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Abstract. Relative radiometric normalization (RRN) of remotely sensed images is often a pre-
processing step during time series analysis and change detection. Conventional RRN methods
may lessen the radiation difference of changed pixels in images during the RRN process, thus
reducing the accuracy of change detection. To solve this problem, we propose a relative radio-
metric correction method based on wavelet transform and iteratively reweighted multivariate
alteration detection (IR-MAD). A wavelet transform is applied to separate high and low fre-
quency components of both the target image and reference image. The high frequency compo-
nents remain unprocessed to preserve high frequency information. We use the IR-MAD
algorithm to normalize the low frequency component of the target image. A reverse wavelet
transform reconstructs the radiometrically normalized image. We tested the proposed method
with traditional histogram matching, mean variance, the original IR-MAD method, and a method
combining wavelet transform and low-pass filtering, and change detection was conducted to
evaluate the RRN quality. The experiments show that the proposed method can not only effec-
tively eliminate the overall radiation difference between images but also enable higher accuracy
of change detection. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.12.045018]
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1 Introduction

Divergences in the reflectance of remote sensing images for an area can indicate land cover
change. Thus, the existing change detection methods often determine whether there is change,
according to the radiometric differences between the images.1,2 The physically unchanged
ground object in two images acquired at different times can lead to variation in spectral
values.3 The reason is that acquisition conditions are different, such as status or posture of a
sensor, solar illuminance, observation angles, atmospheric scattering, and absorption.4,5 This
problem presents challenges in multitemporal image processing and analysis.6 Therefore, in
practical remote sensing applications, radiometric normalization is conducted to eliminate
the radiometric discrepancy between images caused by acquisition conditions rather than actual
changes in ground objects.7,8

Radiometric normalization can be divided into two types: absolute radiometric correction and
relative radiometric normalization (RRN).9–12 Absolute radiometric correction based on single
image reveals actual surface response by removing the influence of the atmosphere.5,13 However,
to accurately estimate atmospheric effects, it is necessary to obtain atmospheric properties at the
time of data collection, such as air temperature, relative humidity, atmospheric pressure, visibil-
ity, altitude, and elevation, which tends to be field measured or acquired through other data.13–16

To the contrary, relative radiometric normalization aims at minimizing the radiometric
differences caused by inconsistencies of acquisition conditions between images. It is used
for multitemporal images. In a relative radiometric normalization, one of the images is
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considered as the reference image and all other images are normalized in such a way that they
become radiometrically similar to the reference image.12,17 Difficulty to collect the necessary
ancillary data, along with the lack of historical data, has further reduced the opportunity to per-
form absolute radiometric correction on multitemporal images. Fortunately, since RRN does not
require any ancillary data and is easier to achieve than absolute correction, it has been widely
used to normalize images obtained at different times.18,19 In some applications like change detec-
tion and classification, it has been demonstrated that some RRN methods performed better than
absolute radiometric corrections.13,18

Commonly used RRN methods consist of two types: nonlinear normalization and linear
normalization.20 Nonlinear methods include histogram matching (HM).8 This approach can
cause gray scale loss and a disordered overall radiation distribution since it achieves correction
by matching the histogram of a target image with that of the reference image.20 Linear methods
include minimum–maximum (MM),9 mean-standard (MS) deviation,9 haze correction (HC),21

image regression (IR),22,23 pseudoinvariant feature (PIF),11,24–26 dark set-bright set (DB),17 and
no-change set (NC)27 techniques. Most of these methods (HM, MM, MS, HC, and IR) use all of
the pixels in the estimation of normalization coefficients.28 Such methods do not often perform as
well as methods using invariant pixels8,28,29 and can lead to low change detection accuracy since
the radiometric difference caused by physical ground change is normalized. Those methods
using unchanged pixels, however, are time and labor consuming due to the selection of invariant
pixels, and furthermore, the quality of the chosen samples directly affects the relative radiometric
correction results.30,31

