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Abstract. The contribution of dual-polarized synthetic aperture radar (SAR) to optical data for
the accuracy of land use classification is investigated. For this purpose, different image fusion
algorithms are implemented to achieve spatially improved images while preserving the spectral
information. To compare the performance of the fusion techniques, both the microwave X-band
dual-polarized TerraSAR-X data and the multispectral (MS) optical image RapidEye data are
used. Our test site, Gediz Basin, covers both agricultural fields and artificial structures. Before
the classification phase, four data fusion approaches: (1) adjustable SAR-MS fusion, (2) Ehlers
fusion, (3) high-pass filtering, and (4) Bayesian data fusion are applied. The quality of the fused
images was evaluated with statistical analyses. In this respect, several methods are performed for
quality assessments. Then the classification performances of the fused images are also inves-
tigated using the support vector machines as a kernel-based method, the random forests as an
ensemble learning method, the fundamental k-nearest neighbor, and the maximum likelihood
classifier methods comparatively. Experiments provide promising results for the fusion of
dual polarimetric SAR data and optical data in land use/cover mapping. © The Authors.
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1 Introduction

Awide variety of remote sensing satellite sensors provide data with diverse spectral and spatial
resolution for the observation of many phenomena on the Earth. Land use and cover mapping
require both the high spectral and spatial resolution for an accurate analysis and interpretation.
The data fusion is a key preprocessing method to integrate multisensor and multiresolution
images, which has advantages over the result of each individual data set.1,2 Image fusion is
an active topic for researching the performance of image fusion techniques for different sensors
using both qualitative and quantitative analyses.3 Previous studies in the literature proved that the
fusion of the synthetic aperture radar (SAR) and multispectral (MS) images improves the spatial
information while preserving the spectral information.4,5

As part of image processing, several approaches of data fusion methods were proposed, and
the contributions of the fusion techniques in image classification accuracies were studied.3,6 For
different applications of the SAR and MS data fusion, various satellite images were used and
various results have been achieved for each study.4,7,8 A generalized intensity modulation for the
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fusion of MS LANDSAT and ERS-1 SAR images is addressed.7 The benefit of fusion is dem-
onstrated by the maximum likelihood classifier (MLC). In this study, the classification accuracy
of vegetation did not improve when using the SAR data, but the discrimination of urban areas
was enhanced. The high-resolution spotlight modes of TerraSAR-X and RapidEye are fused
using principal component (PC) substitution, Ehlers fusion (EF), Gram–Schmidt (GS), high-
pass filtering (HPF), modified intensity hue saturation (M-IHS), and Wavelet algorithms.8 In
both visual and statistical analyses, the HPF method gave better results. Another study suggest
that PC, color normalization, GS, or the University of New Brunswick methods should only be
used for a single date and a single sensor dataset.4 Ehlers method is the only one that preserved
the spectral information of the MS data, which is suitable for classification.4 Dual-polarized HH-
HV (H-Horizontal, V-Vertical) RADARSAT and PALSAR data are fused with LANDSAT-TM
data for the comparison of land cover classification.2 The study indicated that among the discrete
wavelet transform (DWT), HPF, principal component analysis (PCA), and normalized multipli-
cation methods, only DWT improved the overall accuracy of the MLC. In a previous study,
authors used PALSAR and RADARSAT images to fuse them with an Satellite for
Observation of Earth (SPOT) image employing five fusion approaches (IHS, PCA, DWT,
HPF, and EF).9 In the results of the fused images, EF and HPF gave satisfactory results for
agricultural areas. As a second study, different combinations of the optical-SAR and SAR-
SAR fusion results were compared. The EF demonstrated better visual and statistical results.9

This paper extends the previous study of Ref. 10, which focuses on the fusion of the
RapidEye data with VV polarized TerraSAR-X SAR data. For the analysis, three pixel-
based fusion methods, namely adjustable SAR-MS fusion (ASMF), EF, and HPF were exam-
ined. The ASMF method is able to fuse high-resolution SAR data with low-resolution MS data
and vice versa. It is possible to use the scaled values for each of the SAR andMS images.11,12 The
EF is a hybrid approach, which uses IHS transform with a Fourier domain filtering. A low-pass
filter is used to filter the intensity and an inverse high-pass filter is used on high-resolution
images.4 In the HPF method, the high-pass filtered high-resolution image is included in
each MS band of the low-resolution image.2,5 At the end, visual and statistical analyses
were presented and compared. In the previous study, four metrics were used for the statistical
analysis. Among all methods, HPF conserved better spectral information. In addition to the pre-
vious study, in this study, the VH image of the TerraSAR-X data is also considered. The con-
tribution of the dual-polarized (VV–VH) TerraSAR-X SAR data to RapidEye over agricultural
land types is investigated using different image fusion methods. Furthermore, the statistical
analyses were extended by adding quality metrics. In total, seven metrics were applied. The
bias of the mean (BM) is the difference of the original image and the fused image relative
to the original MS data,13 the difference in variance (DIV) measure is the difference of variance
values relative to the original MS data,13 entropy is a measure that indicates the additional infor-
mation in the fused image,13 relative average spectral error (RASE) provides a value for the
average performance of the fusion approach,14 and correlation coefficient (CC) gives the corre-
lation between the original MS image and the fused image. The universal image quality index
(UIQI) measures the combination of various factors, such as luminance distortion, contrast dis-
tortion, and loss of correlation.15 Relative Dimensionless Global Error in Synthesis-Erreur
Relative Globale Adimensionnelle de Synthese (ERGAS) is a global metric which calculates
the spectral distortion in a fused image.16 Additionally, Bayesian data fusion (BDF) is also
applied for both the TerraSAR-X VV and VH polarized data. BDF was rarely used in the liter-
ature. It was performed successfully for high-resolution IKONOS images and recommended as a
promising technique for optical/SAR image fusion.17 It is adapted within the ORFEO Toolbox.18

