measurements.

First, we suppose that there are two training-sample regions and each contains only a single
material (vegetated and nonvegetated), and both of the regions are affected by topographic shad-
ows. After calibration using the gain and offset, the slopes (ratio value) should be constant
[Fig. 1, Eqs. (4) and (5)]. According to the definition of NDVI, 1 the value will be between
−1 and 1. However, practical experience45 indicates that the NDVI value should be ∼0.6 for
vegetation and 0.2 for a soil surface (nonvegetated). These two established thresholds were
selected as target parameters for band ratios. The NDVI can then be transformed to RVI. In
Eq. (4), the training sample is vegetated and the ratio should be ∼4. For Eq. (5), the ratio
for the nonvegetated training sample should be ∼1.5:

½DNmðx; yÞ − bm�∕am
½DNnðx; yÞ − bn�∕an

¼ 4; (4)

½DNmðx; yÞ − bm�∕am
½DNnðx; yÞ − bn�∕an

¼ 1.5: (5)

After simplifying Eqs. (4) and (5), Eqs. (6) and (7) can be derived:

DNmðx; yÞ ¼ 4 ·
am
an

· NDnðx; yÞ þ bm − 4 ·
bn · am
an

; (6)

DNmðx; yÞ ¼ 1.5 ·
am
an

· NDnðx; yÞ þ bm − 1.5 ·
bn · am
an

: (7)

If we assign X ¼ am
an
, Y ¼ bm, and Z ¼ bn ·

am
an
, Eqs. (6) and (7) are arranged to Eqs. (8)

and (9):

DNmðx; yÞ ¼ 4 · X · DNnðx; yÞ þ Y − 4 · Z; (8)

DNmðx; yÞ ¼ 1.5 · X · DNnðx; yÞ þ Y − 1.5 · Z: (9)

In Eqs. (8) and (9), X, Y, and Z are unknown terms, and the known terms include NDmðx; yÞ
and NDnðx; yÞ (training samples). The training samples in Eqs. (8) and (9) are obtained from a
vegetated and a nonvegetated region, respectively. Both classifications (vegetated and nonvege-
tated) are selected as training samples to constrain the values of RVI (vegetated: 4, nonvegetated:
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1.5). The training-sample spectra are processed by a least-squares (LS) approach with Eqs. (8)
and (9), and the system parameters X, Y, and Z are obtained. These parameters only represent the
relationship between the band pairs [Eqs. (6) and (7)], so we declare X, Y, and Z as the relative
additional factors (relative gain and offset).

After the acquisition of relative gain and offset, X, Y, and Z can be substituted into Eqs. (6)
and (7) to obtain the relative calibration. The calibrated results are used to calculate the band
ratios by Eqs. (10) and (11). Figure 3 shows the flow chart of the calibrated processing.

RATIO ¼ DNmðx; yÞ − Y
DNnðx; yÞ · X − Z

¼ 4; (10)

RATIO ¼ DNmðx; yÞ − Y
DNnðx; yÞ · X − Z

¼ 1.5: (11)

2.3 Training-Sample Selection

Figure 1 shows a red-NIR scatter plot for a mountainous region. Using this scatter plot, all pixels
can be decomposed by two endmembers, which include vegetated and nonvegetated regions (m1
and m2). In rugged terrain, each class (endmember, pixel group) will be distributed along a
straight line,39,40 and this property can be utilized to select the training samples automatically.
Figure 4 shows a graph describing the training-sample selection in the red-NIR scatter plot. The
training samples are selected to contain one classification and include a range of signals for
shaded areas (from non, light, medium, and heavy shadows) as well. The pixels for a vegetated
area should be distributed along the axis that has the highest slope (ratio). The automatic
selection approach is used to search the minimal pixels in each slice of the NIR band

Fig. 4 Plots showing the selection of training samples. (a) Minimum points searching (red band) in
each near-IR (NIR) digital number (DN). (b) The points with minimum red bands can be selected
(red circles). (c) Vectors R1 and R2 are obtained by regression from the training samples selected
in (b) (red circles). (d) The final training samples (blue circles) selected by vectors R1 and R2.
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[Figs. 4(a) and 4(b)]. In addition, pixels for nonvegetated areas with a lower slope (ratio) are also
distributed along the other axis and can be obtained by searching for the minimal pixels in each
slice of the red band [similar to Figs. 4(a), 4(b), and 4(c)].

