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Abstract. Electron-multiplying charge-coupled devices are efficient imaging devices for low-
surface-brightness ultraviolet astronomy from space. The large amplification allows photon
counting (PC), the detection of events versus nonevents. This paper provides the statistics of
the observation process, the photon-counting process, the amplification process, and the com-
pression. The expression for the signal-to-noise of PC is written in terms of the polygamma
function. The optimal exposure time is a function of the clock-induced charge. The exact dis-
tribution of amplification process is a simple-to-compute powered matrix. The optimal cutoff for
comparing to the read noise is close to a strong function of the read noise and a weak function
of the electron-multiplying gain and photon rate. A formula gives the expected compression rate.
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1 Science Motivation

The Earth’s atmosphere is essentially opaque to ultraviolet (UV) radiation at wavelengths shorter
than about 300 nm. All sorts of interesting astrophysical phenomena exist to be imaged in the
UV, such as emission lines from interstellar gas, redshifted Ly-α from galaxies, and zodiacal light
caused by Rayleigh scatter of sunlight. Most of the UV sources mentioned above have very
low-UV surface brightness, so observation requires an imaging telescope above the Earth’s
atmosphere that integrates for long periods, coupled with an imaging detector with very high
efficiency. Typical photon rates are on the order of a photon per 1000 pixels per second. As
space-based missions are limited in the returned data, compression of data consisting of non-
detections is relevant.

Electron-multiplying charge-coupled devices (EMCCDs) are the enabling technology for
space-based UV imaging, especially with enhanced UV quantum efficiency. The Teledyne
e2v CCD201-20 EMCCD has flight heritage from the Faint Intergalactic Redshifted Emission
Balloon.1–3 Roman coronagraphic instrument has extensively tested and qualified the
CCD201-20.4 Other space applications using the CCD201-20 are SPARCS,5–7 currently in
production, and the Polarized Zodiacal Light Experiment concept.8

2 What is an EMCCD?

The EMCCD is a CCD modified to achieve high signal-to-noise ratio (SNR) by rendering the
read noise effectively zero. Compared to conventional CCDs, EMCCDs have an additional serial
register (604 extra charge-coupled “pixels” [see Fig. 1]), where one of the register clocks is
replaced by a high-voltage clock (25 to 50 V). The higher voltage causes a multiplication process
that stochastically turns one electron into many, resulting in thousands of electrons at the output
amplifier. This allows detection of single-photon events by thresholding above amplifier read
noise.10

In the amplification process, if the charge transfer from one register to the next is done with
enough input energy, a signal electron will knock lose another electron. This is the avalanche
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photodiode (APD) effect. Repeating this process makes an “APD staircase,”11 magnifying the
signal by having some extra CCD-like charge transfers explicitly run using overdrive. Since
the digitization takes place after magnification, the read noise is proportionally smaller when
compared to the original, unamplified signal.

EMCCDs are generally run in “photon counting” (PC) mode, meaning that the detector is
read out often enough that the expected signal counts in each pixel are≪1. After magnification,
the final counts are generally either very large or very small, signifying detecting or not detecting
signal photons. This is similar to a photomultiplier tube (PMT). The downside, as compared to a
PMT or an intensified CCD, is that the dark current and clock-induced charge (CIC) may also
add significant noise. The EMCCD data output is then a combination of science signal, dark
current, CIC, and readout noise. Dark current decreases with temperature, but sufficient cooling
is not always available to make the dark current negligible. CIC is fixed per exposure and is
discussed in Sec. 6. Without PC, sufficient EM amplification will make the read noise compa-
ratively small, but the discussion in Sec. 11 shows that in PC mode, the read noise is eliminated
with the proper choice of parameters.