The BDF method allows the user to adjust the images during the fusion processes for emphasiz-
ing spectral information via selecting a small weighting coefficient.17

As a part of this study, it is also intended to investigate the contribution of different polar-
izations of the SAR data to MS data via various fusion techniques for land use image classi-
fication. The land use classification needs robust classification methods, which can help in the
accurate mapping of land use or land cover classes. There are many studies in the literature with
SAR and MS data used separately or together using support vector machines (SVMs)19 and
MLC20 classification methods. A decision fusion strategy for joint classification of multiple seg-
mentation levels with the SAR and optical data was also evaluated in the literature.21 Ensemble
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learning and kernel-based classification methods have been confirmed to improve the land use
and land cover classification accuracy in remote sensing areas. An assessment of the effective-
ness of random forests (RF) for land-cover classification was investigated.22 A comprehensive
analysis for the choice of the kernel function and its parameters for the SVMs were presented for
the land cover classification.23 In another study, the multiclass SVMs were used and compared
with MLC and artificial neural network classifiers for land cover classification.24 The classifi-
cation of multitemporal SAR and MS data was achieved by the fusion of SVMs.25 In this study,
the original outputs of each discriminant function were used instead of fusing the final classi-
fication outputs.

In our proposed study, the contribution of the dual-polarized SAR to optical data for the
accuracy of the land use classification is investigated. The fusion methods’ effect on classifi-
cation accuracies are explored by comparing the SVMs as a kernel-based learning method, RF as
an ensemble learning method, k-nearest neighbor (k-NN) as a fundamental machine learning
classifier, and MLC as a statistical model.

2 Study Area and Data

2.1 Test Site

The study area Menemen Plain is located on the west of Turkey in Izmir Province as shown in
Fig. 1. The Aegean Sea lies on the west and Izmir Bay on the south, which shapes the border of
the study area. The area covers mostly agricultural fields and is approximately 50 km2. The crop
species depend on the harvesting period and the characteristics of the soil. In this study area,
fields were covered with summer crops such as corn, cotton, watermelon, and meadow when the
RapidEye data were acquired. There are also some residential areas and small bodies of water in
the region. The topographic relief of the study area is lower than 1%, which reduces the effects of
topography in image processing.

2.2 Data Set

In this experiment, the dual-polarized (VV and VH) TerraSAR-X SAR data and MS RapidEye
data were used. The TerraSAR-X image has 8 × 8 m2 ground resolution, and it was preprocessed

Fig. 1 (a) Study area, (b) Menemen Plain and images after normalization and contrast enhance-
ment, (c) TSX VH, (d) TSX VV, and (e) the RapidEye (red: 5, green: 4, and blue: 3 band
combination).
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to the Enhanced Ellipsoid Corrected product type (e.g., radiometrically enhanced). It was
acquired on August 29, 2010, in an ascending pass direction. Data were taken on the Strip
Map mode. Detailed specifications of the data sets are given in Table 1.

The RapidEye image was acquired on August 10, 2010, as an L3A format, which was a
radiometrically calibrated and orthorectified data resampled to 5 × 5 m2 ground resolution
(WGS 84 Datum UTM projection, zone 35). The RapidEye provides five optical spectral
bands, which range between 400 and 850 nm. The RapidEye differs significantly from the stan-
dard high-resolution MS satellite sensors (e.g., IKONOS, QuickBird, SPOT), having an extra
spectrum called the red edge (690 to 730 nm). For the classification analysis, fieldwork was
carried out and crop types were determined using handheld GPSs in agricultural lands on
the same date of the RapidEye MS acquisition. The crop types were defined carefully as rep-
resenting all types of crops in the test site (i.e., for each crop type, ground-truth data were
collected from 5 to 15 different fields).

3 Methodology

In this section, the methodological approach is represented. First of all, preprocessing steps were
applied to SAR images and then different fusion methods were applied with RapidEye data.
Subsequently, four fusion methods were utilized and the quality assessment was conducted
with various quantitative analyses. Lastly, four image classification methods were used to evalu-
ate the contribution of SAR images to the optical images. The workflow is shown in generalized
form with Fig. 2.