However, outlier pixels may interfere with the distribution in the red-NIR scatter plot so that
the training samples do not lie along a straight line [Figs. 4(b) and 4(c)]. Outliers are suppressed
by a two-stage process. After the first stage of training-sample selection, the rough training sam-
ples are selected [Figs. 4(a) and 4(b)]. The second stage uses simple regression for the selected
training samples to obtain the vectors [Fig. 4(c), R1 and R2]. Each vector represents the end-
members of vegetated and nonvegetated spectra. The algorithm uses the vectors as the axes to
search the pixels that are close to the axes at the second-stage training-sample selection [Fig. 4(d)].
To obtain sufficient training samples, the number of pixels must exceed a critical value. The
recommended number of training samples should exceed 1% of the total pixels, and the pro-
portion of vegetated and nonvegetated data should be equal. By applying this automatic two-
stage process, the training-sample selection approach is both objective and performs well in
eliminating interference from outliers.

After selecting the training samples, the selected pixels can be used to solve Eqs. (8) and (9)
by LS regression to obtain the relative parameters (X, Y, and Z). Application of the relative
parameters to the calibrated RVI [Eqs. (10) and (11)] provides a shadow-free image.

3 Results

Two methods for reducing the effects of shadows were compared using actual and simulated
image sets: the standard, DPS (dark pixel subtraction), and calibrated RVIs (standard, DPS,
and calibrated NIR/red ratio). We selected a set of satellite and synthetic images for a moun-
tainous region, which included shadow effects for this evaluation.

3.1 Actual Image

Because most of the high-resolution resource satellites are polar orbiting (Sun synchronous
orbiting), the viewing angle between the sensor and ground is usually not nadir so that the sun-
light is not directly overhead. Therefore, images collected in rugged terrain usually have serious
shadow effects, which can lead to errors.

3.1.1 SPOT satellite images

A SPOT5 multispectral image set (Figs. 5 and 6) from a mountainous area in Jianshi (northern
Taiwan) was used for the comparison. These images have only been geometrically corrected and
the DN is 8-bit scale. In the images, there are several classifications, such as vegetation, riverbed,
exposed soil, and buildings. Figure 5 shows that, in general, the spectra can be classified into
vegetated and nonvegetated regions. The goal of the proposed algorithm is to exclude shadow
effects and simultaneously detect the vegetated cover.

Figure 6 shows a SPOT5 image set from band 1 to band 4 (band 1: green light 500 to 590 nm,
band 2: red light 610 to 680 nm, band 3: NIR 780 to 890 nm, band 4: short-wave IR 1,580 to
1750 nm). Shaded areas have low values for all bands, making the data ideal for testing the
effectiveness of ratios of band pairs for reducing shadow effects. However, before calculating
the ratio, the image should be calibrated using a gain and offset term to prevent biases.

According to Fig. 1, areas with the same classification will be distributed along an axis on a
bispectral scatter plot. If there are shadow effects, all of the pixels classified as vegetated (Fig. 1)
should have a uniform slope (ratio) in the red-NIR scatter plot, and each class should also be
distributed along an axis with a particular slope (ratio). In an actual satellite image, this feature
can be observed in the SPOT5 red-NIR scatter plot (Fig. 7). In Figs. 5, 6, and 7, a vegetated area
was selected [green rectangle; Fig. 7(a)], and in the bispectral scatter plot, (red-NIR), the veg-
etated pixels would be distributed along an axis [Fig. 7(b)]. Because of the shadow effect, pixels
in each class would be distributed along a straight line, to constitute with several classes the
scatter distribution appeared to be a triangle [Fig. 7(b)] as anticipating with Sec. 2 in Fig. 1.
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Fig. 5 This SPOT5 satellite image was acquired on December 23, 2005, at 10:21 a.m. (Jianshi,
northern Taiwan). The area is 4 km × 4 km and the spatial resolution is 10 m∕pixel. The color was
stacked by R-G-B in bands 3, 2, and 1 (NIR, red light and green light) and the topographic shadows
can be easily seen.

