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Abstract. An unsupervised classification method based on the H∕α classifier and artificial
immune system (AIS) is proposed to overcome the inefficiencies that arise when traditional
classification methods deal with polarimetric synthetic aperture radar (PolSAR) data having
large numbers of overlapping pixels and excess polarimetric information. The method is com-
posed of two steps. First, Cloude–Pottier decomposition is used to obtain the entropy H and the
scattering angle α. The classification result based on the H∕α plane is used to initialize the AIS
algorithm. Second, to obtain accurate results, the AIS clonal selection algorithm is used to
perform an iterative calculation. As a self-organizing, self-recognizing, and self-optimizing algo-
rithm, the AIS is able to obtain a global optimal solution and better classification results by
making use of both the scattering mechanism of ground features and polarimetric scattering
characteristics. The effectiveness and feasibility of this method are demonstrated by experiments
using a NASA-JPL PolSAR image and a high-resolution PolSAR image of Lingshui autono-
mous county in Hainan Province. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083679]
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1 Introduction

Classification of ground-cover types is an important application of polarimetric synthetic aper-
ture radar (PolSAR).1 One difficulty in PolSAR image classification is the large number of
highly overlapping pixels and the large amount of excess polarimetric information, which
makes classification very challenging.2 Over two decades, many approaches have been proposed
to classify PolSAR images. In 1989, VanZyl suggested that PolSAR data could be classified into
four scattering mechanisms, a discovery that had a significant impact on subsequent classifica-
tions. Cloude and Pottier3 later proposed an unsupervised classification algorithm based on
another target decomposition theory. Eigenanalysis of the coherency matrix provides the polari-
metric scattering mechanisms with matrix-characterizing parameters, such as the polarimetric
entropy H and the average polarimetric scattering angle α. Using the H∕α plane, all kinds
of scattering mechanisms can be classified into eight basic zones to discriminate among surface
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scattering, volume diffusion, and double-bounce scattering. Besides these scattering-mechanism
studies,4,5 several classification approaches based on mathematical tools have been proposed,
such as Markov random field models,6 region-growing techniques,7 and neural-network tech-
niques.8 However, these techniques have yielded inconsistent results because classification per-
formance has varied depending on which particular normalization scheme was selected.

In this study, a novel unsupervised classification model for PolSAR images based on the
artificial immune system (AIS) has been developed in an effort to find a stable classifier.
The AIS is a new method in the neural computation and evolutionary computation research
field.9 It is designed to solve complex problems by exploring the biological immune system,
obtaining its processing mechanisms, and developing appropriate engineering models.10

Unlike other evolutionary computation algorithms, the characteristics of the AIS, such as
biological diversity, memory, tolerance, distributed parallel processing, and robustness, ensure
a balance between exploration and exploitation.11 In recent studies, AISs have been applied to
computer security, pattern recognition, machine learning, data mining, and function optimiza-
tion.12 These studies have the common limitation of relying on training samples, which are
treated as antibodies.

One point of innovation in this study is the introduction of the AIS into the clustering prob-
lem by actualizing the antigens and antibodies without any training sample. On the other hand, to
combine the AIS with the PolSAR unsupervised classification algorithm in a reasonable way, an
improved initialization method based on the genetic algorithm (GA) and a novel mutation
operation has been proposed. Experimental results showed that this novel method can obtain
a quasioptimal solution quickly and is effective for PolSAR image classification.

The rest of the paper is organized as follows. Necessary background information and
fundamental knowledge are provided in Sec. 2. Details of the proposed unsupervised classifi-
cation algorithm are described in Sec. 3. Section 4 describes the remote-sensing datasets used,
together with experimental results and discussion. The conclusions are presented in Sec. 5.

2 Background

2.1 Artificial Immune Systems

AIS, inspired by the human immune system, has the powerful information-processing capabil-
ities of the immune system. The concept originated from observations of how the defense mecha-
nism of natural immune systems protects against attacks by antigens. Molecules such as viruses,
bacteria, and fungi that can be recognized by the AIS are known as antigens. When a foreign
antigen enters the body, the immune system can distinguish “self” from “nonself” and provide an
immune response to exclude the antigenicity of nonself substances.13

The AIS algorithm is derived by abstracting the mechanism of the biological immune system.
Many concepts and operators of the AIS algorithm correspond to the concepts and mechanisms
of the biological immune system. The AIS is a product of the combination of biological immu-
nology and computer science.14 In 1957, clonal selection theory was proposed by Burnet and is
described below.

