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Abstract. Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in
recent years. The poor stability of theUAVplatform, however, producesmore inconsistencies in hue
and illumination among UAV images than other more stable platforms. Image dodging is a process
used to reduce these inconsistencies caused by different imaging conditions. We propose an algo-
rithm for automatic image dodging ofUAVimages using two-dimensional radiometric spatial attrib-
utes. We use object-level image smoothing to smooth foreground objects in images and acquire an
overall reference background image by relative radiometric correction. We apply the Contourlet
transform to separate high- and low-frequency sections for every single image, and replace the
low-frequency section with the low-frequency section extracted from the corresponding region
in the overall reference background image.We apply the inverse Contourlet transform to reconstruct
the final dodged images. In this process, a single imagemust be split into reasonable block sizeswith
overlaps due to large pixel size. Experimentalmosaic results show that our proposedmethod reduces
the uneven distribution of hue and illumination.Moreover, it effectively eliminates dark-bright inter-
strip effects caused by shadows and vignetting in UAV images while maximally protecting image
texture information.©TheAuthors. Published by SPIE under aCreativeCommonsAttribution 3.0Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JRS.10.036023]
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1 Introduction

Remote sensing images are usually acquired under dissimilar imaging conditions, such as differ-
ent periods, different illumination intensities, and different sensor angles. Therefore, uneven
distributions of brightness, contrast, and color exist in and among remote sensing images, which
greatly restricts the use of the subsequent orthophoto mosaics and their applications. Image
dodging is a process used to reduce uneven brightness and hue in and between images, a relative
equalization procedure of contrast and color information in images.1 It is an essential part in
producing a seamless mosaic and ensures that mosaicked images accurately and truthfully
express the objective real world and therefore are suitable for use in real-world applications.
Image dodging is particularly important when dealing with unmanned aerial vehicle (UAV)
images collected from fixed-wing UAVs without gimbals, from different solar elevations, or
from multiple flights under varying weather conditions.

UAV imaging technology has developed rapidly in recent years, gaining wide use in various
applications because of its cost effectiveness, high flexibility, and high spatial resolution.
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However, different images have widely varying brightness and hue due to different imaging
conditions and sensor restriction issues that are specific to UAV imagery. If images are acquired
via a low and unstable platform such as a fixed-wing UAV without gimbals, then the camera
angle is subject to extreme shifts and the brightness and hue of ground objects may vary among
images taken at different camera angles. When UAV images are acquired at a small solar eleva-
tion angle, shadows cause visible difference of brightness distribution between sunlight side and
the opposite side in an image. The quality of consumer-level digital cameras is limited and can
lead to vignetting, an uneven brightness distribution in single images. Large survey area cover-
age requires multiple flights, subject to changes in weather with significant differences in global
image illumination. Some image conditions can be controlled by using stable multirotors and
gimbals, but other image conditions cannot be controlled, such as the weather during multiple
image-collection flights. All these issues may cause a dark-bright interstrip effect in a final
mosaic image. The radiometric inconsistency caused by these conditions can be reduced or
even eliminated, however, through image dodging procedures. Several studies on the radiometric
correction of UAV images have been conducted2–5 that focus on the quantitative inversion of
UAV images for agriculture applications. In this paper, however, we focus on a dodging method
designed to enhance the visual appearance of a final mosaic image. Some representative image-
dodging methods were compared by Over et al.6 and Pudale and Bhosle,7 including histogram
matching, linear transformation, and statistical methods based on mean and standard deviation
(SD) and can be broadly categorized into linear and nonlinear models.8,9

Histogram matching is a common method of nonlinear models, which reduces the difference
in brightness and hue among image objects by correcting the shape of the histogram. Doutre and
Nasiopoulos10 used the histogram matching method to correct differences in brightness and hue
among camera video images. They applied histogram statistics for brightness and hue to the
original and the reference image, and then created brightness and hue-mapping functions
based on the cumulative distribution of the shape difference function. Wang and Pan,11 however,
point out that although the histogram matching method adjusts the mean and variance to fit both
the reference and target images, this occurs by directly changing the shape of the histogram.
Different internal features of images reflect differences in the histogram shape of the image;
thus, when the difference is large, the histogram-matching method will change the original relative
distance among the gray levels, making the image color shift, and the image dodging process fails.