To control the quality of selected invariant pixels and reduce the time and labor cost, some
researchers have proposed improved methods.32–34 These invariant pixels selection methods
include slow feature analysis,31 Kauth–Thomas transformation,17 scattergram-controlled regres-
sion,27 temporally invariant cluster,18 principal component analysis (PCA),4 multivariate alter-
ation detection (MAD),35 and iteratively reweighted multivariate alteration detection (IR-
MAD).36 These methods can increase the quality and number of invariant pixels, as well as
reduce human intervention and subjectivity. Canty et al.35 applied MAD to define automatically
the invariant pixels within multispectral images of the same area collected at two different times.
Their results showed that automatically obtained invariant features generated better results than
those produced by manual selection. To improve the sensitivity of MAD, Nielsen et al.36 pro-
posed IR-MAD. Not only does this method automatically select invariant features but also deter-
mine an adaptive threshold through an iterative process. As a consequence, IR-MAD is an
effective method to select unchanged pixels. Mateos et al.37 radiometrically normalized multi-
temporal remote sensing images using the IR-MAD algorithm. Canty and Nielsen38 applied
IR-MAD for the normalization of LANDSAT and ASTER multitemporal images. These
RRN methods assume the invariant pixels’ values in the target image linearly related to
those of the reference image because of simplification of modeling. However, in fact, the relation
does not follow a linear model typically. Thus, the linear assumption will negatively affect the
normalization results. Furthermore, these methods can result in loss of high frequency details.

Frequency domain transforms, such as the Fourier,39 wavelet,40 and contourlet41 transforms,
were applied in relative radiometric normalization to overcome the limitations of conventional
methods. Biday and Bhosle42 used Fourier and wavelet transforms to separate high and low
frequency components in images; the effectiveness was validated in comparative experiments
with two other relative radiometric normalization methods. Sun et al.43 proposed an RRN
method based on wavelet transform and low pass filter (WLPF) that effectively improved
the change detection accuracy. Li et al.20 presented a method for relative radiometric consistency
processing, based on object-oriented smoothing and contourlet transforms, concluding that the
proposed method can improve the visual effects of normalized images thus increasing the accu-
racy of change detection.

To overcome the limitations of existing methods, we propose a relative radiometric normali-
zation method based on wavelet transform and IR-MAD (WIRMAD). Wavelet transform is used
to divide images into spatial high frequency and low frequency components. We automatically
extract invariant features from the low frequency components, and then a linear regression equa-
tion is used to normalize the low frequency component of the target image to the reference
image. A reverse wavelet transform is applied to reconstruct the final normalized image.
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We compared the proposed method visually and empirically to the traditional HM, MS,
IR-MAD, and WLPF methods in experiments with three pairs of images in China at different
spatial resolutions. Furthermore, change detection was conducted on these images to evaluate the
RRN quality of the proposed method. The remainder of this paper is as follows: Sec. 2 describes
the datasets and Sec. 3 details the proposed relative radiometric normalization method based on
wavelet transform and IR-MAD, followed by the experimental results and analysis in Sec. 4.
Section 5 discusses the application and limitations of the proposed method, and the conclusion is
given in Sec. 6.

2 Datasets

Four pairs of bitemporal images at different spatial resolutions were employed in the experi-
ments, one from Nanjing for normalization and three for change detection from Shenzhen,
Wuhan, and Guangxi in China, respectively. The information of the datasets used in this
paper is summarized in Table 1.

For each image pairs, we geometrically registered the target image and reference image with
error controlled to within one pixel before normalization and change detection. To evaluate the
change detection accuracy, true change maps were produced by visual interpretation. Auxiliary
images from Google Earth were used to ensure the accuracy of true change maps.

3 Methodology

In this paper, we present an RRN method combined wavelet transform and IR-MAD algorithm.
Figure 1 illustrates the relative radiometric normalization approach used in this study in a general
way; we discuss the major steps in detail in Secs. 3.1–3.3.

3.1 Wavelet Transform

The low frequency of remote sensing image corresponds to the holistic background radiation
information, and the high frequency is the foreground target, texture information. Therefore, the
purpose of global radiometric correction can be achieved by eliminating the difference between
the low frequency components of the target and reference images. Keeping the high frequency
components unprocessed can preserve high frequency information.

Wavelet transform is one of the commonly used algorithms in frequency domain processing,
developed in signal processing theory to help extract information from many different kinds of
data.44 In this paper, wavelet transform is used to separate the spatially low and high frequencies.

Table 1 Description of data sets using in this paper.