Fig. 6 The SPOT5 satellite image set. (a) Band 1 (green). (b) Band 2 (red). (c) Band 3 (NIR).
(d) Band 4 (short-wave IR).
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3.1.2 Shadow removal

In Sec. 2.3, an automatic training-sample selection method was discussed in which the minimal
pixels in each slice of the NIR and red bands are searched (Fig. 4). Pixels for vegetated and
nonvegetated areas were selected as the training samples (Fig. 8). The manually selected results
[Fig. 7(b)] and the results using the automatic method [Fig. 8(a)] show a similar distribution of
pixels. In Fig. 8(a), the training samples were selected in the first stage (Sec. 2.3). For extreme
values (very high or very low DN values), the training selection was affected by outlier pixels
[Fig. 8(a)]. This problem was solved in the second stage of the selection process (Sec. 2.3).
Figure 8(b) shows that the outliers were removed and the selected pixels are distributed reason-
ably. In this case, only 1% of pixels have been selected as the training samples (∼1600 pixels),
and the proportion of vegetated and nonvegetated is the same.

The initial gray-scale values (DN) in Figs. 9(a) and 9(b) display the training samples in
ascending order. The NIR has a higher contrast than the red band. The RVI (NIR/red ratios)
values are shown in Figs. 9(c) and 9(d). Although the ratio approach was used, the shadow effect
on RVI is still evident [Fig. 9(c)]. After linear regression for band 2 (red) and band 3 (NIR) using
Eqs. (7) and (8), the relative gain and offset (X, Y, and Z) are obtained. We then use X, Y, and Z
to calibrate the images and compute the RVI using Eqs. (10) and (11) to obtain the results in
Figs. 10(a) and 10(b). The nonvegetated ratio is slightly overestimated for an extreme dark area

Fig. 7 Bispectral distribution of SPOT5 satellite image. (a) Color map. The green rectangle shows
the area including the training samples. (b) Scatter plot of band 2 (red) and band 3 (NIR). The
green pixels are the selected training samples.

Fig. 8 Scatter plot for the training sample selection in red-NIR bands (blue points are pixels, green
points indicate the selected vegetated training data, and red points indicate the selected nonve-
getated training data.) (a) Training sample selection at the first stage. (b) Training sample selection
at the second stage.
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[Fig. 10(d)]. In general, the RVI shows a uniform value for shadow and nonshadow areas in
Figs. 10(c) and 10(d), indicating that the shadow has only small effects on these two indexes
after calibration.

3.1.3 Comparisons

Our method uses training samples to calibrate bands before the RVI is calculated to obtain an
unbiased ratio to reduce shadow effects. Comparing the RVI between the initial and calibrated
training samples (Figs. 9 and 10), the calibrated results show that shadow effects were greatly
reduced and both vegetated and nonvegetated areas can be clearly distinguished. Applying the
calibrated RVI to the entire image, the performance of the comparison of vegetation indexes is
shown in Fig. 11.

Comparisons of standard, DPS, and calibrated RVI are shown in Fig. 11. Figures 11(a),
11(b), and 11(c) show serious shadow effects. Figure 11(b) shows that the standard RVI without
any processing before band ratioing has obvious shadow effects. Figure 11(c) is the DPS RVI,
which subtracts the minimum DN pixel value before ratioing. Using the standard RVI, erroneous
estimates for vegetated cover can be gained [shown in Fig. 11(b)]. By DPS RVI, the shadow effects
have slightly reduced. Figure 11(d) shows the RVI result using the calibration method. The shadow
effect is significantly reduced, and the vegetated cover can be estimated more accurately.

3.1.4 Performance evaluation

A set of real satellite images has enabled a quantitative evaluation of the proposed method.
Figure 12 shows the shaded image sets, which are distributed in mountainous areas in

Fig. 9 Gray-scale values (DN, red and NIR bands) and ratios of the initial training samples.
(a) Vegetated training samples. (b) Nonvegetated training samples. (c) RVI of vegetated training
samples. (d) RVI of nonvegetated training samples.

