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Abstract. We investigate band selection for hyperspectral image classification. Mutual infor-
mation (MI) measures the statistical dependence between two random variables. By modeling
the reference map as one of the two random variables, MI can, therefore, be used to select the
bands that are more useful for image classification. A new method is proposed to estimate the MI
using an optimally constructed reference map, reducing reliance on ground-truth information. To
reduce the interferences from noise and clutters, the reference map is constructed by averaging
a subset of spectral bands that are chosen with the best capability to approximate the ground
truth. To automatically find these bands, we develop a searching strategy consisting of differ-
entiable MI, gradient ascending algorithm, and random-start optimization. Experiments on
AVIRIS 92AV3C dataset and Pavia University scene dataset show that the proposed method
outperformed the benchmark methods. In AVIRIS 92AV3C dataset, up to 55% of bands can
be removed without significant loss of classification accuracy, compared to the 40% from
that using the reference map accompanied with the dataset. Meanwhile, its performance is
much more robust to accuracy degradation when bands are cut off beyond 60%, revealing
a better agreement in the MI calculation. In Pavia University scene dataset, using 45 bands
achieved 86.18% classification accuracy, which is only 1.5% lower than that using all the
103 bands. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.8.083692]
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1 Introduction

Hyperspectral sensors simultaneously measure hundreds of contiguous spectral bands with a fine
spectral resolution, e.g., 0.01 μm. This makes it possible to reduce overlap between classes and,
therefore, enhances the potential to discriminate subtle spectral difference.1,2 Using data from
hyperspectral sensors, classification is carried out by analyzing the electromagnetic reflectance
as a function of the wavelength or band, i.e., the spectral signature. In recent years, hyperspectral
image classification has received significant attention in many applications.3–5

However, the large number of spectral bands also presents several significant challenges to
hyperspectral image classification. First, an increased number of spectral bands means a higher
dimensionality of hyperspectral data. For instance, the AVIRIS hyperspectral sensor6 has 224
spectral bands ranging from 0.4 to 2.5 μm, and the original signal is 224 dimensional. It is known
that the high dimensionality of input space would deteriorate the performance of many classi-
fication methods7 if no appropriate preprocessing is applied. Second, although there may be
hundreds of bands available for analysis, not all bands contain the essential discriminatory infor-
mation for classification. In the wide spectrum, it is to be expected that different parts of the
spectrum will have differing representative capabilities to distinguish the objects of interest. In
some parts of the spectrum, materials may have a much more unique spectral response than other
parts of the spectrum. Finally, the high dimensionality inevitably results in a larger volume of
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data. Whether using conventional classification algorithms or modern methods, the requirements
for storage space, computational load, and communication bandwidth are factors that have strin-
gent constraints, particularly in real-time applications.

To limit the negative effects incurred by higher dimensionality, it is advantageous to remove
parts of the spectral bands that convey less discriminatory information. In the past, many band
selection techniques have been proposed, such as search-based methods,8–10 transform-based
methods,11,12 and information-basedmethods.13–15Other band selection techniques include a trade-
off scheme between the spectral resolution and spatial resolution,16 maximization of spectral angle
mapper,17 high-order moments,18 and wavelet analysis.19 However, there are still some challenges
to apply this technique effectively, such as higher computational cost, suffering of local minimal
problems, loss of the original physical meaning, difficulties for real-time implementation, etc.

In this research, we study the band selection in the context of data classification, where
retaining raw data appearance and not losing the original physical meaning are desirable for
the purpose of registration with other source images [e.g., synthetic aperture radar (SAR)
imagery]. In this case, the dimensionality-reduction techniques based on feature selection is
particularly attractive. As derived from the concept of entropy, mutual information (MI) mea-
sures the statistical dependence between two random variables and, therefore, can be used for
feature selection. Although entropy10,13 and MI (Refs. 11 and 20) have obvious potential for
band selection, this has not been fully exploited in the past. In Ref. 21, MI has been used
to increase the radiometric resolution or signal-to-noise ratio. In our previous research,14,15 a
heuristic approach has been proposed, where the estimation of MI was based on domain experts’
subjective judgment. The simulation in Ref. 14 showed favored results for the MI-based method
compared to the other three representative competitors (namely the steepest ascent searching
method, the entropy-based method, and the correlation-based method). As a supervised feature
selection method, one of the main obstacles regarding the MI-based approach is its reliance on
availability of a reference map (i.e., the ground truth map, in which each pixel is correctly labeled
by its class). To obtain a full reference map, expensive ground survey and manual labeling are
usually involved, which put prohibitive factors to apply this technique in practice. To improve
the applicability of the method, we propose a new band-selection scheme based on estimating
a reference map, which is constructed by Parzen window approximation and optimization
algorithms.