To address the problems in histogram matching, linear modeling has received a great deal of
attention.12–16 In these approaches, the combined value of hue and illumination variation among
images is estimated statistically from pixels sampled from overlapping areas of several images.
This value is then used to reduce the differences among the images; however, it does not re-
present the true gray difference among the images. The advantage of the linear modeling is
that it takes color consistency for multiple images as a whole into consideration to facilitate
quality control. In addition, the results do not depend on the processing order of the image.
The disadvantage is that it does not well reflect the nonlinear attributes of the aerial image.
Although overall hue and illumination consistency are ensured, differences may still exist in
local areas. The linear model is also likely to cause color distortion for the gray-value com-
plex-distribution images. The linear statistical method based on mean and SD is based on
the idea that two images have a “least mean squares” sense of gray difference, but this approach
reduces local contrast in images to be processed.

These methods were proposed for satellite imagery or traditional aerial images. UAV flying
height generally is only tens to hundreds of meters above the ground. Camera angles, lighting
conditions, and properties of ground objects generate large highlighted areas and dark spots in
images collected by UAVs. Because of occlusion, the area and position of the same highlighted
building or shadow found in different images may vary, thus influencing image-dodging results.
Traditional image-dodging methods based on global or local statistical parameters may abnor-
mally stretch the hue and illumination of different areas. For example, large areas of vegetation
will become brighter and buildings and other bright regions will become darker. Commercial
softwares, such as Pix4D and Agisoft Photoscan, have their own image-dodging processes
embedded in the workflow; these processes balance color in images acquired under similar con-
ditions in a single flight. However, traditional dodging approaches and commercial software
cannot effectively reduce the dark-bright interstrip effect between UAV images and the overall
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brightness inconsistencies found in images acquired during different flights. Pan et al.17 pro-
posed first a global then local processing method; each image is treated at first based on a linear
model, then subjected to local optimization based on a nonlinear model.

In this paper, we address these problems and extend the research following global then local
principles by combining the concepts behind the Wallis filter and MASK dodging18 in our pro-
posed image-dodging method. A flow chart of the algorithm is shown in Fig. 1. The overall
reference background image was obtained based on global statistics, and the overall brightness
remains consistent with the two-dimensional (2-D) radiometric spatial attributes. We use the
Contourlet transform for high- and low-frequency information separation before processing a
single image, and apply relative radiometric consistency processing to the low-frequency section
of the target image. We use only the overall mean difference for radiation adjustment in low
frequency sections to keep relative radiation distribution information within one image. The
foreground bright and dark objects are smoothed before the overall mean difference is obtained
to reduce adverse effects for average difference acquisition.

2 Methodology

2.1 Acquisition of Overall Reference Background Images

The aim of image dodging for image mosaics is to make the hue and illumination between
images consistent as a whole, while maximally protecting texture information and true contrast.

Fig. 1 Flowchart of the proposed dodging method.
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The radiometric differences among images stem from the background radiation. Image dodging
therefore should target the background radiometric information of images. Thus, a key step in
an image dodging process is obtaining this background radiometric information to produce an
overall mosaic result.

Highly reflective objects such as buildings and water bodies, and nonreflective objects, such
as shadows, may appear in images. These objects are considered as the foreground objects,
which need to be excluded during the extraction of overall background radiation information.19

We use the object-level image smoothing (OLIS) method19 to minimize the negative effect from
foreground objects in the images. We calculate the mean and SD of these foreground-smoothed
images. After the foreground-smoothed single image is produced by relative radiometric
consistency processing based on mean and SD (see the following step 3), these images are
premosaicked. Because image stitching may produce some visible mosaic traces, and the
edge information may be mixed into the images to be processed in a subsequent procedure,
the premosaicked result needs to be smoothed to ensure the reliability of the overall reference
background image.

Suppose there are N images Ii (i ¼ 1;2; 3: : : N) to be mosaicked. The overall reference back-
ground image is B. The steps can be summarized as follows:

1. Using OLIS to remove the bright and dark foreground objects in image Ii to obtain
SIi (i ¼ 1;2; 3: : : N);

2. Calculating mean SIiM and SD SIiV of image SIi, which have been object-level
smoothed, to derive the overall background image mean m ¼ PðSIiM × ciÞ∕

P
ci

and SD v, where ci is the pixel count of SIi;
3. Performing relative radiometric consistency processing for SIi based on mean and SD to

obtain SI 0i ; the process is as follows:

EQ-TARGET;temp:intralink-;sec2.1;116;442a ¼ v
SIiV

b ¼ m − a × SIiM SI 0i ¼ a × SIi þ b:

4. Premosaicking for SI 0i and smoothing premosaicked results to get B.

2.2 Separation of High and Low Frequencies of Images

Contourlet transform20 is a multiscale and multidirectional image analysis method that compen-
sates for the shortcomings of wavelet transform in obtaining the intrinsic geometric structure,
i.e., high-frequency information, of an image. Therefore, we conduct high- and low-frequency
separation for images using Contourlet transform and better protect the high-frequency texture
information.