Image
pairs Sensor Date Band

Spatial
resolution

(m) Size Location Application

1 SPOT5 2002,2007 Single 10 1600 × 1600 Nanjing
32.05°N,
118.61°E

Radiometric
normalization

2 Landsat5
TM

1993,2011 Multispectral 30 1024 × 1024 Shenzhen
23.38°N,
113.08°E

Change
detection

3 GF1 WFV 2013,2017 Multispectral 16 1600 × 1600 Wuhan
31.06°N,
114.67°E

Change
detection

4 GF2 PMS 2015,2016 Multispectral 1 3200 × 3200 Guangxi
24.39°N,
109.55°E

Change
detection
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There are different types of wavelet basic functions, whose qualities vary according to several
criteria. In this study, Haar wavelet, the simplest wavelet and one of the first studied, is used to
achieve the separation of low and high frequencies. According to the analysis in Li’s study,20 we
decompose the target image and reference image using a four-level wavelet transform.

3.2 IR-MAD Algorithm

After wavelet transforms, we used IR-MAD to select invariant pixels from the low-frequency
components of target and reference images. IR-MAD is an effective method to select pixels with
high no-change probability between images.3

For two n-band images, acquired at times t1 and t2, represent them by two vectors
F ¼ ðF1; F2; : : : ; FnÞT and G ¼ ðG1; G2; : : : ; GnÞT . Two linear combinations are constructed
for all spectral bands:

EQ-TARGET;temp:intralink-;e001;116;329U ¼ aTF ¼ a1F1 þ a2F2 þ : : : þ anFn; (1)

EQ-TARGET;temp:intralink-;e002;116;298V ¼ bTG ¼ b1G1 þ b2G2 þ : : : þ bnGn; (2)

where U and V are called the canonical variates; n is the number of bands; a and b are constant
vectors, maximizing the variance of U − V.

In this way, the difference image U − V will show maximum change information, referred to
as the MAD variates, where i is number of bands:

EQ-TARGET;temp:intralink-;e003;116;223MADi ¼ Un−iþ1 − Vn−iþ1 ¼ aTn−iþ1F − bTn−iþ1G; i ¼ 1; : : : ; n: (3)

Assuming that no ground reflectance changes have occurred in two images of a scene, in such
a case, the sum of the squares of the standardized MAD variates will approximately follows a
chi-square distribution with n degrees of freedom (χ2ðnÞ):

EQ-TARGET;temp:intralink-;e004;116;154Z ¼
Xn
i¼1

�
MADi

σMADi

�
2

∈ χ2ðnÞ; (4)

where Z represent the sum of the squares of the standardized MAD variates and σMADi is the
variance of MADi.

Pr( )no change t>
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Fig. 1 The flow chart of the proposed method.
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The MAD variates associated with change observations, however, will deviate more or less
strongly from such a multivariate normal distribution.38 Therefore, to improve the sensitivity of
the MAD transformation, Nielsen et al.36 weight observations by the probability of no change
though an iteration scheme:

EQ-TARGET;temp:intralink-;e005;116;687 Prðno changeÞ ¼ 1 − Pχ2;nðZÞ; (5)

where Prðno changeÞ is the weight, representing the probability of no change, and Pχ2;nðZÞ is the
quantile of chi-square distribution.

Iterations are continued until the largest absolute change in the canonical correlations is
smaller than a preset small value, e.g., 10−6.36 For radiometric normalization purposes, we
can select all pixels that satisfy Prðno changeÞ > t, where t is a decision threshold, typically
95%.36 The invariant pixels will be used to estimate the normalization coefficients though regres-
sion fit and then normalize the target image to the reference image.

3.3 Relative Radiometric Normalization

In this paper, we apply the IR-MAD algorithm to normalize the low frequency component of the
target image after separation of high frequency and low frequency components by using wavelet
transform. For a specific band, assume that f1 is the image to be normalized and f2 is the refer-
ence image. The specific steps of relative radiometric normalization based on wavelet transforms
and IR-MAD are as follows:

1. Apply wavelet transform to the target image f1 and reference image f2 to obtain the
low-frequency components of the images, fL1 and fL2 , and the high-frequency compo-
nents of the images, fH1 and fH2 .

2. Apply IR-MAD algorithm to select the corresponding invariant pixels from the two low-
frequency components fL1 and fL2 .