In the proposed method, the reference map is estimated by using a group of bands with a
higher separability. Because the high-separability bands are likely to appear in a spectrum, where
the light is absorbed by the constituent atoms or molecules,22 bands in these characteristic
regions are more useful to classification and they are contiguous naturally. It is, therefore, desir-
able to make a continuous constraint for the bands used to estimate the reference map. In other
words, a spectral window can be built to capture the bands in the particular spectrum. Other two
advantages are reducing counteraction of discriminatory information among bands and avoiding
the increase of computational cost, which will be discussed in the end of Sec. 2.

Experiments are carried out to evaluate the effectiveness of the proposed method using
a public hyperspectral dataset AVIRIS 92AV3C and a high spatial resolution dataset “Pavia
University scene.” The results show that the proposed method can remove a significant amount
of redundant bands without significant loss of classification accuracy. The remainder of this
paper is organized as follows. In Sec. 2, we discuss the band selection method based on the
MI analysis. In Sec. 3, we propose the new MI-based band selection scheme. Experimental
results are reported in Sec. 4. Finally, we end this paper with conclusions.

2 Hyperspectral Band Selection Through Mutual Information Analysis

MI is a basic concept in information theory to measure the statistical dependence between two
random variables.23,24 Given two random variables A and B, with marginal probability distri-
butions pðaÞ and pðbÞ, and joint probability distribution pða; bÞ, MI is defined as

IðA; BÞ ¼
X
a∈A

X
b∈B

pða; bÞ log pða; bÞ
pðaÞpðbÞ : (1)
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According to Shannon’s information theory, entropy measures information content in terms
of uncertainty and is defined by

HðAÞ ¼ −
X
a∈A

pðaÞ log pðaÞ: (2)

From Eqs. (1) and (2), it is not difficult to find that MI is related to entropies by the following
equations:

IðA; BÞ ¼ HðAÞ þHðBÞ −HðA;BÞ ¼ HðAÞ −HðAjBÞ ¼ HðBÞ −HðBjAÞ; (3)

whereHðAÞ andHðBÞ are the entropy of A and B,HðA; BÞ is their joint entropy, andHðAjBÞ and
HðBjAÞ are the conditional entropies of A given B and of B given A, respectively. The joint and
conditional entropies can be written as

HðA; BÞ ¼ −
X
a∈A

X
b∈B

pða; bÞ log pða; bÞ; (4)

HðAjBÞ ¼ −
X
a∈A

X
b∈B

pðajbÞ log pðajbÞ: (5)

If we treat the pixels’ value in a spectral band as a random variable and their corresponding
value in the reference map as another random variable, MI between them can be used to estimate
the dependency between this spectral band and the reference map. This is helpful to investigate
how much common information a spectral band contains about the reference map. Since
the reference map represents the class label of each pixel and implicitly defines the required
classification result, the above MI measures the relative utility of each spectral band to the clas-
sification objective and can be used to select bands.

Aweakness of the straightforward MI-based band-selection method is its reliance on a refer-
ence map. The reference map is usually obtained from a ground survey or manual labeling by
domain expert, which is always costly and time-consuming. In many practical applications,
a complete reference map is simply not available. To improve the applicability of the method,
we propose a new band-selection scheme based on estimating a reference map. In this case,
instead of calculating the MI based on the reference map, R, an estimated reference map, R̂,
is used. This is assumed to be easy to obtain and to be a good estimate of R. In details, the
estimated reference map is calculated using a group of spectral images, i.e., key spectra S,
which are assumed to have the best discriminatory capability. So, if Mj ∈ S, 1 ≤ j ≤ J are
images from the set of key spectra S; then the estimated reference map R̂ is obtained as

R̂ ¼ 1

J

XJ
j¼1

Mj: (6)