3 Probability Notation

The rest of this paper mainly consists of probability theory related to processing and understand-
ing the signal from these detectors. As the intended target of this paper is engineers and scientists
rather than mathematicians, neither mathematical rigor nor mathematically rigorous notation are
prioritized. The notation used is as follows:

X; XY : a random variable; i.e., a variable that can take on randomly generated values

PðXÞ : a probability distribution

EðXÞ : the expected value of X, also known as the first moment or mean

VðXÞ : the variance of X, equal to the second moment of X − EðXÞ
The various symbols used are, in order of definition:

λ: the number of counts expected in a pixel’s well for a given exposure [Eq. (1)]

Qðn; λÞ: regularized gamma function [Eq. (3)]

ε: probability of one or more signal counts in a pixel’s well [Eq. (6)]
N: number of exposures in an observation for a single pointing [Eq. (7)]

PCN : number of exposures out of N that have one or more counts [Eq. (7)]

c: an observed value of PCN [Eq. (7)]

Bðα; βÞ: Beta function with parameters α and β [Eq. (9)]

MnðλÞ: n’th moment of the probability distribution of λ [Eq. (11)]

ψ ;ψ1: digamma and trigamma functions [Eqs. (13) and (14)]

T: total exposure time in seconds for series of exposures [Eq. (15)]

λCIC: CIC count rate in counts per exposure [Eq. (15)]

η: photon count rate from the signal source in counts per second [Eq. (15)]

ε: expected value of ε [Eq. (17)]

λopt: the counts per exposure that maximize SNR [Eq. (19)]

μ̂ : read out noise when not using PC [Eq. (21)]

PmðnÞ: the probability of n counts after m stages of amplification [Eq. (25)]

Bnk: a matrix containing the probability of k counts multiplying to n counts [Eq. (27)]

G: amplification gain of a set of multiplication elements [Eq. (30)]

μ: read out noise when using PC [Eq. (33)]

τ: cutoff criterion for amplified counts to assuming a detection [Eq. (36)]

τ̂: optimal value for photon-counting cutoff τ [Eq. (41)]
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4 Poisson Distributions

For independent events arriving at a detector, the Poisson distribution is appropriate to use.
For a Poisson-distributed random variable X, EðXÞ ¼ VðXÞ ¼ λ, and X is distributed as

EQ-TARGET;temp:intralink-;e001;116;692PðX ¼ kÞ ¼ λke−λ

k!
: (1)

Similar to the Gaussian assumption, the SNR goes as the square root of the counts as a result
of EðXÞ ¼ VðXÞ. For no events,

EQ-TARGET;temp:intralink-;e002;116;626

PðX ¼ 0Þ ¼ e−λ;

PðX > 0Þ ¼ 1 − e−λ: (2)

Useful is the cumulative distribution function, which is

EQ-TARGET;temp:intralink-;e003;116;565FXðnÞ ¼ PðX ≤ nÞ ¼
Xn
k¼0

λke−λ

k!
¼ Qðnþ 1; λÞ: (3)

Here Qðn; λÞ is the regularized gamma function; e.g., evaluated in Excel as

EQ-TARGET;temp:intralink-;e004;116;506Qðn; λÞ ¼ 1 − GAMMADISTðλ; n; 1; trueÞ (4)

5 Photon Counting

Consider an ideal photon-counting detector with infinite gain. If any photons at all are detected,
then the detector returns 1, otherwise 0. Let the random variable XW be the number of electrons
in the well of a pixel. Using Eq. (2), the expected value (and second and all higher moments) of
this process is then

EQ-TARGET;temp:intralink-;e005;116;395

EðIdeal PCÞ ¼
X∞
w¼1

ð1ÞPðXW ¼ wÞ

¼ PðXW > 0Þ
¼ 1 − e−λ: (5)

In practice, a single exposure is not useful. Rather, λ is estimated by taking a sequence of N
exposures, each in PC mode. Define the ε as the probability of detection

EQ-TARGET;temp:intralink-;e006;116;292ε ¼ 1 − e−λ: (6)

The number of exposures with a signal detection are then given by the binomial distribution

EQ-TARGET;temp:intralink-;e007;116;247PðPCN ¼ cjεÞ ¼
�
N
c

�
εcð1 − εÞN−c: (7)

Here c is the total number of counts for the N exposures. If ε is ½, then this is the distribution
of the number of heads after N flips of a fair coin. What we want to know is ε, which is on the
wrong side of the equation. Using Bayes’ theorem,