3. Perform the orthogonal linear regression on the selected invariant pixels to determine the
relative radiometric normalization coefficients (slope a and intercept b).

4. Normalize the low frequency fL1 of the target image f1 to the low frequency component
fL2 of the reference image f2 through the follow equation:

EQ-TARGET;temp:intralink-;e006;116;360fL1 0 ¼ a · fL2 þ b: (6)

5. Replace fL1 with fL1 0.
6. Apply the wavelet reverse transform to the low and high frequencies of f1 to obtain the

radiometrically normalized result.

4 Experiments and Analysis

4.1 Relative Radiometric Normalization

In order to verify the proposed method WIRMAD for relative radiometric normalization, it was
compared with the HM, MS, IR-MAD, and WLPF methods. The results are shown in Fig. 2. The
radiation differences between RRN results, target image, and reference image were calculated,
and Fig. 2 depicts the results.

Visual inspections of Figs. 2–4 show that the HM, MS, IR-MAD, WLPF, and WIRMAD
methods significantly reduce the radiation difference between the target and reference images.
The overall brightness and color of RRN results are similar with the reference image and
the radiometric consistency is significantly improved compared with the target image in
Figs. 2(a)–2(g). The differences between RRN results and the reference image demonstrate
that the results of WLPF and WIRMAD are more consistent with the reference image than
that other methods, as shown in Figs. 2(h)–2(m). The differences between RRN results and
the reference image demonstrate that the results of WLPF and WIRMAD are more consistent
with the reference image than that other methods, as shown in Figs. 2(h)–2(m). The result of
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Fig. 3 Subgraphs of the upper red box in Fig. 2: (a) reference image, (b) target image, (c) HM,
(d) MS, (e) IR-MAD, (f) WLPF, and (g) WIRMAD.

Fig. 2 The RRN results obtained from the proposed WIRMAD method and HM, MS, IRMAD, and
WLPF methods, and the differences between the results and the original image: (a) reference
image, (b) target image, (c) HM, (d) MS, (e) IR-MAD, (f) WLPF, (g) WIRMAD, (h) difference
between (a) and (b), (i) difference between (a) and (c), (j) difference between (a) and (d), (k) differ-
ence between (a) and (e), (l) difference between (a) and (f), and (m) difference between (a) and (g).
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WIRMAD method, however, was more consistent with the reference image, a result not evident
through a visual inspection.

To quantitatively evaluate and compare our WIRMAD method and the HM, MS, IR-MAD,
and WLPF methods, the mean, standard deviation, and correlation between the resulting images,
the target image and reference image were calculated to assess the performance of these methods,
as shown in Table 1.

As shown in Table 2, from the mean value, we can see that the traditional HM (103.0872),
MS (102.5441), and IR-MAD (103.1381) methods yielded results closer to the reference image
as compared with WLPF (95.8877) and WIRMAD (93.6330). The standard deviation of the
results derived by WLPF (14.5668) and WIRMAD (14.4600) methods, however, is closer to
the target image than that of HM (19.0636), MS (19.0603), and IR-MAD (18.3545) methods,
which indicates that method based on wavelet transform retains more of the texture information
in the original image.

In terms of correlation, as compared with HM, MS, and IR-MAD methods, the results
obtained by WLPF and WIRMAD methods show lower correlation, 0.8218 and 0.8070, respec-
tively, with the target image and higher correlation, 0.5201 and 0.5849 with the reference image,

Fig. 4 Subgraphs of the lower red box in Fig. 2: (a) reference image, (b) target image, (c) HM,
(d) MS, (e) IR-MAD, (f) WLPF, and (g) WIRMAD.

Table 2 Comparison using statistical parameters of RRN results in Fig. 2.

Mean
value

Standard
deviation

Correlation
coefficient with
target image

Correlation
coefficient with
reference image

Target image 67.4315 13.5477 1.0000 0.4788

Reference image 102.8431 19.0813 0.4788 1.0000

HM 103.0872 19.0636 0.9951 0.4788

MS 102.5441 19.0603 0.9979 0.4799

IR-MAD 103.1381 18.3545 1.0000 0.4788

WLPF 95.8877 14.5668 0.8218 0.5201

WIRMAD 93.6330 14.4600 0.8070 0.5849
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especially the proposed WIRMAD method (0.5849), which makes WIRMAD particularly
advantageous in change detection applications.