The advantage of using a number of bands, rather than a single spectral band, to estimate the
reference map is to average out the possible noise and reduce uncertainty. Moreover, it is pref-
erable that these bands are contiguous in the spectrum. The proposed spectral window is
designed to capture bands with a higher separability for classification. It is known22 that the
high separability is likely to appear in the spectrum where certain atoms or molecules (of
which the material is made of) absorb the light. Apparently, bands contained in these particular
regions are contiguous. The second reason to keep the bands contiguous is if these bands are not
adjacent, the intensities of their pixels may counteract each other. Figure 1 gives an example
where two groups of bands, labeled as the key spectral spectra 1 and 2, were found with
the most discriminatory information. Because the intensity priority is inversed for these two
regions, directly averaging their spectral responses may lose rather than enhance discriminatory
information. The third reason is to avoid the increase of computational cost that will happen
when a group of separated bands are selected (e.g., the combinatory explosion). Based on a
metric of goodness, the key spectra S can be found by a searching algorithm, which is presented
in Sec. 3.
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3 Constructing an Optimal Estimate of the Reference Map

A hyperspectral imagery can be considered as an image cube (see Fig. 2) where two axes are
spatial dimensions (i.e., the coordinates of the observed scene) and the third axis is the spectral
dimension (i.e., the spectral channels or bands). As we discussed in Sec. 2, to estimate the refer-
ence map, we need to find a group of most informative bands and make sure that their reflectance
intensities do not counteract each other. This problem can be modeled as a procedure of seeking
an optimal spectral window along the spectral dimension in the hyperspectral data cube (see
Fig. 2). By controlling the width of the spectral window, we can keep the bands within the
window positively correlated (i.e., no intensity inverse) and avoid the offset of discriminatory
information. It should be noted that in the whole images, different local areas may present differ-
ent trend in correlation. However, only when different areas show the same positive correlation
within the spectral window, averaging these bands can reduce noise or uncertainty and, therefore,
increase the reliability to approximate the ground truth. So if a compensation effect between
positively and negatively correlated areas occurs, the resulting estimated reference map will
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Fig. 1 Two spectral signatures for alfalfa (solid line) and corn-notill (dashed line); data are
extracted from AVIRIS 92AV3C.

Fig. 2 Illustration of hyperspectral data cube and spectral window.
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be less accurate. According to the searching algorithm introduced in Sec. 3.3, this spectral win-
dow will not be chosen as a final solution and a next step of searching will be incurred until
a better spectral window is found.

3.1 Model of Spectral Window

Given a hyperspectral feature vector x ¼ ðx1; x2; · · · ; xDÞT, each component xd denotes a spec-
tral reflectance or radiance value measured at the band d, d ¼ 1; 2; : : : ; D. D is the total number
of spectral bands in a spectrometer. This number could be as many as 200 for a normal hyper-
spectral sensor. Given that Tw;b is a transform that can choose a subset of contiguous bands at
the spectrum position b within a w-width window, Tw;bðxÞ is a chunk of spectral signal within
the spectral window (see Fig. 2).

xw;b ¼ Tw;bðxÞ; (7)

where xw;b represents the subset bands within the spectral window specified by the parameters w
and b. By shifting the spectral window forward or backward along the spectral axis, we are able
to evaluate the discriminatory capability for each group of contiguous bands and then find the
optimal subset of bands to approximate the ground truth. This problem can be formalized as
follows:

b0 ¼ arg max
b

fM½r; Tw;bðxÞ�g; (8)

where M½·; ·� is a metric of goodness of a chunked feature vector xw;b to approximate the class
label r. Thus, the continuous spectral bands that we are looking for are given by

xw;b0 ¼ Tw;b0ðxÞ: (9)

To automatically find the best spectral window, we may consider MI as a metric M. As long
as the derivative of this MI is known, we can decide how the spectral window should move, i.e.,
the gradient ascending algorithm. For other similarity metrics, such as correlation or spectral
angle, it is not so easy to find their analytic expression and apply them to the gradient-
based algorithms. According to Eq. (3), the MI can be written as

Iðr; xw;bÞ ¼ HðrÞ −Hðrjxw;bÞ ¼ HðrÞ þHðxw;bÞ −Hðr; xw;bÞ: (10)