3.1 Preprocessing

Before the application of image fusion methods, image preprocessing steps are necessary. First,
the SAR images were filtered using a gamma map filter with 3 × 3 kernel window to reduce
speckles. Then, both the VV and VH polarized TerraSAR-X images were registered to the
RapidEye image with a less than �1 pixel root mean square error and resampled to its original
pixel size as 8 × 8 m2. Since only one optical data are used in the study and the data are not
affected severely by atmospheric conditions, an atmospheric correction has not been applied
before the fusion process.

3.2 Image Fusion Methods

In this study, four different pixel level image fusion approaches have been utilized. They are
ASMF, EF, HPF, and BDF. The ASMF method accepts weights for the SAR and MS images

Table 1 Specifications of data set.

TerraSAR-X RapidEye

Acquisition date August 29, 2010 August 10, 2010

Ground resolution (m) 8 × 8 5 × 5

Wavelength 3.11 cm (X-band) 440 to 510 nm (blue)

520 to 590 nm (green)

630 to 685 nm (red)

690 to 730 nm (red edge)

760 to 850 nm (NIR)

Polarization VV/VH —

Incidence angle 38.06 to 39.37 11.38

Processing level Enhanced Ellipsoid Corrected product L3A Ortho product
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separately. In this study, two types of ASMF-based fused images are obtained with different
weights. The first image, ASMF-I, is obtained by giving 100% weights to both the SAR
and MS images, whereas the second image, ASMF-II, is obtained by giving 50% and 100%
weights to the SAR and MS images, respectively. In the Ehlers fused image, the spatial infor-
mation is improved and spectral characteristics of the MS image are preserved. The HPF method
fuses both spatial and spectral information using a band addition approach. In BDF method, the
weighting parameter (w) changes between 0 and 1 for the PAN and MS images. In this study,
the TerraSAR-X images are first resampled to the same spatial resolution with the MS data.
Afterward, two weighting values (0.5 and 0.1) are selected in the fusion processes and
fused images, BDF-I and BDF-II, are produced, respectively.

3.3 Quality Analysis of Image Fusion Results

The fusion quality assessment is conducted via statistical analyses. A quantitative analysis is
applied to evaluate the spectral quality of the fused image by the BM, DIV, entropy, CC,
UIQI, RASE, and ERGAS quality metrics. It is expected to be close to zero for BM and
DIV metrics. Conversely, while the CC value is close to one, it signifies a better correlation
result. Small values of entropy difference between the original MS and the fused image indicate
better spectral quality. The higher UIQI values specify better spectral quality in the image. Small
values of the RASE and ERGAS indicate a better spectral quality.16

3.4 Image Classification Methods

SVM is very popular and powerful kernel-based learning method. SVMs are introduced as
a kernel-based classification algorithm in machine learning society.26 Kernel-based learning
aims to separate data in a high-dimensional feature space by mapping the data points with
a kernel function. The SVMs are defined for the binary separation problem of samples with
n-dimensional feature vector xi and binary class label yi, which can be expressed mathematically
as ðx1; y1Þ; ðx2; y2Þ; : : : ; ðxN; yNÞ ∈ Rn × f�1g. The SVM creates a decision surface between
the samples of the different classes by finding the optimal hyperplane that is closest to the decid-
ing training samples (support vectors). In this way, an optimal classification can be achieved for
linearly separable classes. In the linearly inseparable cases, kernel versions of the SVM are
defined. The main purpose of the kernel approach in the SVM is to transform the data to

RapidEye
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Image fusion

BDFASMF EF HPF
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Fig. 2 Flowchart of the methodology.
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a higher-dimensional space ðϕ∶Rn → Rh; h > nÞ, where binary classification can again be
achieved linearly.27 The SVM utilizes a kernel function that corresponds to the inner product
in the higher-dimensional space. The deciding support vectors can be found with the optimi-
zation problem that maximizes the Eq. (1) subject to Eq. (2):

XN
u¼1

αu −
1

2

XN
u¼1

XN
v¼1

αuαvyuyvKðxu; xvÞ; (1)

XN
u¼1

αuyu ¼ 0 and 0 ≤ αu ≤ C; (2)

where N denotes the number of training samples, C is the penalty parameter, Kðxu; xvÞ is the
kernel function, and α is the Lagrange multiplier coefficients.