4.2 Change Detection

Change detection experiments based on three pairs of bitemporal images at high and mid-high
resolutions were carried out to assess further the proposed method. Three different change detec-
tion methods were used, object oriented and pixel based change vector analysis (CVA), PCA,
and the iterated conditional model based on Markov random fields (ICM-MRF),45,46 to avoid the
contingency caused by specific data and change detection methods.

The RRN results of image pairs over Shenzhen are shown in Fig. 5. The pixel-based change
detection results using CVA are also displayed in Fig. 5.

It can be seen from Fig. 5, using the same CVA change detection method on pixel level, more
accurate change detection results with radiometric correction are obtained as compared to the

Fig. 5 Results of relative radiometric normalization and change detection using CVA: (a) refer-
ence image, (b) target image, (c) HM, (d) MS, (e) IR-MAD, (f) WLPF, (g) WIRMAD, (h) true
change, (i) change detection of (a) and (b) using CVA, (j) change detection of (a) and (c)
using CVA, (k) change detection of (a) and (d) using CVA, (l) change detection of (a) and
(e) using CVA, (m) change detection of (a) and (f) using CVA and (n) change detection of
(a) and (g) using CVA.
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raw data without normalization. The change detection results from WLPF and WIRMAD
normalization were significantly improved over conventional HM, MS, and IR-MAD methods.

The change detection results were analyzed; the results are shown in Table 3. Omission, false
alarm, overall accuracy, and kappa parameters were calculated to evaluate the accuracy of change
detection based on RRN results derived by our WIRMAD method, HM, MS, IR-MAD, and
WLPF methods.

In Table 3, we can see that the change detection results were similar regardless of the method.
Change detection accuracy, however, was significantly increased with RRN as compared to the
original image without normalization. The omission and false alarm rates decline, the overall
accuracy and kappa coefficients rise. It can be concluded that RRN is crucial for change
detection.

After RRN using WLPF and our WIRMAD method, the change detection results are similar
and effectively improved over those derived by conventional HM, MS, and IR-MAD methods.
These results suggest that dividing low and high frequencies using wavelet transform can
improve the change detection accuracy.

Among the five RRN methods, our WIRMAD method derives change detection results with
the lowest omissions and false alarms, and the highest overall accuracy and kappa coefficient,
indicating that the proposed WIRMAD method can avoid reducing information about change
and thus increase the accuracy of change detection.

Pixel-based change detection experiments were conducted to assess the results of RRN of
images over Wuhan, China. The RRN results using the proposedWIRMADmethod and conven-
tional methods are shown in Fig. 6, as well as the change detection results using PCA derived
from these RRN results.

Table 3 Evaluation of change detection accuracy.

Change detection
methods RRN methods Omission False alarm Overall accuracy Kappa

CVA Original 0.6370 0.7565 0.7196 0.1251

HM 0.5822 0.6546 0.7817 0.2472

MS 0.5825 0.6234 0.7976 0.2748

IR-MAD 0.6378 0.6254 0.8026 0.2514

WLPF 0.5990 0.5716 0.8198 0.3079

WIRMAD 0.5978 0.4566 0.8513 0.3782

PCA Original 0.6238 0.7695 0.7014 0.1107

HM 0.5848 0.6594 0.7793 0.2418

MS 0.5883 0.6314 0.7944 0.2658

IR-MAD 0.6407 0.6275 0.8020 0.2486

WLPF 0.6035 0.5760 0.8185 0.3027

WIRMAD 0.5730 0.4886 0.8441 0.3750

ICM-MRF Original 0.6221 0.7574 0.7137 0.1265

HM 0.5472 0.6556 0.7761 0.2571

MS 0.5445 0.6277 0.7915 0.2847

IR-MAD 0.6063 0.6185 0.8023 0.2697

WLPF 0.5575 0.5762 0.8158 0.3231

WIRMAD 0.5483 0.4669 0.8500 0.4019
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It can be seen from Fig. 6, change detection on GF-1 WFV images with RRN produces more
accurate results than those obtained on an original image without normalization, especially for
false negative results [Figs. 6(i)–6(n)]. The change detection results derived from RRN using the
proposed WIRMAD and WLPF methods are closer to the true change map than results obtained
after RRN using conventional HM, MS, and IR-MAD methods.