We can see that the MI described in the right side of the first row of Eq. (10) has two terms.
The first one is the entropy of the class label variable r. It is not a function of the window-shifting
transform T. The second term is a conditional entropy of r given the chunked spectral feature
vector xw;b. When the class label variable r and the chunked spectral feature vector xw;b are
related, the amount of entropy, Hðrjxw;bÞ, will reduce. For example, if r can be predicted by
xw;b reliably, then r will become less uncertain when we have the observation of xw;b. If we
intuitively understand the entropy as the amount of uncertainty, the decrease of uncertainty
means less of entropy. In other words, if xw;b is a good observation or informative feature subset
to predict the unknown variable r, the uncertainty of rjxw;b will reduce more than other
less discriminatory feature subsets. As a result, Hðrjxw;bÞ will decrease. From Eq. (10), the
less amount of Hðrjxw;bÞ will increase the MI, Iðr; xw;bÞ. Consequently, considering that
xw;b ¼ Tw;bðxÞ, maximizing the MI in Eq. (10) will encourage the spectral window to shift
to a wavelength region in which the spectral features would have a better capability to predict
the class label.

Also, there is a bound relationship between the MI and the Bayes error,25 so the bands subset
xw;b0 found by Eq. (8) would have a good discriminatory capability for classification in the sense
of Bayes error. In the following paragraphs, we discuss how to obtain the differentiable MI to
maximize Iðr; xw;bÞ.
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3.2 Differentiable Mutual Information

In Eq. (10), the MI is defined as the difference of three entropies, HðrÞ, Hðxw;bÞ, and Hðr; xw;bÞ.
From Eq. (2), these entropies are defined in terms of sums over the probability densities asso-
ciated with the random variable r and xw;b. In hyperspectral image classification, these densities
are usually unavailable and need to be estimated. Considering that the estimated signal could be
quite a high-dimensional (>200) variable, it is difficult to collect enough samples to validate its
histogram. However, it is always possible to manually label a small number of training samples,
such as 50 to 100 pixels, for a specific task. Based on this small number of samples, Parzen
window method26 can be applied to approximate the underlying probability density, which is
briefly presented as follows.

Let the sample set of a random variable be Y ¼ fy1; y2; · · · ; yNg; then the probability density
function of Y is estimated as the sum of a group of normalized window functions centered on
the samples.

pðyÞ ≡ 1

N

XN
i¼1

ψðy − yiÞ; (11)

where ψðyÞ is the window function that integrates to 1 and N is the size of samples for density
estimation. The commonly used window function is Gaussian and is given by

ψðyÞ ¼ 1

ð2πÞd∕2jΣjd∕2 exp
�
−
1

2
yTΣ−1y

�
; (12)

where Σ is the covariance matrix of multidimensional variable y and d its dimension.
After modeling the probability density functions, we can further calculate the entropy of

random variables by using the approximation formula in Eq. (11). This can be written as follows:

HðyÞ ¼ −E½log pðyÞ� ≈ −E
�
log

�
1

N

XN
i¼1

ψðy − yiÞ
��

: (13)

Using Eqs. (11) to (13), the analytic expression of the density functions and entropy can be
derived, and the derivative of the entropy with respect to the transform T can be obtained as
follows:23,27

d
dT

HðyÞ ¼ −E

"
1P

N
i¼1 ψðy − yiÞ

XN
i¼1

d
dT

ψðy − yiÞ
#
; (14)

d
dT

ψðy − yiÞ ¼ −ψðy − yiÞðy − yiÞTΣ−1 d
dT

ðy − yiÞ: (15)

Combining Eqs. (13), (14), and (15), the derivative of the entropy is given by

d
dT

HðyÞ ¼ E

"
1P

N
i¼1

ψðy−yiÞ
P

N
i¼1 ψðy − yiÞ

· ðy − yiÞTΣ−1 d
dT ðy − yiÞ

#
≈
1

L

XL
j¼1

"
1P

N
i¼1

ψðyj−yiÞ
P

N
i¼1 ψðyj − yiÞ

· ðyj − yiÞTΣ−1 d
dT ðyj − yiÞ

#
; (16)

where L is the size of samples for estimating the entropy.
Since a gradient ascending approach is used to find the maxima of MI, it is necessary to

calculate the derivative of the MI with respect to the window-shifting transform T. From
Eq. (10), the derivative of Iðr; xw;bÞ can be represented by

d
dT

Iðr; xw;bÞ ¼
d
dT

HðrÞ þ d
dT

Hðxw;bÞ −
d
dT

Hðr; xw;bÞ ¼
d
dT

Hðxw;bÞ −
d
dT

Hðr; xw;bÞ: (17)