C controls the number of misclassified training samples to allow for a better margin maxi-
mization. The SVM does not require the explicit definition of the transformation function ðϕÞ,
but is based on the definition of the inner product result in the high-dimensional space as
Kðxu; xvÞ ¼ φðxuÞφðxvÞ. Each nonzero αu value corresponds to a support vector. Given all sup-
port vectors ðNSVÞ, the nonlinear classification result can be given in Eq. (3) for an arbitrary
sample x

f ¼ sgn

�XNSV

u¼1

αuyuKðxu; xÞ þ b

�
; (3)

where NSV denotes the number of support vectors and sgn stands for the sign function.
Widely used kernel functions for the SVM can be given as linear kernel Kðxu; xvÞ ¼ xu · xv,

polynomial kernel Kðxu; xvÞ ¼ ðγxu · xv þ sÞd with a degree parameter ðdÞ, a scaling factor ðγÞ,
and radial basis function kernel Kðxu; xvÞ ¼ expð−γkxu − xvk2Þ with a scaling factor ðγÞ. The
multiclass problems can be broken down into several one-against-one binary problems. For anm
class problem, a total of mðm − 1Þ∕2 one-against-one SVMs are calculated. The majority vote
from the one-against-one classification for each sample decides for the final result.28

RF is a supervised ensemble learning technique, which has received highlighted interest in
machine learning and pattern recognition society.29 The RF is a powerful “classification and
regression tree” (CART) type classifier and it is popular in the remote sensing society with appli-
cations on MS and hyperspectral images, as well as kernel-based classification methods. In
essence, the RF algorithm builds an ensemble of tree-based classifiers and makes use of bagging
or bootstraps aggregating to form an ensemble of CART-like classifiers. In the ensemble of
classifiers, each classifier produces a single vote for the appointment of the most frequent
class label to the input vector x and fhðx; θiÞ; i ¼ 1; : : : ; g, where the θi is independent iden-
tically distributed random vectors.30 The random term in the RF refers to the way each tree is
trained. Thus, each tree is chosen from a random subset of the features in the training data. In this
way, the classifier becomes more robust against the minor variations in input data. The RF also
tries to minimize the correlation between the tree classifiers in the ensemble in order for the forest
to represent the independent identical distributions in each of the classifiers. Because of the
nonparametric structure, high classification accuracy, and feature importance capability, the
RF is a promising method in the remote sensing area.22

K-NN is a well-known, nonparametric method in CART tasks. The k-NN is an instance-(or
sample) based cornerstone classifier in machine learning. It basically predicts labels of the test
samples by using labels of the k-nearest training samples in the feature space. Consequently, the
majority voting of closest neighbors defines the label which is assigned to the test sample.31

The MLC is a well known and widely used parametric supervised classification method in
machine learning and pattern recognition. MLC assumes a multidimensional normal distribution
for each class, and computes the probability of a test pixel based on this distribution model for
the classification task. In the MLC, the likelihood of a new sample x belonging to a class ωc can
be calculated with the following discriminant equation:
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gcðxÞ ¼ ln pðωcÞ −
1

2
ln jΣcj −

1

2
ðx − μcÞTΣ−1

c ðx − μcÞ; (4)

where x is an n-dimensional data, pðωcÞ is the probability that class ωc occurs in the image, Σc is
the covariance matrix for class ωc, and μc is the mean vector for class ωc. The key feature of the
MLC is the inclusion of the covariance in the normal class distributions.32,33

4 Results and Discussions

4.1 Spectral Quality of Fused Images

For each fused image, seven quality metrics were calculated and an average over five bands were
scored, as in Table 2. In the previous work,10 five bands of each fused image were analyzed
separately. The last row of Table 2 shows the ideal image values of each metric. It must be
noted that each fusion technique gives different results for each quantitative metric. Due to
these different results, each metric was ranked for the fusion algorithms. Then the averages
of seven metrics were taken, and Table 3 shows the fusion algorithms ranked by their quality
scores. The results of the previous study10 indicated that comparing five bands of fused images
with the original image was not an efficient way of understanding the comparison, due to the
problem of having so many bands. We conclude that the TSX VH fused BDF-II image is the best
fused image, in that it preserves the spectral information of the RapidEye data better than the
other results. In the BDF, the selection of weights plays an important role for the quality of
fusion. Assigning a higher weight value decreases the preservation of spectral characteristics
for an optical image.

In the previous study,10 using only the VV image showed that the HPF result of the fusion
image gave higher statistical results as compared to the EF and ASMF methods. When compar-
ing the previous results with the recent study, the results show that using the BDF method
increased the correlation between the original optical data and the SAR data. Moreover, adding
the VH polarized image increased the correlation and introduced the best result among all the

Table 2 Statistical results of quality metrics.