Table 4 shows the evaluation of change detection omission, false alarm, overall accuracy, and
kappa parameter results for the two GF-1 WFV images.

As shown in Table 4, change detection results after RRN have much lower false alarm rate
and higher coverall accuracy than raw images without radiometrical correction. Although the
omission rate is slightly higher, RRN before change detection significantly improves the results.
Change detection with RRN using the proposedWIRMADmethod andWLPF method produced
more accurate results than HM, MS, and IR-MADmethods to normalize images. The WIRMAD

Fig. 6 Results of relative radiometric normalization and change detection using PCA: (a) refer-
ence image, (b) target image, (c) HM, (d) MS, (e) IR-MAD, (f) WLPF, (g) WIRMAD, (h) true
change, (i) change detection of (a) and (b) using PCA, (j) change detection of (a) and
(c) using PCA, (k) change detection of (a) and (d) using PCA, (l) change detection of (a)
and (e) using PCA, (m) change detection of (a) and (f) using PCA and (n) change detection
of (a) and (g) using PCA.
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method, especially, had the highest overall accuracy (0.9395, 0.9156) and kappa coefficient
(0.4244, 0.3718) when detecting change using PCA and ICM-MRF.

Object oriented change detection, including CVA, PCA and ICM-MRF, were applied to
assess the RRN results of images over Guangxi, China. Figure 7 displays the RRN results
and ICM-MRF change detection results.

The change detection results derived from RRN using the proposed WIRMAD method and
WLPF method are closer to the true change map than results obtained after RRN using conven-
tional HM, MS, and IR-MAD methods, as inferred from Fig. 5, since the omission rate is sig-
nificantly lower.

The change detection results for GF-2 PMS images were analyzed and displayed in Table 5.
We calculated omission, false alarm, overall accuracy, and kappa parameters to evaluate the
accuracy of change detection by our WIRMAD method, HM, MS, IR-MAD, and WLPF meth-
ods, after RRN.

As shown in Table 5, the omission, false alarm, overall accuracy, and kappa for the change
detection results using three different methods (CVA, PCA, and ICM-MRF) show the same
trend. After RRN, the omission and false alarm rates decreased, and the overall accuracy
and kappa coefficient increased as the omission and kappa values improved significantly.
This indicates that the radiation difference between multitemporal images must be reduced
though RRN, before change detection. Our WIRMADmethod produces change detection results
at the highest overall accuracy and kappa, with the lowest value for omissions, suggesting that
the separation of low and high frequencies of images contribute to increased change detection
accuracy.

Table 4 Evaluation of change detection accuracy.

Change
detection
methods RRN methods Omission False alarm Overall accuracy Kappa

CVA Original 0.3531 0.9266 0.6055 0.0531

HM 0.3962 0.7129 0.9123 0.3482

MS 0.3867 0.7058 0.9140 0.3574

IR-MAD 0.4700 0.6737 0.9276 0.3676

WLPF 0.4249 0.6712 0.9260 0.3820

WIRMAD 0.4184 0.6838 0.9224 0.3720

PCA Original 0.4198 0.9403 0.5579 0.0266

HM 0.5217 0.6578 0.9333 0.3646

MS 0.4803 0.6318 0.9365 0.3984

IR-MAD 0.5005 0.6261 0.9381 0.3957

WLPF 0.4391 0.6189 0.9375 0.4220

WIRMAD 0.4528 0.6098 0.9395 0.4244

ICM-MRF Original 0.3396 0.9282 0.5892 0.0502

HM 0.3485 0.7109 0.9097 0.3594

MS 0.3175 0.7301 0.8998 0.3433

IR-MAD 0.3276 0.7379 0.8972 0.3327

WLPF 0.4039 0.7044 0.9144 0.3553

WIRMAD 0.3536 0.6982 0.9156 0.3718
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5 Discussion

In this paper, we propose an RRN method based on wavelet transform and the IR-MAD algo-
rithm. Wavelet transform separates the high and low frequency components while IR-MAD
radiometrically normalizes the low frequency components of a target image.