EQ-TARGET;temp:intralink-;e008;116;167PðεjPCN ¼ cÞ ¼ PðPCN ¼ cjεÞPðεÞ
PðPCN ¼ cÞ : (8)

We need a prior for PðεÞ and select the most commonly used prior for the binomial distri-
bution, the beta distribution, given by

EQ-TARGET;temp:intralink-;e009;116;97PðεÞ ¼ εα−1ð1 − εÞβ−1
Bðα; βÞ (9)
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The denominator is the beta function Bðα; βÞ ¼ ΓðαÞΓðβÞ∕Γðαþ βÞ, and the distribution is
valid over fα > 0; β > 0g. A common choice is the uniform prior fα ¼ 1; β ¼ 1g. For a reader
unfamiliar with Bayesian statistics, the prior can be used to bias the result using prior knowledge
(thus the name). However, the actual choice of prior makes little difference with sufficient data.
More useful is to reverse this last statement; if the result of an observation depends significantly
on the choice of prior, then the data quantity is insufficiently robust. Using the above prior,

EQ-TARGET;temp:intralink-;e010;116;663PðεjPCN ¼ cÞ ¼ εcþα−1ð1 − εÞN−cþβ−1

Bðcþ α; N − cþ βÞ : (10)

We did not need to explicitly calculate the Bayesian denominator PðPCN ¼ cÞ. The denom-
inator is determined by noticing that the binomial distribution combined with a beta distribution
is another beta distribution, so the new denominator is the normalization factor from the new beta
distribution.

The expression for the moments of λ is found using the probability distribution for ε to find
the powers of λ written as a function of ε

EQ-TARGET;temp:intralink-;e011;116;545MnðλÞ ¼
Z

1

ε¼0

ð− lnð1 − εÞÞn ε
cþα−1ð1 − εÞN−cþβ−1

Bðcþ α; N − cþ βÞ dε (11)

A change of variable gives, to within a sign, the formula for the geometric moments of the
beta distribution

EQ-TARGET;temp:intralink-;e012;116;475MnðλÞ ¼
Z

1

x¼0

ð− ln xÞn x
N−cþβ−1ð1 − xÞcþα−1

BðN − cþ β; cþ αÞ dx: (12)

So, the mean and variance of λ are (within a sign) the geometric mean and geometric variance
of a beta distribution, respectively. The expected value can be written in terms of the digamma
function ψ

EQ-TARGET;temp:intralink-;e013;116;392EðλÞ ¼ −M1ðλÞ ¼ ψðN þ αþ βÞ − ψðN − cþ βÞ; (13)

and the variance in terms of the trigamma function ψ1

EQ-TARGET;temp:intralink-;e014;116;349VðλÞ ¼ M2ðλÞ −M2
2ðλÞ ¼ ψ1ðN − cþ βÞ − ψ1ðN þ αþ βÞ: (14)

The polygama function ψn is a transcendental function available in language math libraries or
evaluated with a series approximation.

6 Optimal Exposure Time

λ, the expected number of counts in an exposure, depends on the exposure time, while the rel-
evant quantities for an observation are the rate of photons per unit time and the total exposure
time available. The obvious choice is to have a very large number of exposures and make the
exposure time arbitrarily small. However, in practice, an EMCCD has a noise source called
CIC that is added to every exposure,3,12 where an extra charge is added during clocking of the
charge-coupled pixels. CIC has been measured as low as 7 × 10−4 e−∕pixel∕readout,13 while
achieving is 5 × 10−3 e−∕pixel∕readout is relatively easy.

CIC is not constant across the detector. For a 1k × 1k-pixel frame transfer device, the number
of pixel-to-pixel transfers can vary from 1k to 3k (frame transfer plus row number plus column
number) before arriving at the readout and amplification chain (see Fig. 1).