First, initialize the population, select the antigen and antibody randomly, calculate the affinity
of all antibodies, and determine whether the termination criterion has been met; if it has, output
the results, otherwise go to the next step.

Second, select the n-group antibodies that have the highest affinity with the antigen to gen-
erate a new set of antibodies and then perform the cloning operation on these selected antibodies.
The result of this operation is a clonal selection set.

Third, perform the mutation operation on the clone collection; individuals with good antigen
binding experience and poor variation opportunity. Then calculate the affinity of each antigen
and each antibody and reselect those antibodies that have the highest affinity with each antigen.

Finally, replace the original antibodies with the lowest affinity with the new antibodies
obtained from the reselection process so as to increase antibody diversity.

The clonal selection algorithm (CSA) is applied in the AIS, which is based on clonal
selection and affinity maturation principles.15 Every generation in this algorithm includes the
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initiation of a candidate solution and selection, cloning, mutation, and reselection operations,
similar to the GA. The AIS based on the CSA can deal with a complex search space and has the
advantages of inherent parallelism and the ability to avoid local minima.16

2.2 PolSAR Image Classifier

2.2.1 H∕α decomposition

Polarization is used to describe the wave characteristics of an observation point that changes
over time; it is a common feature of various vector waves.17 According to the principles of
fully polarimetric SAR measurement, the fully polarimetric SAR data make up the scattering
matrix S.

S ¼
�
SHH SHV
SVH SVV

�
; (1)

where SHV is the scattering volume received horizontally and transmitted vertically. After
decomposing the matrix S based on the Pauli basis, the following vector can be obtained:3

k ¼ 1ffiffiffi
2

p ½SHH þ SVVSHH − SVV2SHV�T; (2)

where T indicates a transposed matrix. Then the coherency matrix T3 can be written as

T3 ¼ k × k�T; (3)

where * means the conjugate operation. Cloude et al.18 defined the polarimetric entropy H and
the scattering angle α of surface features according to their characteristics and their scattering
mechanism by decomposing the coherency matrix. H and α can be defined as follows:

H ¼
X3
i¼1

−pi log pi where pi ¼
λi
Σ
j¼1

λj
; (4)

α ¼
X3
i¼1

αipi: (5)

In Eq. (4), λ1, λ2, λ3 are the eigenvalues of the coherent matrix T3. The basic idea of H∕α
classification takes into account the average scattering mechanism and the scattering process and
provides a quantitative description using the average angle and the scattering entropy H.
Depending on theH∕α plane, eight basic regions can be defined representing different scattering
mechanisms, as shown in Fig. 1.1

The scattering entropy H is a measure of the randomness of scattering mechanisms. When
H ¼ 0, this suggests that the surface features have only one major scattering mechanism and that
the dominant scattering matrix is the eigenvector corresponding to the largest eigenvalue. When
H ¼ 1, this indicates that the scattering targets are completely random and that their polarimetric
information is 0. The value of the scattering angle α, which characterizes the physical scattering
mechanism, represents, to a certain extent, the average scattering mechanism of the surface fea-
tures and corresponds to a scattering process, which varies from surface scattering (α ¼ 0) to
body scattering (α ¼ 45) to even scattering (α ¼ 90).17

2.2.2 Wishart distance measurement

Measuring the distance between a pixel and a cluster center is indispensable in a clustering
problem. As clustering objects, pixels of the PolSAR image are expressed by the coherency
matrix T3 in this study. In 1999, Lee et al.19 proposed the Wishart distance based on the
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scattering mechanism. The distance between the coherent matrix hXi of a pixel and the coherent
matrix of the m’th class m can be expressed as Eq. (6).

dðhXi; VmÞ ¼ ln Vm þ TrðV−1hXiÞ; (6)

where Vm is the cluster center of them’th class, which can be obtained by calculating the mean of
the set of pixels belonging to the m’th class.