Fused images BM DIV E CC UIQI RASE (%) ERGAS

ASMF-I_TSX VH −0.0898 −1.2246 0.8670 0.5567 0.4984 40.9340 65.4944

ASMF-II_TSX VH 0.0767 −0.8952 0.7539 0.7964 0.6948 36.1111 57.7777

ASMF-I_TSX VV 0.5957 0.7141 −0.7448 0.5077 0.2514 62.9504 100.7206

ASMF-II_TSX VV 0.4878 0.3698 −0.2447 0.8038 0.5640 51.1873 81.8998

BDF-I_TSX VH −0.0001 −0.1270 0.2721 0.9413 0.9394 7.6008 12.1613

BDF-I_TSX VV 0.0000 −0.1017 0.2211 0.9542 0.9528 6.6500 10.6400

BDF-II_TSX VH 0.0001 −0.0062 0.0227 0.9969 0.9969 1.6618 2.6589

BDF-II_TSX VV 0.0001 −0.0069 0.0117 0.9966 0.9966 1.7352 2.7764

EF_TSX VH −0.2319 −0.0327 0.1094 0.8022 0.7794 28.7065 45.9305

EF_TSX VV −0.2306 0.0583 −0.0082 0.8862 0.8583 27.2444 43.5911

HPF_TSX VH 0.0009 −0.0435 0.2059 0.9686 0.9682 5.2513 8.4020

HPF_TSX VV 0.0009 −0.0354 0.1578 0.9727 0.9723 4.8372 7.7394

Ideal image 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000

Note: BM, bias of mean; DIV, difference in variance; E, entropy; CC, correlation coefficient; UIQI, universal
image quality index; RASE, relative average spectral error; and ERGAS, Erreur Relative Globale
Adimensionnelle de Synthese.
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fused images using the BDF fusion method. In reference to the polarization of the SAR images,
the TSX VV fused images yield slightly better results than the VH fused images (Table 2). The
use of more quality metrics and a ranking system demonstrated a better understanding and pro-
vided an efficient way of comparison which improved previous results. The best three image
fusion results according to quality metrics overall ranking are given in Fig. 3, zoomed into
a particular patch for easier inspection.

4.2 Classification Results

The class information table of the Menemen test site for seven classes, namely corn type-1, corn
type-2, cotton, water, bare soil, artificial structures, and orchards, is shown in Fig. 4. The class of
artificial structures represents residential areas and other constructions such as roads and airports.
Corn type-1 and 2 represent the crop being in one of the two distinct biological periods that is the
result of different planting times. The orchards class represents different kinds of planted trees.
The ground-truth data, which are required for training and reference/test samples, have been
collected by systematic sampling based on ground control points by the fieldwork. The number
of training samples of each class category is based on the ratio of the coverage of the class

Table 3 Rank values of fused images.

Fused images BM DIV E CC UIQI RASE ERGAS Average Rank

ASMF-I_TSX VH 5 12 12 11 10 11 10 10.14 11

ASMF-II_TSX VH 4 11 11 10 9 9 9 9.00 9

ASMF-I_TSX VV 9 10 10 12 12 12 12 11.00 12

ASMF-II_TSX VV 8 9 8 8 11 10 11 9.29 10

BDF-I_TSX VH 2 8 9 6 6 6 6 6.14 7

BDF-I_TSX VV 1 7 7 5 5 5 5 5.00 5

BDF-II_TSX VH 2 1 3 1 1 1 1 1.43 1

BDF-II_TSX VV 2 2 2 2 2 2 2 2.00 2

EF_TSX VH 7 3 4 9 8 8 8 6.71 8

EF_TSX VV 6 6 1 7 7 7 7 5.86 6

HPF_TSX VH 3 5 6 4 4 4 4 4.29 4

HPF_TSX VV 3 4 5 3 3 3 3 3.43 3

Note: BM, bias of mean; DIV, difference in variance; E, entropy; CC, correlation coefficient; UIQI, universal
image quality index; RASE, relative average spectral error, and ERGAS, Erreur Relative Globale
Adimensionnelle de Synthese.

Fig. 3 The best three image fusion results according to quality metrics overall ranking: (a) BDF-
II_TSX VH, (b) BDF-II_TSX VV, and (c) HPF_TSX VV.
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category on the entire area as shown in Fig. 4. As indicated in Fig. 4, a higher the spatial coverage
means a greater number of training samples.

The classification results are obtained for the following classifiers representing major clas-
sification paradigms in machine learning: the k-NN, RF, SVM, and MLC. In the SVM, linear,
polynomial, and radial basis kernel functions (SVM-lin, SVM-poly, and SVM-rbf, respectively)
are used. All of the classification experiments are realized in the MATLAB environment. The
number of neighbors is chosen as k ¼ 1 and k ¼ 9 for the k-NN classifier. The maximum num-
ber of trees is set to 500 in the RF, which is composed of several decision trees. The best param-
eter optimization of the SVM classifiers is accomplished using the grid search method. The
penalty parameter of the SVM C is evaluated between ½1 − 100�, with a step size increment
of 2 for all kernel function types. In SVM-rbf, the γ parameter of the kernel function is tested
between ½0.01 − 10�, with a step size increment of 0.1. The polynomial degree d is selected as 3,
and the γ parameter of the polynomial kernel is evaluated between ½0.01 − 10�, with a step
size increment of 0.1. The best parameter settings are obtained by one-against-one multiclass
classifier modeling. In the MLC, the classification task has been realized according to the dis-
criminant function given in Eq. (4).

Initially, the classification results for the original SAR and MS images are obtained as the
baseline results to compare the fused images. In Table 4, the classification accuracies for two
polarization bands for the SAR image (TSX VH and TSX VV), five band RapidEye MS images,
and a VH-VV polarization layer-stacked SAR image (TSX VV-VH) are given separately.
According to the results from Table 4, the VV polarization of the SAR data produces better
classification accuracies as compared to the VH polarization. The RapidEye MS data have
a classification accuracy up to 94.89% with the SVM-rbf kernel function classifier.