Substituting the derivatives in Eq. (17) with the results in Eq. (16) [note that the y in Eq. (16)
could be a vector], the derivative of Iðr; xw;bÞ is calculated by
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d
dT

Iðr; xw;bÞ ≈
1

L

XL
j¼1

�
1P

N
i¼1 ψðwj − wiÞ

XN
i¼1

ψðwj − wiÞðwj − wiÞTσ−1
d
dT

ðwj − wiÞ
�

−
1

L

XL
j¼1

�
1PN

i¼1 ψðvj − viÞ
XN
i¼1

ψðvj − viÞðvj − viÞTΣ−1 d
dT

ðvj − viÞ
�
; (18)

where scalar wi ∈ xw;b and vector vi ∈ ðr; xw;bÞ are samples for this estimation, and L and N are
the sample numbers for entropy and density function estimation, respectively. Parameters σ and
Σ are used in the Parzen window approach and usually tuned by a cross-validation.

The derivatives ðd∕dTÞðwj − wiÞ and ðd∕dTÞðvj − viÞ can be approximated by the transform
difference Δðwj − wiÞ and Δðvj − viÞ. Since in this research the transform T is used to model a
behavior of spectral windows moving along the spectral axis, we can calculate the difference by
subtracting the values of the current spectral window from the values of the spectral window
shifted by one spectral band, i.e., in Eqs. (19) and (20).

Δðwj − wiÞ ¼ ½wjðtþ 1Þ − wiðtþ 1Þ� − ½wjðtÞ − wjðtÞ�; (19)

Δðvj − viÞ ¼ ½vjðtþ 1Þ − viðtþ 1Þ� − ½vjðtÞ − viðtÞ�; (20)

where wjðtþ 1Þ, wiðtþ 1Þ, vjðtþ 1Þ, and viðtþ 1Þ are the sampled values from the spectral
window that is moved by one band, and wjðtÞ, wiðtÞ, vjðtÞ, and viðtÞ are the sampled values from
the current spectral window.

In this section, by following the methodology introduced in the literature,23,27 we reformu-
lated the high-dimensional MI for our hyperspectral application. This work is based on the two-
dimensional scenario originally developed for medical image registration in Ref. 27. We also
deduced a new difference transform for the applied spectral window’s moving model [see
Eqs. (19) and (20)]. To apply the differentiable MI to our hyperspectral research, we still
need a new search strategy, which will be discussed in the next section.

3.3 Searching Algorithm

After approximating the derivative of MI, the maxima of MI are found by the gradient ascending
algorithm, which is detailed in the following steps:

1. Initialization: Set up the width of the spectral window and its initial position, such as
in Eq. (7).

2. Derivative estimation: Estimate the derivative of MI under the current spectral window
position, i.e., fdI½r; Tw;bðxÞ�g∕ðdTÞ in Eq. (18).

3. Shifting the window: Update the transform in Eq. (8) by T ¼ Tþ
λfdI½r; Tw;bðxÞ�g∕ðdTÞ, where λ is the learning step.

The local maxima are found by repeating the steps 2 and 3 until convergence is detected or a
fixed number of iteration times is reached.23,27

To avoid the local maxima, a random-restart strategy is adopted, which runs an outer loop
over the above gradient ascending in several wavelength regions. Every region can be obtained
by dividing the whole spectrum evenly. Each outer loop chooses a random initial position in the
region to start gradient ascending. If a new run of gradient ascending produces a better result than
the stored one, it replaces the stored solution. After running out each region, the best final sol-
ution is found as the global submaxima. This strategy is simple but effective, which is evidenced
by the experimental results shown in Sec. 4.