3 Unsupervised Classification Method Based on AIS

In the classification algorithm based on AIS, concepts such as antigen and antibody must be
specific. Because each antibody should be one solution of the problem, it is defined as a vector
whose length is equal to the number of classes, and each element of the vector records a coher-
ency matrix of one class center. The antigens are defined as an array composed of all pixels. To
estimate the similarity between antigens and antibodies, the Wishart distance is calculated as in
Eq. (6). Table 1 shows the main terminologies and concepts in natural immune systems and in
terms of PolSAR image classification.

The experimental procedure for classification can be described as follows:

1. Use the Lee refined filter with a 3 × 3 window to reduce speckle.
2. Decompose the coherency matrix of the PolSAR image to extract the entropy H and the

scattering angle α.
3. Classify the pixels into k classes according to the H∕α plane (k ¼ 8 in this study, com-

pared with the H∕α-Wishart classifier).
4. Clone and mutate the antigens. The mutation operation will change the class of a pixel

obeying a low probability. Because random mutation is prone to useless exploration, the
possible choices are given as the neighbors of the pixel in theH∕α plane. This means that
if a pixel belongs to Z9 in Fig. 1, its mutated class can only range among
fZ5; Z6; Z8; Z9g. The size of the antigen group is designated by n, and n ¼ 80 in
this study.

5. Obtain the initial antibodies according to every antigen in the group. Find the best
antibody by calculating the sum of the Wishart distances between each pixel and its
corresponding class center.

6. Clone and mutate the best antibody to generate a group of size designated by p (p ¼ 30

in this study). The mutation operation is carried out according to the CSA and obeys
Eq. (7).

Tc ¼ Tc − λðTc − TxÞ; (7)

where Tc is the coherency matrix of a class center, Tx is the coherency matrix of a ran-
dom pixel belonging to this class, and λ is the parameter modulating the mutation rate
(λ was set to 0.07 in this study as an appropriate value according to numerous tests).

Fig. 1 H∕α plane and its corresponding scattering mechanisms.
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7. Find the best antibody in the group and inhibit the others.
8. Classify the pixels into k classes according to the best antibody.
9. Judge whether the end condition has been met. If not, return to Step 6; otherwise exit the

iteration and output the classification result.

4 Experimental Results and Analysis

Three sets of PolSAR images have been investigated to test the AIS-based algorithm in this
study. The first consists of full-polarimetric SAR data for San Francisco Bay, California,
obtained from NASA-JPL AIRSAR in 1992. The size of the experimental data set is
899 × 651 pixels. The region includes urban areas, ocean, vegetation, the Golden Gate
Bridge, and other targets. The second consists of L-band PolSAR data for the Flevoland region
from the NASA/JPL Laboratory (Airborne) AIRSAR sensor in 1989, with an azimuth resolution
of 12.10 m and a distance resolution of 6.6 m. The feature types in the experimental area are
relatively simple; most are croplands of rectangular shape, including grassland, potatoes, alfalfa,
wheat, soybeans, sugar beets, peas, and other target surface features. The size of the experimental
data set is 293 × 433 pixels. The third consists of X-band full-polarimetric high-resolution SAR
data for Lingshui Town in Hainan Province in 2010. The original size of this data set is
5001 × 7893 pixels. The region includes airport runways, urban areas, pools, and various
kinds of croplands, such as red peppers, betel palms, mangoes, papayas, and rice paddies.
Because the original image is too large for analysis, two subareas were selected for the
experiments.

The first experiments were performed with the first data set and with the AIS algorithm
mutation probability set to 0.05. And the Fig. 2 shows the Pauli RGB image of the experiment
area. Compared Fig. 3 with Fig. 4, it is clear that the classification of the ocean part with the CSA
is better than with H∕α-Wishart classification method because the ocean contains only low-
entropy and medium-entropy surface scattering, with the majority being low-entropy surface
scattering.