For this section, we define the following variables:

• T- the total exposure time in seconds for a series of exposures

• λCIC- the CIC count rate in counts per exposure

• η- the photon count rate from the science signal source in counts per second
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The variable η is the fundamental astronomical parameter being measured, but includes dark
current. Our expected counts per exposure λ is then

EQ-TARGET;temp:intralink-;e015;116;331λ ¼ λCIC þ ηT
N

: (15)

The expected photon-counting event detection rate is

EQ-TARGET;temp:intralink-;e016;116;276ε ¼ 1 − e−λCIC−ηT∕N: (16)

To avoid the difficult polygama function, we will find the optimal number of exposures N by
maximizing the SNR with respect to ε rather than λ. This should be acceptable, as CIC is only
critical for small λ. Choose the number of exposures N to be N ≫ α and N ≫ β (or choose
α ¼ β ¼ 1). Since ε is beta distributed, we know the mean and variance, and thus the SNR

EQ-TARGET;temp:intralink-;e017;116;195

EðεÞ ¼ c∕N;

VðεÞ ¼ ðc∕NÞð1 − c∕NÞ
N

;

SNRðεÞ ¼
�

c
1 − c∕N

�
1∕2

: (17)

The SNR evaluated at the expected ε is then

EQ-TARGET;temp:intralink-;e018;116;94SNRðεÞ ¼ N1∕2ðeλCICþηT∕N − 1Þ1∕2: (18)

Fig. 1 Device architecture diagram for the e2v CCD201-20 EMCCD.9 The device has two
separate output amplifiers, one of which is amplified with the 604 multiplication elements.
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Setting the derivative with respect to N to zero gives the transcendental equation

EQ-TARGET;temp:intralink-;e019;116;723ð1þ λCIC − λoptÞeλopt ¼ 1: (19)

Over the typical region of 10−3 < λCIC < 5 × 10−3, λopt is well approximated by the fit

EQ-TARGET;temp:intralink-;e020;116;678λopt ≈
3

2
λ1∕2CIC: (20)

So, for CIC ∼ 0.001, the optimal number of well counts per exposure is λopt ∼ 0.045 counts
for best SNR. Given that CIC for current state-of-the-art, EMCCD controllers is in the range of
0.001 to 0.005, λ for optimal SNR is restricted to (0.045 to 0.10). Since CIC varies across the
detector, λopt can never be more than a compromise. Other considerations might lead to using
shorter exposure times than for optimal SNR. For example, bright stars in the field can cause
“blooming,” where the wells of the amplification staircase elements overfill and spill charge into
adjacent elements. The exposure time may also be limited by the spacecraft stability for appli-
cations where spatial resolution is important.

7 Comparison to Standard Mode

For bright sources, the detector frame rate may not be high enough to achieve the optimal count
rate λ per exposure. In this case, observing with standard mode (SM) might provide better SNR.
The SNR in SM is

EQ-TARGET;temp:intralink-;e021;116;459SNRðSMÞ ¼ ηT

ðηT þ μ̂Þ1∕2 : (21)

Here μ̂ is the readout noise for standard mode, which may be different than the readout noise
μ for PC mode if the EMCCD device has separate readout amplifiers (see Fig. 1). Given the total
number of expected events ηT for an observation and a known λCIC, the number of PC-mode
exposures is

EQ-TARGET;temp:intralink-;e022;116;366N ¼ ηT∕ðλ − λCICÞ: (22)

The expected number of PC counts is

EQ-TARGET;temp:intralink-;e023;116;322EðcÞ ¼ N − Ne−λ: (23)

Assuming N is large enough that the prior is irrelevant and replacing c with the expected
counts, the PC-mode SNR is

EQ-TARGET;temp:intralink-;e024;116;265SNRðPCÞ ¼ ψðNÞ − ψðNe−λÞ
ðψ1ðNe−λÞ − ψ1ðNÞÞ1∕2 : (24)

Equations (21) and (24) can be compared to choose which mode is best. Aworked example is
shown in Fig. 2. In practice, the standard-mode exposure time T is limited by cosmic rays,
whereas for PC mode the exposure time T∕N is limited by readout speed.