As the second step of the experiment, the classification accuracies of the single polarization
SAR and five band MS fused images are given with fusion methods designated for the rows, and
classifiers with the columns in Table 5. The overall best classification accuracy is obtained for the
ASMF-II_TSX VV with an SVM-rbf as 95.32%. The ASMF-II_TSX VV fused image has the
highest classification accuracies of all the proposed classifiers, except the SVM-poly, against
other fusion methods. The second most successful case is the ASMF-I_TSX VV fusion,
which has the best classification accuracies in the SVM-lin and SVM-poly. The EF_TSX
VH fusion method also gives the best result for RF together with the ASMF-II_TSX VV.

Class Names and
Map Colour

Number of Fields
Ground-truth Collected

Number of Pixels
Used as Samples

Train Test Train Test

Corn Type 1 5 15 241 30
Corn Type 2 4 25 235 39

Cotton 15 64 582 73
Water 2 5 280 13

Bare Soil 6 22 395 44
Artificial Structures 6 3 392 24

Orchards 4 5 268 12

Total Pixels 42 139 2393 235

Fig. 4 Class information table for seven classes in the Menemen data.

Table 4 Original image classification accuracies (in %).

Original images 1NN 9NN RF SVM-lin SVM-poly SVM-rbf MLC

TSX VH 44.68 44.26 46.81 49.36 37.77 48.94 49.36

TSX VV 56.17 59.15 54.04 62.98 64.26 64.26 63.40

TSX VV-VH 52.76 53.62 58.30 60.85 60.85 60.43 60.00

RapidEye 90.21 92.34 94.04 92.34 89.79 94.89 91.06
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It must be noted that there is at least one fusion method that surpasses the original RapidEye
data in classification accuracy for all the proposed classifiers except RF. It can be concluded that
with the SAR and MS fusion, the classification accuracies can be improved as compared to the
original MS image. The highest classification accuracies are given in bold in Table 5 for each
classification method. According to Table 5, the ASMF-II_TSX VV has the best classification
accuracy (95.32%) as compared to Table 4, which includes all the original SAR and MS data.

As the third step of the experiment, the fused images are used in a layer-stacked structure with
two SAR polarizations cascaded together as in Table 6. In this way, all the SAR and MS infor-
mation can be used collectively for the scene. The highest classification accuracies are given in
bold in Table 6 for each classification method. It can be seen from Table 6 that the layer-stacked

Table 5 Fused images’ classification accuracies (in %).

Fused images 1NN 9NN RF SVM-lin SVM-poly SVM-rbf MLC

ASMF-I_TSX VH 92.34 92.62 89.36 90.21 89.94 93.62 92.34

ASMF-II_TSX VH 91.06 92.77 89.36 89.79 87.66 91.49 89.79

ASMF-I_TSX VV 91.49 92.34 91.06 93.62 94.04 94.89 91.91

ASMF-II_TSX VV 93.19 93.62 93.19 93.62 93.19 95.32 93.19

BDF-I_TSX VH 87.23 89.36 87.23 85.11 75.60 90.21 88.94

BDF-I_TSX VV 91.49 90.21 92.34 90.21 91.06 93.19 91.91

BDF-II_TSX VH 89.36 88.94 89.36 89.36 85.53 93.62 89.79

BDF-II_TSX VV 90.21 90.64 91.91 91.06 88.09 94.47 89.79

EF_TSX VH 92.34 91.06 93.19 91.19 85.96 92.77 91.49

EF_TSX VV 89.36 88.94 90.21 91.49 91.06 92.77 89.39

HPF_TSX VH 90.21 92.34 92.77 93.19 90.21 94.04 91.49

HPF_TSX VV 90.21 91.06 91.06 92.77 89.79 94.04 91.91

Table 6 Layer-stacked fused images’ classification accuracies (in %).

Fused images 1NN 9NN RF SVM-lin SVM-poly SVM-rbf MLC

ASMF-I_TSX VV-VH 92.76 92.34 92.77 92.34 92.34 94.47 91.91

ASMF-II_TSX VV-VH 95.74 94.04 94.04 92.77 92.34 94.04 89.79

BDF-I_TSX VV-VH 91.06 89.79 91.06 92.77 93.62 92.34 91.06

BDF-II_TSX VV-VH 89.79 89.36 91.06 94.04 95.74 94.89 92.34

EF_TSX VV-VH 90.64 91.06 90.21 91.92 88.08 92.77 91.06

HPF_TSX VV-VH 90.21 92.77 91.49 92.77 87.66 95.32 92.34

Table 7 McNemar’s test confusion matrix.