IR-MAD is a linear relative radiometric normalization method. However, even if the multi-
temporal images are very similar, it is impossible to have a complete linear relationship between
images.28 Extracting low frequency components of images by wavelet transform eliminates the
effects of nonlinear factors, such as texture and small changes in ground objects,42 exposing a
higher linear correlation and gives full play to IR-MAD.

The IR-MAD algorithm extracts invariant pixels from the low frequency components, lin-
early correcting the low frequencies of the target image to the low frequencies of the reference
image. This protects the radiometric difference of changed objects in the low frequencies, there-
fore improving change detection results.8

Fig. 7 Results of relative radiometric normalization and change detection using ICM-MRF:
(a) reference image, (b) target image, (c) HM, (d) MS, (e) IR-MAD, (f) WLPF, (g) WIRMAD,
(h) true change, (i) change detection of (a) and (b) using ICM-MRF, (j) change detection of (a)
and (c) using ICM-MRF, (k) change detection of (a) and (d) using ICM-MRF, (l) change detection
of (a) and (e) using ICM-MRF, (m) change detection of (a) and (f) using ICM-MRF and (n) change
detection of (a) and (g) using ICM-MRF.
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The RRN results obtained by the proposed WIRMAD method were quite similar to those
derived by the WLPF method and more consistent with the reference image than conventional
RRN methods. The change detection results derived from RRN using the proposed WIRMAD
were the closest to the true change with the highest overall accuracy and kappa coefficient, and
lowest omission or false alarm rate, among the tested methods. Furthermore, it can be applied for
pixel level or object level change detection regardless method. Moreover, except for change
detection, it can be also applied for image dodging when mosaic images with overlapping,29

gap filling and bad line removing based on a referenced image, and time series analysis.6,19

However, there are limitations of the proposed method. It is not suitable for the multitemporal
images with high nonlinear correlation since this method linearly normalize the low frequency of
the target image. In addition, if the changed ground objects occupied a large proportion of the
image, the normalized result will differ from the reference image visually.

6 Conclusions

Multitemporal images have radiation differences due to sensor and atmosphere conditions, even
over the same area, creating challenges in multitemporal images processing and analysis.
Conventional RRN methods, however, often reduce the difference caused by the change of
the ground objects in the process of normalization. This negatively affects the change detection
results and time series analysis. In order to solve this problem, we propose an RRNmethod based
on the wavelet transform and IR-MAD algorithm. Wavelet transform is applied to separate the
high frequency and low frequency components of both the target and reference images. We use

Table 5 Evaluation of change detection accuracy.

Change detection
methods RRN methods Omission False alarm Overall accuracy Kappa

CVA Original 0.7368 0.5536 0.7099 0.1614

HM 0.7389 0.3843 0.7539 0.2438

MS 0.6325 0.4867 0.7371 0.2637

IR-MAD 0.6556 0.5767 0.6931 0.1787

WLPF 0.4673 0.2983 0.8141 0.4870

WIRMAD 0.3673 0.3550 0.8082 0.5083

PCA Original 0.7626 0.5768 0.7036 0.1344

HM 0.7524 0.3817 0.7530 0.2341

MS 0.6407 0.4946 0.7341 0.2538

IR-MAD 0.6667 0.5796 0.6927 0.1720

WLPF 0.5166 0.2973 0.8068 0.4534

WIRMAD 0.3792 0.3560 0.8064 0.5009

ICM-MRF Original 0.7162 0.5925 0.6920 0.1425

HM 0.7785 0.34765 0.7554 0.2232

MS 0.6724 0.4590 0.7453 0.2581

IR-MAD 0.7727 0.5313 0.7189 0.1557

WLPF 0.5035 0.2495 0.8209 0.4885

WIRMAD 0.3887 0.3070 0.8233 0.5321
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the IR-MAD algorithm to normalize the low frequency component of the target image. Wavelet
reverse transform is conducted to reconstruct the radiometrically normalized image.

Experimental results show that our WIRMAD method can not only achieves radiometric
consistency of the target and reference image but also improves the accuracy of change detection.
WIRMAD method applies wavelet transform to preserve high frequency information. In addi-
tion, low frequency of the target image is normalized using unchanged pixels selected by the IR-
MAD algorithm, thereby improving change detection accuracy, making it more suitable than
other RRN methods for change detection at pixel or object level.
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