8 Amplification

The amplification process of EMCCD amplification is similar to the amplification process in an
APD.11,14–18 The amplification of a single electron from Matsuo 198411 (hereafter “Matsuo”) is
given by a recurrence relation for each stage m by

EQ-TARGET;temp:intralink-;e025;116;103PmðnÞ ¼ ð1 −QÞPm−1ðnÞ þQ
Xn
k¼0

Pm−1ðn − kÞPm−1ðkÞ; P0ðnÞ ¼ δ1;n: (25)
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Q is the probability of an electron generating a secondary. The distribution of counts for each
stage PmðnÞ, where n is the number of counts, depends on the distribution of counts at the pre-
vious stage. What happens if the initial distribution of counts is not restricted to a single count,
or P0ðnÞ ≠ δ1;n? Then the recurrence relation spectacularly fails. However, the most important
issue with this recurrence relation is that it physically makes no sense; the relation connects the
opposite tails of the distribution to generate the next stage. So, although the relation may hold
true, it is more of a mathematical curiosity than anything else.

The APD staircase effect can be described as a process where, at each step, there is a chance
when transferring the charge that an electron generates a second electron. Now make two
assumptions. First, the electrons are not aware of each other, equivalent to the process at each
step being linear in the number of electrons generated on average. Second, assume that an origi-
nal electron can never generate two or more additional electrons, equivalent to assuming that the
energy of an electron, once spent on generating a second electron, is gone. With these two
assumptions, we can write down a recurrence relation.

Consider, at some step m in the APD staircase, the distribution of electrons PmðnÞ. How was
this distribution generated if the previous step had k electrons? Clearly, n − k electrons each
generated a single electron (first assumption), while k − ðn − kÞ ¼ 2k − n electrons did not.
Since the electrons are independent (second assumption), the applicable distribution is the bino-
mial distribution

EQ-TARGET;temp:intralink-;e026;116;289PmðnÞ ¼
Xn
k¼n∕2

�
k

n − k

�
ð1 −QÞ2k−nQn−kPm−1ðkÞ: (26)

This expression looks unwieldy; however, the right-hand side is nothing more than a fixed
matrix multiplication to get from one stage of the APD to the next. The matrix is

EQ-TARGET;temp:intralink-;e027;116;210Bnk ¼
�

k
n − k

�
ð1 −QÞ2k−nQn−k; k ∈

��
n
2

�
; n

�
: (27)

Once the matrix Bnk is formed with a size corresponding to the largest electron counts of
interest, the recurrence relation becomes

EQ-TARGET;temp:intralink-;e028;116;134PmðnÞ ¼ BnkPm−1ðkÞ: (28)

The final amplified distribution is then

EQ-TARGET;temp:intralink-;e029;116;87PmðnÞ ¼ ðBnkÞmP0ðkÞ: (29)

Fig. 2 Assuming λCIC ¼ 0.002e− and μ ¼ μ̂ ¼ 6e− for this plot, PC mode always has better SNR
than standard mode. The staircase effect for lower counts in PC mode is real and due to rounding
up to the nearest N integer number of exposures.
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Computing PmðnÞ is only a few lines of MATLAB code,
% Create the transform matrix for a single stage of a staircase APD
Q = gain^(1/stages) - 1;
for n = (0:nmax);

for k = (0:nmax);
if((k <= n) && (n-k <= k))

B(k+1,n+1) = exp(gammaln(k+1) - gammaln(n-k+1) -
gammaln(2*k-n+1) + (2*k-n)*log(1-Q) + (n-k)*log(Q));

end % k
end % n

% Transform initial distribution to the final distribution
P = Po*BB^stages; % Po and P are row vectors here
This recurrence relation gives identical results to Matsuo for an initial distribution of a single

electron P0ðnÞ ¼ δ1;n, while also, unlike Matsuo, working for any initial distribution.

9 Comparison to Basden

Basden 200319 (hereafter “Basden”) gives the formula for the distribution of final amplified
counts XA as [Basden, Eq. (1)]

EQ-TARGET;temp:intralink-;e030;116;505

P̃ðXA ¼ ajXW ¼ wÞ ¼ aw−1e−a∕G

Gwðw − 1Þ! a ≥ w; w > 0;

P̃ðXA ¼ 0jXW ¼ 0Þ ¼ 1: (30)

G here is the gain of the entire APD staircase, so the gain at stage m would be
Gm ¼ ð1þQÞm.