Classification with evaluated
fusion method data

True False

Classification with True a b

RapidEye data False c d
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fusion results reveal higher accuracies as compared to their single polarization counterparts as in
Table 5. The only exception to our conclusion is the best SVM-rbf results for Tables 5 and 6. In
these tables, equal results (95.32%) are obtained for the ASMF-II_TSX VV in Table 5 and for the
HPF_TSX VV-VH layer-stacked fusion in Table 6. The highest classification accuracy for the
test site is obtained by the ASMF-II_TSX VV-VH and BDF-II_TSX VV-VH layer-stacked
fusion images with 95.74% in Table 6.

Table 8 McNemar’s test scores for difference of agreement compared to RapidEye classification,
for fused and layer-stacked fused images, χ2 critical values at 1 degree of freedom for 90%
confidence: 2.71, for 95% confidence: 3.84.

1NN 9NN RF SVM-lin SVM-poly SVM-rbf MLC

Fused images

ASMF-I_TSX VH 0.81 0.43 4.17 0.86 0.11 0.53 0.47

ASMF-II_TSX VH 0.15 0.07 3.90 1.80 0.81 3.20 0.43

ASMF-I_TSX VV 0.36 0.00 1.58 0.69 4.55 0.00 0.20

ASMF-II_TSX VV 2.13 0.53 0.17 0.69 3.20 0.00 1.47

BDF-I_TSX VH 1.81 1.96 8.53 9.32 20.45 7.12 1.19

BDF-I_TSX VV 0.33 1.00 0.80 1.32 0.26 1.14 0.33

BDF-II_TSX VH 0.29 4.57 6.37 3.27 3.13 1.80 1.00

BDF-II_TSX VV 0.00 1.00 1.92 0.39 0.57 0.20 0.82

EF_TSX VH 1.09 0.43 0.20 0.25 2.79 1.67 0.05

EF_TSX VV 0.18 2.46 3.86 0.29 0.47 1.47 0.80

HPF_TSX VH 0.00 0.00 0.69 0.50 0.11 3.00 0.14

HPF_TSX VV 0.00 1.80 3.77 0.20 0.00 2.00 0.50

Layer-stacked fused images

ASMF-I_TSX VV-VH 1.29 0.00 0.36 0.00 1.50 0.07 0.22

ASMF-II_TSX VV-VH 7.35 1.00 0.00 0.06 1.50 0.25 0.43

BDF-I_TSX VV-VH 0.14 1.50 2.13 0.05 3.52 2.57 0.00

BDF-II_TSX VV-VH 0.06 3.77 3.27 0.73 8.91 1.92 0.69

EF_TSX VV-VH 0.04 0.39 3.24 0.07 0.57 1.67 0.00

HPF_TSX VV-VH 0.00 0.14 3.00 0.14 1.67 0.33 1.29

Fig. 5 Classification maps for raw images: (a) TSX VH (SVM-lin), (b) TSX VV (SVM-rbf), and
(c) RapidEye (SVM-rbf).
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4.3 Comparison of Results

The statistical significance of the fusion methods’ accuracies compared to the RapidEye
classification accuracy is evaluated by McNemar’s test for each classification method. A con-
tingency table is formed based on the agreements and disagreements of the RapidEye classi-
fication results and the evaluated fusion method’s classification results. This approach
enables us to distinguish the fusion methods’ statistical significance over RapidEye classification
accuracies. McNemar’s test score is evaluated as in Eq. (5) according to the contingency matrix
given in Table 7

Fig. 6 Classification maps for single polarization fused images: (a) ASMF-I_TSX VH (SVM-rbf),
(b) BDF-I_TSX VH (SVM-rbf), (c) EF_TSX VH (RF), (d) ASMF-II_TSX VH (9-NN), (e) BDF-I_TSX
VV (RF), (f) EF_TSX VV (SVM-rbf), (g) ASMF-I_TSX VV (SVM-rbf), (h) BDF-II_TSX VH (SVM-rbf),
(i) HPF_TSX VH (SVM-rbf), (j) ASMF-II_TSX VV (SVM-rbf), (k) BDF-II_TSX VV (SVM-rbf), and
(l) HPF_TSX VV (SVM-rbf).
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McNemar 0s χ2 ¼ ðb − cÞ2
bþ c

: (5)

The results of McNemar’s test should be compared to the χ2 table value for 1 degree of
freedom.34 McNemar’s test scores for the classification accuracy of each fusion method as com-
pared to the RapidEye classification accuracy per classification method is given in Table 8. The
statistically significant results that yield better accuracies as compared to the RapidEye results,
with a 90% confidence, are given in italic and bold, whereas the better accuracies compared to
the RapidEye results, with a 95% confidence, are given in bold only in Table 8.

The classification maps enable better visual assessment of the classification accuracies for all
the fusion methods. Hence, the classification maps are generated based on the predictions of the
whole scene with the trained classifier models. The corresponding classification maps for each
fusion method that produces the highest classification accuracy are generated. In Fig. 5, the
classification maps for the TSX VH, TSX VV, and RapidEye are given, respectively, according
to the obtained training models in Table 4. Since the SAR images are heavily contaminated with
speckle noise, the whole scene classification results produced a relatively noisy map. On the
other hand, the classification map of the whole scene with the RapidEye data shows mostly
homogeneous regions, whereas some boundary regions are lost.