Although the H∕α-Wishart classification method can characterize the scattering mechanism
of surface features,20,21 its classification of different surface features using the same scattering
mechanism is not precise enough because there is not a one-to-one relationship between surface

Fig. 2 Pauli RGB experimental composite image of the San Francisco Bay area.
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features and scattering mechanism. Both vegetation and urban areas contain both medium-
entropy and multiple scattering components and, therefore, they were confused in the image
results.

As shown by the H∕α-Wishart classification results in Fig. 5(b), the same type of surface
feature with a variety of scattering mechanisms may be classified falsely into multiple categories.
For instance, vegetation in the golf course in Fig. 5(b) with even and multiple scattering is seri-
ously misclassified. Overall, the result shows a serious lack of texture information, and outlines

Fig. 3 H∕α-Wishart classification result.

Fig. 4 Classification result of the clonal selection algorithm.
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are not clear. By contrast, when using the CSA illustrated in Fig. 5(a), the classification results
are greatly improved. A variety of surface features have been distinguished, the texture of
vegetation appears clearer, sea levels are more apparent, and the classification of vegetation
is better.

From comparison of the four extracted parts, it can be seen that the polo field in Fig. 5(b) is
not obvious, while the polo field in Fig. 5(a) is an oval-shaped region with a smooth outline.
Most of the beach A is identified by medium-entropy surface scattering, which corresponds to
the actual situation. The golf course in Fig. 5(a) is classified clearly, while the golf course in
Fig. 5(b) is almost impossible to identify. Although vegetation and urban areas are seriously
confused in Fig. 5(b), the texture of urban areas and roads in Fig. 5(b) is quite clear.
Overall, the classification results of the CSA are better.

To verify further the validity of the classification algorithm, the second set of PolSAR data
was used for another set of experiments, and a quantitative analysis was performed using a con-
fusion matrix. Figure 6 shows an RGB composite image of the region. The red, green, and blue
components of the composite image were obtained using the three parameters jHH − VVj, jHVj,
and jHHþ VVj derived from the Pauli decomposition. The mutation probability in the AIS
algorithm was set to 0.05.

From visual observation of Fig. 7, the classification result of the image is quite smooth. Some
areas were not distinguished, such as peas and sugar beets, while other types were misclassified,
such as potatoes. However, the majority of the surface features, such as peas and sugar beets, can
be identified in the CSA classification results shown in Fig. 8. Potatoes were also classified
correctly, and the improvement is clear.

To evaluate the classification accuracy of the CSA, Fig. 6(b) shows a reference image of the
real surface features. Test samples from the image were selected randomly (Fig. 9), and con-
fusion matrices were obtained for the H∕α-Wishart and CSA classifications.

Table 1 Comparison of concepts and terminologies in natural immune systems (NIS) and in an
artificial immune system (AIS) for PolSAR image classification.

IS concepts NIS AIS

Antigens Harmful invasive cells, such as
bacteria and viruses.

An array composed of the coherency
matrix of all pixels.

Antibodies Immune B cells. Vector composed of the coherency
matrix of every class center.

Purpose of IS Generate appropriate immune
cells to recognize and kill antigens.

Finding a group of class centers that can
minimum the sum of the distance of each
pixel to its corresponding class center.

Antigen
recognition

Binding the surface of immune cells
with antigens. The best-matching
immune cells recognize the invasive
cell.

By calculating the Wishart distance between
the coherency matrix of a pixel and the class
center of the class to which the pixel belongs.

Fig. 5 Comparison of classification results.
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Fig. 6 The Flevoland experimental data. (a) Pauli RGB image. (b) Real surface features.

Fig. 7 H∕α-Wishart classification result.

Fig. 8 Clonal selection algorithm classification result.
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As can be seen from Table 2, the accuracy of the CSA is greater than that of theH∕α-Wishart
method, both in terms of overall accuracy and the kappa coefficient. For some categories, such as
rape and bare soil, the mapping accuracy and precision of the clonal selection method were
>90%. The H∕α-Wishart classification algorithm distinguished only four vegetation categories,
misclassified peas and beets into the same category, divided potatoes into two categories, and
made no distinction between grassland, rape, and other surface features, resulting in lower clas-
sification accuracy. The CSA achieved a better classification result.