Basden’s derivation is based on assuming the first assumption above (independent electrons)
and a few approximations. We write P̃ because the formula is not a probability distribution; the
sum over all values is not equal to unity. The formula has the functional form of an Erlang
distribution, but the Erlang distribution is a continuous distribution in a. The Erlang distribution
is the distribution of the sum of w independent identically distributed (IID) exponentially dis-
tributed random variables. This is a hint that the Basden equation could be derived as a sum of
IID geometrically distributed random variables. In fact, a plot of the Matsuo distribution for a
single initial electron does look very similar to an exponential distribution.

The recurrence relation of Eq. (25) deviates from that of Eq. (26), mostly for larger counts
(Fig. 3). Basden explicitly states that their approximation should not be used in this region.

Fig. 3 The Basden approximation is close to the binomial model for moderate counts but fits
poorly for the less likely counts. For this plot, the gain is 100, with 50 stages. “Matsuo” is
Eq. (25), “Basden” is Eq. (30), and “Binomial” is Eq. (26).
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In the limit as the number of stages m becomes large and the amplification Q becomes small
for fixed G, a closed-form solution in terms of G based on Eq. (26) should exist. At a minimum,
the recurrent relation can be written in terms of the eigenvectors and eigenvalues

EQ-TARGET;temp:intralink-;e031;116;699Bm
nk ¼ VΛmV−1: (31)

Since the matrix Bnk is triangular, the diagonal elements are the eigenvalues. Taking the limit
as m goes to infinity for fixed G gives the eigenvalues as

EQ-TARGET;temp:intralink-;e032;116;642Λi ¼ G−i: (32)

In the limit, the eigenvectors V are independent of G.

10 Combining Signal with Read Noise

In practice, we add the amplified well counts to the read noise XR. Read noise is also Poisson
distributed, so

EQ-TARGET;temp:intralink-;e033;116;531PðXR ¼ yÞ ¼ μye−μ

y!
: (33)

The expected value of the read noise μ is trivially measured by taking a zero-exposure-time
frame or alternatively running the analog-to-digital converter without advancing the CCD
charge. Since the read noise and amplified counts are independent, the distribution of the sum
read out by the detector is

EQ-TARGET;temp:intralink-;e034;116;443PðXA þ XR ¼ cÞ ¼
Xc
a¼0

PðXA ¼ aÞPðXR ¼ c − aÞ: (34)

Inserting in the expressions from Eqs. (1), (29), and (33)

EQ-TARGET;temp:intralink-;e035;116;381PðXA þ XR ¼ cÞ ¼
Xc
a¼0

μc−ae−μ

ðc − aÞ!B
m
ak
λke−λ

k!
: (35)

11 PC Cutoff Setting

The algorithm used for PC is that c is considered a single count if higher than some threshold τ.
The expected value (and second and all higher moments) of this process is then

EQ-TARGET;temp:intralink-;e036;116;282EτðPCÞ ¼
X∞
c¼τþ1

ð1ÞPðXA þ XR ¼ cÞ: (36)

Since the argument of the summation is a probability distribution over c, this is equal to

EQ-TARGET;temp:intralink-;e037;116;220EτðPCÞ ¼ 1 −
Xτ

c¼0

PðXA þ XR ¼ cÞ: (37)

Substituting in Eq. (35) and swapping the summations gives

EQ-TARGET;temp:intralink-;e038;116;159EτðPCÞ ¼ 1 − e−λ
Xτ

a¼1

Xτ−a
m¼1

μme−μ

m!
Bm
ak
λk

k!
: (38)
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The sum over m is again the regularized gamma function from Eq. (3)

EQ-TARGET;temp:intralink-;e039;116;514EτðPCÞ ¼ 1 − e−λ
Xτ

a¼0

Qðτ − aþ 1; μÞBm
ak
λk

k!
: (39)

The optimal choice for the cutoff parameter τ is such that the read noise does not bias the PC
process. This is equivalent to setting τ such that false positives equal false negatives. With this
choice, lost counts from low-amplification signal counts balances added counts from high noise.
The PC method is then an “ideal” photon counter, as in Sec. 5. One can prove that setting false
positives to false negatives is equivalent to the read noise having no effect, and so the expected
value of ε with noise is equal to ε without noise, or