Fig. 10 Gray-scale values (DN, red, and NIR bands) and ratios of the calibrated training samples.
(a) Vegetated training samples. (b) Nonvegetated training samples. (c) RVI for the vegetated
training samples. (d) RVI for the nonvegetated training samples.
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Taiwan. Table 1 also shows information on the image sets: multispectral images from two differ-
ent satellite sensors (SPOT5 and Formosat2) in four different areas (Jianshi, Guguan, Jiufen, and
Caoling). After processing by RVIs (standard, DPS, and calibrated), the maximum likelihood
(ML) classification algorithm converts the RVIs into binary results so that each pixel is classified
into vegetated or nonvegetated coverage. There are 100 random check points selected from each
area for error analysis, and the ground truth data are judged subjectively using high-resolution
color maps (panchromatic fusion, Formosat2: 2 m∕pixel, SPOT5: 2.5 m∕pixel). Table 1 shows
that the vegetation detection accuracy of calibrated RVIs is significantly better than other RVIs
not only in all four test scenes, but also in two multispectral satellite sensors.

3.2 Simulated Image

A simulated image set was used to assess the performance of the new method. The abundances of
two classes (vegetated and nonvegetated) were defined and spectra acquired from a real SPOT5
satellite image. After combining the abundances and the spectra to form a nonshadow simulated
image set, a two-dimensional shadow function was applied to the synthetic image set. Noise was
also added to the synthetic image sets to simulate more realistic conditions.

3.2.1 Simulated images

The sine function was used to produce the two-dimensional classification abundances. Since the
abundances are allowed to sum to one and non-negative constrains, the range varies from 0 to 1.
The abundances of the two classifications representing vegetated and nonvegetated areas in the
frame are shown in Fig. 13.

Fig. 11 Comparisons of different adjustment approaches in real satellite images. (a) Color map.
(b) Standard RVI. (c) Dark pixel subtraction (DPS) RVI. (d) Calibrated RVI (proposed algorithm).
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Fig. 12 Real satellite image sets in mountainous areas. (a) SPOT5 image in Jianshi (north
Taiwan). (b) SPOT5 image in Guguan (central Taiwan). (c) Formosat2 image in Jiufen (north
Taiwan). (d) Formosat2 image in Caoling (south Taiwan). The color was stacked by R-G-B in
NIR, red light, and green light bands.

Table 1 Comparison of the performance of standard ratio vegetation index (RVI), dark pixel sub-
traction (DPS) RVI, and calibrated RVI.

Region of Taiwan Taiwan (north) Taiwan (central) Taiwan (north) Taiwan (south)

Place name Jianshi Guguan Jiufen Caoling

Satellite sensor SPOT5 SPOT5 Formosat2 Formosat2

Date acquired December 23, 2005 December 23, 2005 February 13, 2009 January 2, 2011

Area 4 km × 4 km 4 km × 4 km 4 km × 4 km 4 km × 4 km

Spatial resolution 10 m∕pixel 10 m∕pixel 8 m∕pixel 8 m∕pixel

Spectral channels Red and near-IR Red and near-IR Red and near-IR Red and near-IR

Vegetation detection
accuracy (std. RVI)

83% 93% 89% 94%

Vegetation detection
accuracy (DPS RVI)

92% 93% 90% 93%

Vegetation detection
accuracy (calib. RVI)

95% 98% 96% 98%

Kao, Ren, and Lee: Calibrated ratio approach for vegetation detection in shaded areas

Journal of Applied Remote Sensing 083543-12 Vol. 8, 2014



After the initial abundance model was built, the simulated image used actual satellite image
spectra to form the synthetic image set. The spectra acquired from the SPOT5 image (Fig. 14)
included vegetated and nonvegetated areas. In Fig. 14(a), the vegetated and nonvegetated areas
were selected from a nonshadow region. The green point is on a vegetated pixel and the red point
is on a river bed. In Fig. 14(b), the red-NIR scatter plot shows the distribution of the vegetated
and nonvegetated endmembers. These abundances were multiplied with the spectra of vegetated
and nonvegetated areas acquired from actual satellite images (Fig. 14) to obtain the initial simu-
lated image.