The classification maps for the single polarization fused images are shown in Fig. 6. The first
column of Fig. 6 provides the results for two types of the ASMF fusion for the MS and different
SAR polarizations. The second column of Fig. 6 shows the results for both types of the BDF
fusion for the MS and different SAR polarizations. The third column of Fig. 6 presents the results
for the EF and HPF fusion methods for the MS and different SAR polarizations. If the results are
examined, it can be seen that the MS image fusion with the VH polarized SAR data forms more
salt and pepper noise-like labeling in all the fusion methods. The visual inspection of Fig. 6 also
shows that the BDF type fusion causes deficiencies in the boundary regions. According to Fig. 6,
it can also be concluded that the EF spreads the fused features spatially, so the resulting labels are
highly affected by the neighboring labels.

In Fig. 7, the classification maps for the layer-stacked fused images for all the SAR polariza-
tions are presented. The first column in Fig. 7 provides the results for the layer-stacked ASMF

Fig. 7 Classification maps for fused and layer-stacked images: (a) ASMF-I_TSX VV-VH (SVM-
rbf), (b) BDF-I_TSX VV-VH (SVM-poly), (c) EF_TSX VV-VH (SVM-rbf), (d) ASMF-II_TSX VV-VH
(1NN), (e) BDF-II_TSX VV-VH (SVM-poly), and (f) HPF_TSX VV-VH (SVM-rbf).
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fusion images. The second column shows the results for the layer-stacked BDF fusion images, and
finally, the third column gives the classification maps for the EF and HPF layer-stacked images.

In Turkey, agricultural statistical data such as yield and acreage are collected by the local
technical staff of the Ministry of Agriculture and based on the declarations of farmers. The gov-
ernment gives subsidies to farmers based on declared crop types, yield, and acreage. These data
sometimes could be considered as unreliable due to false declarations from farmers. Therefore,
environmental decision makers and local authorities will benefit from the detailed information
regarding the crop pattern that can be used for strategic planning and sustainable management of
agricultural resources.

RapidEye data itself are quite successful; however, there is still the contribution of
TerraSAR-X to land use/cover classification. This is an indication that when the RapidEye
data are not available (e.g., cloudiness, temporal resolution, etc.) the fusion of TerraSAR-X
with any optical imagery might be still considered for land use/cover classification with
a higher accuracy.

5 Conclusion

In this study, the influence of the fusion techniques for the dual-polarized SAR and MS images
on the classification performance is presented. Several fusion techniques are utilized in the
experiments using the microwave X-band dual-polarized TerraSAR-X data and the MS optical
image RapidEye data of the Menemen (Izmir) Plain data. The classification performances are
investigated using the SVM, RF, k-NN, and MLC methods in a comparative manner.

The study shows some insight into the improvement of the individual sensor results of land
use/cover monitoring using the interoperability of multisensor data. Within this context, even
though not all of the fusion methods improved the classification result using the single polari-
metric SAR data, the study provides promising results of the fusion of dual polarimetric SAR
data and the optical data for the mapping of land use/cover types. The results also confirm that
using both dual polarimetric SAR data and MS fused images yielded higher classification results
as compared to the single polarimetric SAR data fused and the original images.

Quality metrics may give different results which can cause misunderstanding of results.
A ranking method for different quality metrics is more efficient than using them individually.
The ranking method could be used with any other data set and region, which makes it a universal
application for the assessment of fusion quality.

A single fusion technique is inadequate to improve the image quality for land use mapping.
Different image fusion techniques should be compared. For the contribution of SAR character-
istics to MS images, we recommend the use of image fusion approaches which are developed to
combine radar and the MS dataset. In this study, not only a single polarization of an SAR fused
image, but also a stack of dual polarization of data were applied to investigate the individual (VV
and VH fused images separately) and dual polarization data (VVand VH fused images together)
performances. Using the stack of fused dual-polarized SAR data gave better classification accu-
racies than both the original MS RapidEye data and the single polarized SAR fused data.

It is suggested that quality metrics should not be the only way for the interpretation of fused
images. Image classification should be applied on all fused images although statistical analysis
of an image that has a worse result can give the highest classification accuracy. Although fused
images’ classification accuracies are slightly lower than the accuracy of RapidEye (except the
one given in Table 5), it is concluded that VV polarized images have a higher accuracy than VH
polarized images.

Using this dataset on an agriculturally dominant area, it is concluded that some image fusion
methods performed better than others and improved the results. The selection of the fusion
approach and the classification method can play an important role. Although we suggest this
appropriate methodology for other study areas, generalizations have not been performed yet
for other applications. As further research, we will investigate merging full polarimetric SAR
data with optical data to explore the contribution of polarimetry to other remote sensing appli-
cations. We planned to test these fusion algorithms for other topographically heterogeneous areas
to determine the contributions of fusion techniques.
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