4 Experimental Results

To assess the proposed method, the public AVIRIS 92AV3C hyperspectral dataset is used.
The dataset is illustrative of the problem of hyperspectral image analysis to determine land use.
It can be downloaded from ftp://ftp.ecn.pur due.edu/biehl/MultiSpec/. Although the AVIRIS
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sensor collects nominally 224 bands of data (one per spectral band, ranging from 0.40 to
2.52 μm), four of these contain only zeros and so are discarded, leaving 220 bands in the
92AV3C dataset. Each image is of size 145 × 145 pixels. The data cube was collected over
a test site called Indian Pine in northwestern Indiana.2,28

4.1 Searching Spectral Window to Build a Reliable Reference Map

In the experiment, we first examine if the proposed scheme can find the optimal subset of bands
to approximate the ground truth. We implement the algorithm introduced in Sec. 3 to search
the optimal spectral window, with window widths varying from 20 to 50 bands, respectively.
The number of samples for density estimation, i.e., N, is 50, and the number of samples for
entropy estimation, i.e., L, is also 50. Selection of these two numbers is empirical in this
research, and they are chosen to fit the specific application. Apparently, to estimate different
probably density functions (PDFs), different N and L may be needed, and their values (i.e.,
the size of samples) should match the complexities of the approximated PDFs. Since we expect
that the subset bands contain the most discriminatory information, they should achieve the high-
est classification accuracy of any other subsets. Hence, we compare the classification accuracies
based on the bands within and outside the found spectral windows respectively. In the experi-
ments, we chose support vector machines (SVMs)29,30 as the classifiers due to the higher dimen-
sionality of input data. Also, previous works applying SVMs to hyperspectral data classification
have shown competitive performance with the best available classification algorithms.28,31

However, other classification algorithms, including the unsupervised approaches, are also appli-
cable since the band selection proposed in this research is independent of the classifier applied
(actually, it can be categorized as a filtering method in the feature selection family).

Figures 3(a) to 3(d) present the accuracy results under window widths of 20, 30, 40, and 50
bands, respectively. The solid lines denote the classification accuracy achieved by the found
spectral window, and the star points are the classification results based on the other 200 random
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Fig. 3 Comparison of classification accuracy: - stands for the accuracy achieved by the found
spectral windows, and ∗ the 200 random sampled windows as a function of the random sample
sequence order; the widths of spectral window are (a) 20 bands, (b) 30 bands, (c) 40 bands, and
(d) 50 bands.
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sampled spectral windows. The dashed lines stand for the means of the classification results from
the 200 random sampled windows. The positions of the sampled spectral windows are decided
by random numbers generated by the machine. The bands in these spectral windows are con-
tiguous (see Fig. 5). The number of sampling is initially chosen as 200, which is in favor of the
narrow window-width, such as 10 bands. In the case of wide window-width, such as 30, 40, or 50
bands, several repeats of sampling will happen, but this will not affect our comparison. It is seen
that the accuracies based on the found spectral windows are indeed on the top of the results of all
200 random sampled windows, which justified the effectiveness of the searching algorithm.
In other words, maximizing MI can indeed lead to finding of a good estimation of ground
truth (i.e., the ideal classification result).

Therefore in this experiment, the window-width is chosen as 35 bands. The above experi-
ments are mainly used for justification of the algorithm. In practical applications, we can use MI
value as the indication of the classification accuracy and do not need to implement the real
classification test.

The window-width w is an application-related parameter. How to choose this parameter is
crucial to this method. Basically, we can set the window-width by two approaches. The first one
is by a priori knowledge. For example, if the classes to be categorized are known, we can refer to
the existing spectral libraries and measure the widths of the absorption valleys (i.e., a particular
spectrum where the light is absorbed by the constituent atoms or molecules; usually these spectra
are like valleys in a spectral curve). Then, the size (in wavelength) of the spectral window can be
chosen as the maximum of the absorption valleys’ widths. The second way is by a validation test
using the training data. Figure 4(a) shows the maximal MI found by different window-widths.
It is seen that when w is set between 30 and 40 bands, a higher MI value is found. Therefore in
this experiment, the window-width is chosen as 35 bands. Figure 4(b) illustrates the accuracy
change with respect to the positions of spectral windows. In this case, the starting band number
of this spectral window is band no. 14. It should be noted that the above experiments are mainly
used for justification of the algorithm. In practical applications, we can use MI value as an indi-
cation of the classification accuracy and do not need to implement the real classification test.