To simulate the topographic effect, a shading function was designed with a range from 0 to 1
(Fig. 15). Figure 15(a) shows the two-dimensional shadow function, and Fig. 15(b) shows
the profile of the function. The function was designed with two slopes [1 to 0.1 and 0.1 to
0, Fig. 15(b)] to monitor the performance for extremely heavy shadow conditions (between
0.1 and 0). After applying the shadow function to the simulated images and adding random
noise [signal-to-noise ratio (SNR) 100], a simulated image set with shadows was obtained
(Fig. 16). In Fig. 16, the right panel shows the light-shadow effect (1 to 0.1) for normal shadow
conditions, and the left panel shows the heavy-shadow effect (0.1 to 0) for extreme conditions.

3.2.2 Shadow removal

Figure 17 shows a comparison of the standard, DPS, and calibrated RVI to the simulated image
sets in which the white area represents vegetation distribution. For the standard RVI [Fig. 17(b)],

Fig. 13 Simulated abundances of two classes: (a) nonvegetated abundance and (b) vegetated
abundance.

Fig. 14 Spectra from the SPOT5 image. (a) The two spectra pixels are shown on the color map.
The red point is nonvegetated and the green point is vegetated. (b) The spectra pixels on a red-
NIR scatter plot where the blue points are all of the pixels, the red point is nonvegetated, and
the green point is vegetated.
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areas with serious shadow effects (shadow function between 0 and 0.1) have very low values for
both vegetated and nonvegetated areas. In Fig. 17(c), the result for DPS RVI has better adjust-
ment; however, the heavily shaded vegetation is still not clearly identified. For calibrated RVI
[Fig. 17(d)], the vegetated area is calibrated to the normal value even with serious shadow effects
(shadow function between 0 and 0.1) and the nonvegetated region can be more easily recognized.

To evaluate the performance with the standard, DPS, and calibrated RVI, 10 vertical profiles
were selected (Figs. 17 and 18) to represent 10 shadow levels. Figure 18 shows the shading
function of the 10 levels, which include two groups: normal shadow (1 to 0.2514) and
heavy shadow (0.0982 to 0.0262). The normal-shadow levels represent 10 to 100% and the
heavy-shadow levels represent <10% of the spectral energy. The standard, DPS, and calibrated
RVI are shown in Fig. 19. Before calibration, the standard RVI is very sensitive to the shadow
effect, which caused the RVI to seriously underestimate the vegetated abundance at heavy-
shadow conditions. DPS RVI shows more stable performance when processing vegetation
detection. After calibration using the method described here (calibrated RVI), the detection per-
formance has apparently improved even in some extremely heavy-shadow conditions.

4 Discussion

Many tropical and subtropical mountainous areas have high vegetation cover. In red-NIR spectra
of remotely sensed images, the pure vegetated and nonvegetated pixels are the endmembers, and
most of the image pixels will be distributed within these two endmembers. In addition to pixel
mixture, in rugged terrain, most of the pixels also show topographic shadow effects. Therefore, a

Fig. 15 Simulated shading function. (a) Two-dimensional shadow function. (b) The profile of
shadow function.

Fig. 16 Two bands for the simulated image sets: (a) band 1 (red) and (b) band 2 (NIR).
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bispectral scatter plot (red-NIR) usually appears as an ideal triangle [Figs. 1, 2, 4, 7(b), 8, and
14(b)]. The triangular distribution (red-NIR scatter plot) is suited for using band ratios to reduce
topographic shadow effects. The proposed method in this study was evaluated for the vegetation
coverage in a mountainous area.

The real remote image test (SPOT5 satellite image) is shown in Fig. 11. Obviously, the stan-
dard RVI [Fig. 11(b)] has serious shadow effects. By using the color map [Fig. 11(a)] as ground
truth to assess the standard RVI [Fig. 11(b)] and DPS RVI [Fig. 11(c)], a large number of errors
are seen. The poor results gained from standard RVI and DPS RVI demonstrate that the ratio
approach (RVI) is an efficient method for detection of mountain vegetation while simultaneously
removing shadows. However, an inadequate processing ratio could cause fatal errors in classi-
fication through inadequate shadow removal. Using the calibrated RVI [Fig. 11(d)], the results
show significant improvement, and the shadow effects are reduced. Using the color map
[Fig. 11(a)] as a reference to compare the standard RVI [Fig. 11(b)], DPS RVI [Fig. 11(c)],
and calibrated RVI [Fig. 11(d)], the calibrated RVI has a better ability to identify vegetated
areas in areas of heavy shadow.