Contourlet transform is divided into two analysis phases: the multiscale analysis and the
multidirection analysis. It utilizes the Laplacian pyramid21 to perform multiscale analysis,
decomposing images into a downsampled low-pass filtered image and a band-pass image iso-
lating breakpoints of the edges. Then the 2-D directional filter bank (DFB)22 connects the break-
points in the same direction into lines to form directional coefficients.

2.3 Dodging for a Single Image

Contourlet transform is a local transformation of space and frequency domains. Since the DFB is
variable, it has a stronger directionality than wavelet transform and can express the image texture
features more effectively. The Contourlet transform is introduced in image dodging for effective
protection of texture information.

To obtain true differences in background radiation between the reference image and the
image to be processed, not only do the bright and dark objects in images need to be smoothed
before performing Contourlet transform but also the low-frequency section in the transform
result needs to be further processed using a low-pass filter. Even if the image has been processed
by a multilevel Contourlet transform, a portion of high-frequency texture information still exists
in the low-frequency section. Therefore, we use the low-pass filtered result of the low-frequency
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section for extracting the background radiation difference and add this difference back to the
low-frequency section of the original image. We perform an inverse Contourlet transform to get
the dodged image while keeping the high-frequency section intact. The high-frequency section is
not involved in this process, which prevents the dodging process from altering the high-
frequency texture information of the image. The dodging process of a single image can be
summarized as the following steps:

Suppose that IO is the original image in the dodging process, SIO denotes the image with
foreground objects smoothed of IO, and IB is the corresponding position image in B.

1. Performing Contourlet transform with n levels for IO, SIO, and IB to obtain low-
frequency section ILO, SI

L
O, and ILB and high-frequency section IHO, SI

H
O , and IHB .

2. Conducting low-pass filter for SILO and ILB to obtain “true” low-frequency information
SILLO and ILLB , which better represents the image background.

3. Utilizing SILLO , ILLB , and ILO to get IL 0
O based on the following:

EQ-TARGET;temp:intralink-;e001;116;574IL 0
O ¼ ILO − ðSILLO − ILLB Þ ¼ ILO − SILLO þ ILLB (1)

or

EQ-TARGET;temp:intralink-;e002;116;530IL 0
O ¼ ILO∕ðSILLO ∕ILLB Þ ¼ ðILO∕SILLO Þ � ILLB : (2)

4. Replace ILO with IL 0
O and combining IHO to perform inverse Contourlet transform to obtain

the dodged result.

The Contourlet transform level n can be set to 4.19

2.4 Dodging for the Whole Mosaic Image

Since the orthophotos to be mosaicked already contain geoinformation, the position of each
single image is known in the mosaic image. When a single image is processed, the corresponding
region data of the overall reference background image must be extracted at the same time.
The bigger the Contourlet transform level number, the lower the downsampling level of the
low-frequency section, which means that each pixel processed in the low-frequency section cor-
responds to a bigger area in the mosaic image. The mosaic images usually have a large pixel
count; it is practically impossible to process entire mosaic images at once. Moreover, the
Contourlet transform has a so-called edge effect; therefore, a special deblocking strategy with
overlaps is introduced to perform dodging for a single image, as well as the corresponding region
data of the overall reference background image. A schematic diagram for deblocking is shown
in Fig. 2.

Fig. 2 Diagram for single image deblocking strategy.
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As shown in Fig. 2, each block has an overlap with its adjacent blocks. When processing a
block, the valid range for the block is smaller than the block range itself. The overlap size
depends on the Contourlet transform level number and the window size of the low-pass filter
in the low-frequency section. The overlap region number must be more than O ¼ 2l � w, where
l is the Contourlet transform level and w is the window size of the low-pass filter in the low-
frequency section.

3 Experiment and Analysis

The test images used in our experiment were 1650 orthophotos after aerial triangulation and
bundle adjustment. The original images were acquired on three flights in three different days
due to large coverage. The UAV used for acquiring images was a fixed-wing UAV with no gim-
bal in the fuselage. The on-board UAV camera was a Canon 5D II. The image format was regular
8-bit RGB-band color JPEG file. Pixel resolution for a single image was 5616 × 3744. The file
size of a single orthophoto after rectification was ∼110 MB. The total data size for all ortho-
photos was ∼150 GB. The final file size of the mosaic image was 34 GB. The dark-bright inter-
strip effect does not seem too noticeable in the original 1:1 image; only in the overview will it
become apparent. Traditional linear model cannot solve the nonlinear brightness distribution
problem of the single image due to its model constraint. If we apply the nonlinear histogram
matching method, especially when the shape difference in the image histogram is large, then the
relative distance among the original gray levels will change, resulting in hue and illumination
shifts in images with different internal features. This set of test images involves all situations
noted in Sec. 1 that can cause different brightness distributions in UAV images. Therefore, these
images can be utilized to test the effectiveness of the proposed method. Figure 3 shows a
comparison between the mosaic result without image dodging and the result after processing
with our proposed dodging method as presented in this paper.