We also verified the proposed method by visual comparison. In Fig. 5, we illustrate the spec-
tral window found by the proposed method, together with three other random sampled spectral
windows (to help visual observation, all hyperspectral images shown in this paper are trans-
formed using a suitable false color palette). To facilitate this comparison, the width of the spectral
window is set up as 10 bands. Figures 5(a) to 5(c) illustrate 3 × 10 spectral bands corresponding
to three 10-bands width random sampled windows. Figure 5(d) displays 10 band images cor-
responding to the spectral window found by the searching algorithm. Comparing these spectral
images with the accompanied reference map in Fig. 5(e), it can be seen that the images found by
the proposed method contain relatively more discriminatory information than other random
sampled bands. In Fig. 5(d), we can see that the inherent scale varies across the bands and
can roughly distinguish the outline of the reference map, whereas in the bands of Figs. 5(a)
to 5(c), this becomes less clear or impossible (for example, the third random sampled window
that is unfortunately located in the atmospheric water absorption area). The visual comparison is
consistent with the numerical analysis in Fig. 3.
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Through the above accuracy comparison and visual observation, it is verified that the pro-
posed algorithm can find a spectral window to maximize the classification accuracy. Based on
this spectral window, we are able to construct the estimated reference map by averaging the
bands within the spectral window, such as in Eq. (6). If a spectral window works well for
the classification, it gives a good indication to show that the characteristics of these bands
(e.g., the clustering or separability of pixels’ values) have good capability to predict the
class label. This can give information similar (but in different coding) to the one that the ground
truth can provide. So a spectral window that works well for classification will also be good to
build a reference map. Meanwhile, because the pixel values of a band can be considered as
another kind of coding of ground truth, the bands within the spectral window can be regarded
as a series of weaker reference maps. The proposed method makes these bands positively corre-
lated (see the window constraint), with higher classification accuracy (see MI evaluation and the
searching strategy); averaging them can provide a better estimation of reference map by reducing
noise and uncertainty. This is the simplest approach to build the reference map by taking
advantage of the proposed method. After constructing the reference map, band selection can
be carried out, which is described as follows.

4.2 Results on Band Selection

The main objective of band selection is to remove redundant spectral bands without degrading
the classification accuracy too much. The experiment was designed to assess the change of
classification accuracy as spectral bands are progressively removed according to the ranked
MI values. To compare with the previous research,28,32,33 we use a subscene comprising of four
classes: corn-notill, soybeans-notill, soybeans-min, and grass/trees. Figure 6 shows the results
for the three cases, where the MI was calculated with respect to the reference map accompanied
with the dataset (the solid curve marked with triangle), the subjective estimated reference map
(the dotted curve marked with circle) (note that this map is estimated by visual inspection from
domain expert), and the optimally constructed reference map using the approach introduced in
Sec. 3 (the dashed curve marked with rectangle), respectively. Data points in the figure are at 5%
increments corresponding to removal of 11 bands at each step. The results depicted in Fig. 6
show that in this particular application scenario,

1. The reference map estimated from the proposed method gives a better performance than
that using the accompanied and the subjective estimated reference map.

Fig. 5 Visual comparison of three random sampled spectral window with the optimal spectral
window; window-width is 10 bands; (a) random sample window 1, (b) random sample window 2,
(c) random sample window 3, (d) optimal window, and (e) the reference map.
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2. During the cut percentage between 55 and 90%, the performance using the optimally
constructed reference map is monotonously decreasing compared to the varied changes
in the other benchmarked methods.

3. Up to 55% of bands can be cut off without any significant fall-off in performance, which
is improved from the 40% achieved by other two methods.

4. In each of four individual classification results shown in Fig. 7, similar improvements
were observed.

The results summarized in the above 2 showed another improvement was achieved by the
proposed method: monotonic performance degradation. This is an expected result and means
that the ranking order for bands-cutting is more consistent with their contribution to the clas-
sification accuracy. In contrast, the performance curves of the other benchmarked methods
showed no such result. Finally, the accuracy degradation of the proposed method is slower
than other methods, indicating a better robust performance for bands-cutting.