The real satellite image sets from two multispectral satellite sensors (SPOT5 and Formosat2,
Fig. 12) in four mountainous areas of Taiwan (Jianshi, Guguan, Jiufen, and Caoling) were
adopted for the experiments (Fig. 12). After RVIs (standard, DPS, and calibrated) processing
with red and NIR bands, the ML was able to distinguish the vegetated and nonvegetated areas.
The high resolution of color fusion maps (Formosat2: 2 m∕pixel, SPOT5: 2.5 m∕pixel) was
employed for ground truth data to evaluate the performance of the RVIs. Table 1 shows that
the calibrated RVI has higher accuracy than standard and DPS RVI in all four test sites for
two satellite sensors. By analyzing the error pixels, we found that most of the errors in the
shadow region of vegetated cover are underestimated. The calibrated RVI, therefore, has better
ability to adjust shadow RVI to a normal level.

Fig. 17 Comparisons of different adjustment approaches in simulated images. (a) Original veg-
etation abundance. (b) Standard RVI (the blue dotted lines represent the position of profile).
(c) DPS RVI. (d) Calibrated RVI.
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Fig. 18 The profiles of shading function.

Fig. 19 Performance at heavy and normal shadow levels. Blue lines show the standard RVI,
green lines show DPS RVI, and the red lines show the calibrated RVI. (a) Comparison of
heavy shadow levels. (b) Comparison of normal shadow levels.
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Results for the simulated image sets are shown in Figs. 17–19. Figure 17 shows that under
light- (normal-) shadow conditions (1 to 0.1), the standard RVI, DPS RVI, and calibrated RVI
have similar capabilities to recognize vegetated areas. When shadow effects reach heavy con-
ditions (0.1 to 0), DPS RVI and calibrated RVI perform better when identifying vegetated cover.
Figures 17 and 18 show the profiles of the results. Figure 19 demonstrates that standard RVI is
oversensitive to terrain shadow effects, which might cause serious errors. However, DPS RVI
and calibrated RVI demonstrate more stable characteristics for detecting vegetated cover. The
comparison of DPS RVI and calibrated RVI also shows that the latter has better ability to dis-
tinguish vegetated from nonvegetated areas in normal shadow [Fig. 19(b)]. Further, in regions of
heavy shadow, because of the low SNR, the performance of the calibrated RVI is slightly better
than DPS RVI [Fig. 19(a)]. Because heavy shadow represents <10% of the spectral energy, such
an extreme situation is not commonly seen.

This algorithm is based on the properties of a scatter plot of red-NIR bands frommountainous
regions where topographic shadows occur. Owing to shadow effects, most classifications are
distributed along an axis with a unique slope (ratio), and all pixels are ideally distributed within
two endmembers (vegetated and nonvegetated). Therefore, the proposed algorithm is designed
for images of typical mountainous areas. However, in reality, there are also some interference
effects, such as clouds, surface-water features, and fog, in images of mountainous terrain. These
interferences can affect the scatter plot with deviations from an ideal triangle, and the algorithm
may be unable to select correct training samples for appropriate calibration. Furthermore,
although the proposed algorithm used 0.2 and 0.6 as the target ratio value (NDVI), we recom-
mend that the target ratio setting should be based on ground truth information to obtain accurate
biomass content when using the calibrated RVI.

5 Conclusion

In this study, a simple and effective algorithm was developed to simultaneously reduce the
effects of topographic shadows and distinguish between vegetated and nonvegetated cover.
The proposed algorithm does not need any topographic information, but utilizes a simple cal-
ibration and the well-known band-ratio approach to obtain satisfactory performance. The red and
NIR channels of SPOT5 and Formosat2 satellite image sets have been tested in experiments to
show that the proposed method is significantly better than standard and DPS RVI. However, if
this approach is used for remote images, including clouds or surface-water pixels, the effective-
ness of the algorithm may be reduced.
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