From the mosaic result without image dodging in the left part of Fig. 3, we can see there are
three different illumination level regions from left to right. The left three flight strips are under-
exposed and brightness is low. Flight strips in the middle part are exposed properly and bright-
ness is relatively modest, but the dark-bright interstrip effect is visible. One side is bright and the
other side is dark since the illumination distribution among the individual images is uneven. In
addition, the UAV flight path is a zigzag, so the overall dark-bright interstrip effect in the mosaic
result becomes much more pronounced. Flight strips in the right part are slightly overexposed;
these images were acquired on a sunny day and the brightness is high. After carefully analyzing
the original image, we found that when the UAV flies in different strips, different amounts of
shadow casting objects were captured on different sides of the image because of occlusion, caus-
ing uneven brightness distribution within a single image. This uneven brightness distribution

Fig. 3 Comparison between before- and after-dodging mosaics.
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causes the dark-bright interstrip effect. Figure 4 shows the mosaic results from two commercial
softwares commonly used for UAV images processing. The left part is the mosaic result from
Pix4D and the right part is the mosaic result from Agisoft Photoscan. Both of the mosaics have
the dark-bright interstrip effect. Furthermore, the three different global illuminations from three
flights remained.

The enlarged views of three typical regions selected from mosaic results found in Fig. 3 are
shown in Fig. 5, where a, b, and c regions correspond to a, b, and c regions in the mosaic results
found in Fig. 3.

Fig. 4 Mosaic results of commercial software: (a) Pix4D and (b) Agisoft Photoscan.

Fig. 5 Comparison of three typical insets taken from Fig. 3: left images show the three areas
before dodging, right images show the same three areas after dodging.
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In Fig. 5, the left column shows the results without image dodging and the right column
shows the dodged results using our proposed method. Regions a, b, and c were insets taken
from three typical areas in Fig. 3 where the original UAV images are underexposed, properly
exposed, and overexposed, respectively. They were taken from a 1:1 viewing scale of both
mosaics; all of them contained parts of two adjacent images. The brightness and hue in the lower
right corner of each inset are visibly different from the main body of each inset. However, as it
can be seen from the right column in Fig. 5, local differences can also be rectified. Mean and SD
parameters for the three regions corresponding to the true color RGB bands are given in Table 1.
We can see the mean of the three bands, a, b, and c regions, was successively larger before
dodging, but remained at the consolidated level after dodging. Moreover, the corresponding SD
was almost unchanged for all three bands, indicating that our proposed method causes little
interference with image information and can maintain image texture information in the process.
Our proposed method keeps the brightness of all images consistent and eliminates the dark-
bright interstrip effect, caused by the shadows of ground objects and vignetting.

4 Conclusion

In this paper, we propose an algorithm for automatic image dodging of UAV images considering
2-D radiometric spatial attributes. It removes dark and bright foreground objects to reduce
adverse effects and obtains an overall reference background image during preprocessing. Our
method uses the Contourlet transform to separate high- and low-frequency sections of images,
calculating the average difference among reference images in the low-frequency portions for
radiometric consistency. The aspects of this method are the acquisition of the overall reference
background image for obtaining mosaic results and the targeted processing of low-frequency
sections of single images. Because images are usually large in pixel count, there is a need to
deblock the images with overlaps, only retaining the effective area of sub-blocks in resulting
images. The size of the overlap region is dependent upon the levels of Contourlet transform
and window size of low-pass smoothing in low-frequency sections.

The proposed method can be used for image dodging to balance the inconsistencies of hue
and illumination in images acquired at different times and can maintain image detail. It can also
be applied in push broom images with strip phenomenon due to varying light and shadow in
different directions. Yet there still exist problems such as the contamination of colors in bright
areas by the surrounding regions and fogging of the final visual effect in the mosaic image,
which will be improved in follow-up studies.
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Table 1 Statistic parameters of three typical areas.

Mean SD

Red Green Blue Red Green Blue

a

No dodging 22.16 31.46 27.61 11.62 10.21 10.22

Proposed method 71.14 75.45 73.99 11.51 9.43 9.52

b

No dodging 70.26 68.59 66.97 25.48 22.43 23.30

Proposed method 78.09 75.57 72.87 24.84 21.84 22.90

c
No dodging 104.43 110.08 106.56 36.46 29.84 28.24

Proposed method 68.63 71.95 69.60 36.06 28.58 27.92
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