Fig. 9 Regions of interest for the Flevoland image.

Fig. 10 Pauli RGB experimental composite image of the Lingshui area (subset one).

Fig. 11 Classification result. (a) H∕α-Wishart. (b) Clonal selection algorithm.
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To verify that the CSA has stable performance, a set of experiments was performed using the
third data set. The experiment image and the results are showed in Figs. 10 and 11.

Because the experimental data are of high resolution in the farmland area, neither of the two
algorithms exhibited good performance. The H∕α-Wishart classification result combined the
road and the shadow of the trees into a single category. In the CSA result, although these
two features could still not be separated distinctly, a further classification could be performed

Fig. 12 Pauli RGB experimental composite image in the Lingshui area (subset two).

Table 2 Clonal selection algorithm and H∕α-Wishart algorithm confusion matrices.

Plot
User

accuracy (%)
Mapping

accuracy (%)
Misclassification

error (%)

Leakage
point error

(%)

Overall
accuracy

(%)
Kappa

coefficient

H∕α-Wish
art

Bare soil 92.32 90.02 7.68 9.98

72.51 0.5627

Beets 48.16 92.67 51.84 7.33

Potatoes 84.33 94.55 15.67 5.45

Wheat 60.35 98.47 39.65 1.53

Lawn 0.00 0.00 0.00 100

Pea 0.00 0.00 100 100

Rape 0.00 0.00 0.00 100

Alfalfa 7.76 0.49 92.24 99.51

Clonal
selection
algorithm

Bare soil 97.26 94.79 2.74 5.21

80.74 0.7297

Beets 62.28 85.54 37.72 14.46

Potatoes 95.50 65.39 4.50 34.61

Wheat 57.51 39.54 42.49 60.46

Lawn 56.61 70.76 43.39 29.24

Pea 60.55 55.59 39.45 44.41

Rape 92.76 88.50 7.24 11.50

Alfalfa 20.57 70.66 79.43 29.34
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in this area. Because the pixels representing roads were further divided into two categories
(brown and white) in the results of the AIS algorithm, it is apparent that the AIS algorithm
revealed additional information in homogeneous regions and can explore polarimetric informa-
tion to a greater extent.

The first and second experiments have already proved that the CSA can improve the quality
of classification results for classic PolSAR data. And the forth experiment are applied with the
second subset of Lingshui image which contains mango trees, farmland, path in field and pools
(showed in Fig. 12). Figure 15, which is extracted from Figs. 13 and 14, illustrates the improve-
ment achieved using the CSA. For the pixels representing the pool in Figs. 15(a) and 15(b), the
two algorithms achieve similar performance, but around the pool in Fig. 15(b), the bare soil has
been classified into two categories in a reasonable way. This phenomenon can also be seen with
the country road in Fig. 15(b). For the papaya field, the result in Fig. 15(a) shows more random-
ness and mass, but in Fig. 15(b), more texture information has been retrieved.

From the above discussion, it can be concluded that the CSA can achieve better classification
results and exhibits stable performance on various kinds of data. This difference occurs because

Fig. 13 H∕α-Wishart classification result.

Fig. 14 Clonal selection algorithm classification result.

Jie et al.: Polarimetric synthetic aperture radar image unsupervised classification method. . .

Journal of Applied Remote Sensing 083679-11 Vol. 8, 2014



the H∕α-Wishart method can search only cluster centers according to a rigid rule. The classi-
fication results of the H∕α-Wishart algorithm are greatly affected by the initial classification, but
the AIS is a kind of search strategy that is capable of global optimization.

5 Conclusions

To increase classification precision, a new method has been proposed for PolSAR classification
based on the CSA. By treating pixels as antigens and class center groups as antibodies, the novel
algorithm takes advantage of global search and self-learning to obtain the global optimal solution
quickly in clustering problems. Experimental results show that the proposed algorithm with an
improved initialization method and a novel mutation operation is better than the H∕α-Wishart
classification and is a more effective PolSAR classification algorithm than its competitors, with
stable performance.
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