To justify the proposed method furthermore, we carried out an experiment based on a high-
resolution hyperspectral dataset, i.e., Pavia University scene of ROSIS sensor (by courtesy of
Prof. Paolo Gamba from the Telecommunications and Remote Sensing Laboratory, Pavia
University, Italy34). The number of spectral bands is 103, with image size of 610 × 340 pixels.
The spatial resolution is as high as 1.3 m per pixel, in contrast to the 20 m of the AVIRIS
92AV3C dataset. The dataset is also accompanied with a ground-truth map, which categorized
the whole picture as nine types of materials, such as asphalt, meadows, gravel, trees, painted
metal sheets, bare soil, bitumen, self-blocking bricks, and shadows. Figure 8 shows four exam-
ples of spectral bands for Pavia University scene and its ground truth.
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Fig. 7 Individual mean classification accuracies on the four different classes: (a) corn-notill,
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Following the similar approach to process AVIRIS 92AV3C dataset, we also tested our
method on the Pavia University scene dataset. Figure 9 shows the spectral bands in two spectral
windows, where Fig. 9(a) contains the bands in the spectral window found by the proposed
method and Fig. 9(b) contains the bands from a random spectral window. It can be seen clearly
that the bands in Fig. 9(a) are more clear and contain more discriminatory information than those
in Fig. 9(b). This result coincides with our previous observation on the AVIRIS 92AV3C dataset
(see results in Fig. 5).

By using the newly constructed reference map, we also assessed the change of classification
accuracy as spectral bands are progressively selected. Table 1 lists the classification accuracies
using SVMs as classifiers and the band subsets are selected from 5 to 85 bands, respectively (see
the first row of Table 1). The second row of Table 1 lists the classification results using the
reference map estimated from the suboptimal spectral window found by the proposed method.
The third row contains the results using a randomly selected spectral window, and the fourth row
lists the results using the ground-truth survey. It can be seen from Table 1 that when only five
bands are selected for classification, the proposed method obtained 63.02% accuracy, compared
to 60.92% (using ground-truth map) and 59.15% (using a random spectral window) of the two
benchmarked methods. When about half of the bands (45 bands) are selected, the proposed
method achieved 86.18% classification accuracy, only 1.5% lower than that using all the
103 bands. The results showed that the majority of the discriminatory information has already
been included during band selection and confirmed the effectiveness of the proposed method.

Regarding the above results in Figs. 6 and 7 and Table 1, an interesting question may arise:
why the estimated reference map generated a better result than that using the reference map
accompanied with the dataset. This may be explained by the completeness of ground-truth label-
ing and the accuracy of the underlying probability estimation. First, in 92AV3C dataset, the
ground truth is designated into 16 classes and they are not all mutually exclusive.34,35 But
PDF requires that states of a random variable are mutually exclusive. In this case, using the
data in the ground-truth map to estimate the reference map’s PDF may produce significant errors

Fig. 8 Illustration of Pavia University scene. (a) Four spectral bands. (b) Ground truth.

Fig. 9 Spectral bands in (a) the spectral window found by the proposed method and (b) a ran-
domly sampled spectral window.
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(mismatch of the PDF’s definition). On the other hand, using the proposed method to estimate
PDFs may avoid this problem because different real values are used to label different classes and
they are mutually exclusive. Second, the accompanied reference map actually only labeled about
half of the ground truth, i.e., the 16 classes of vegetations. The other half of pixels, e.g., highway,
rail track, etc., are all categorized as background, presumably, because they correspond to unin-
teresting regions or were too difficult to label. This may put a strong argument to adopt the
estimated reference map in the MI calculation because the estimated reference map differentiates
different classes by different pixels’ value and all pixels can be fully utilized. Third, in the
accompanied reference map, each class is labeled by an integer. For example, in AVIRIS
92AV3C, 16 classes of vegetations are labeled by 16 integers from 1 to 16, and the background
is labeled by 0. Consequently, the estimated probability density will distribute in the integer
domain. On the other hand, the estimated reference map is obtained by averaging several
real spectral images, and the classes are differentiated by the real numbers characterized by
their particular reflectance values. Since the MI is used to measure the utility of each band that
was valued at the spectral response, the probability distribution estimated from the real reflec-
tance values will match the MI calculation more than that using the artificially labeled values.

5 Conclusions

We have described a band-selection method for hyperspectral image analysis without relying on
a prespecified reference map. In our method, the reference map is constructed by averaging the
bands within an optimal spectral window, which is automatically found by gradient ascending
algorithm. Since the estimated reference map is more suitable to the calculation of MI, the pro-
posed method outperformed that using the accompanied reference map. Using the AVIRIS data-
set, up to 55% of bands could be cut off without significant loss of classification accuracy.
Meanwhile, its performance is much robust to accuracy degradation. The method should be
useful for cases where the ground truth is difficult to obtain. Future work is carried out to develop
a theoretical framework for the MI-based discrete transform and to investigate an adaptive algo-
rithm for setting the spectral window’s width.
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