EQ-TARGET;temp:intralink-;e040;116;392EτðPCÞ ≅ ε: (40)

Let τ̂ be the optimal τ that makes Eq. (39) satisfied. Then

EQ-TARGET;temp:intralink-;e041;116;348

X̂τ

a¼0

Qðτ̂ − aþ 1; μÞBm
ak
λk

k!
¼ 1: (41)

Over the range of typical values for λ, μ, and G, the optimal τ̂ is well fit to within 5% by

EQ-TARGET;temp:intralink-;e042;116;285τ̂ ≈ 1.72μ0.88ðG∕λÞ0.03: (42)

τ̂ only has a weak dependence on λ andG. The residuals of the fit are due to the μ dependence
not being sufficiently well-fit with a power law. The residuals are shown in Fig. 4.

12 Compression of Photon-Counting Mode Data

For a typical photon-counting exposure, the expected image data are a list of binary values, the
vast majority of which are zeros. Since CIC may be a significant contributor to the signal and is
unstructured random noise, compression algorithms based on entropy (structure in the image)
are likely not optimal. On the other hand, an algorithm that depends on most of the data being
zero might be.

If the events in each pixel are independent, then the statistics are Poisson distributed with
a “rate” or expected number of pixels between events, of λ. For a detector where the noise is
CIC-dominated and CIC is ∼0.001 e−∕pix∕frame, the number of pixels between each photon
detection is about 1∕ð0.001Þ ¼ 1000.

Fig. 4 The residuals of the Eq. (42) fit to the cutoff τ in Eq. (41) are within 2%. The scatter is due to
variations in λ over 0.04 to 0.1 and G over 10 to 1000.
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The simplest compression method for sparse binary data is to count zeros between events.
This nominally gives a compression ratio of approximately the number of pixels divided by the
number of bits needed to encode the number, or ∼ð1∕λÞ∕ log2ð1∕λÞ. A compression ratio roughly
on the order of 100:1 should be possible for the above CIC alone.

This algorithm is a variation of run-length encoding (RLE), which is to count the number of
bits before a change. The heritage of the RLE algorithm stretches back to at least the early
1960s.20 For mostly empty data, the appropriate standard compression algorithm is the run-
length limited (RLL) variation, which has been common for encoding hard disks and optical
storage since the 1980s, and only counts zeros. We use ð0; bÞ RLL.

The encoding algorithm for RLLð0; bÞ is as follows:
1. Count number of zeros until a nonzero.
2. For an b-bit encoding, do not count more than 2b − 2 zeros.
3. If no nonzero encountered, then return 2b − 1.
4. Else, return number of zeros.

For the data generated by the photon-counting process, we can compute the expected
compression ratio. Equation (1) gives the probability for an event (1) and a nonevent (0)
for an image pixel. Assuming independent events, the probability of n zeros followed by
a nonzero is

EQ-TARGET;temp:intralink-;e043;116;498PðX≤n ¼ 0; Xnþ1 ¼ 1Þ ¼ e−nλð1 − e−λÞ: (43)

The expected number of inputs bits consumed by a b-bit encoding is then the probability of
all zeros (consuming one encoding value), or some run of zeros followed by a nonzero

EQ-TARGET;temp:intralink-;e044;116;441Eðbits consumedÞ ¼ 2bPðX≤2b ¼ 0Þ þ
X2b−1
n¼0

ðnþ 1ÞPðX≤n ¼ 0; Xnþ1 ¼ 1Þ: (44)

Simplifying,

EQ-TARGET;temp:intralink-;e045;116;377Eðbits consumedÞ ¼ 2be−2
bλ þ ð1 − e−λÞ

X2b−1
n¼0

ðnþ 1Þe−nλ: (45)

Table 1 Optimal code length for given counts per exposure λ.

Code length λlo λhi

2 0.2272 0.4114

3 0.1636 0.2272

4 0.0955 0.1636

5 0.0531 0.0955

6 0.0288 0.0531

7 0.0154 0.0288

8 0.0082 0.0154

9 0.0043 0.0082

10 0.0023 0.0043

11 0.0012 0.0023

12 0.0006 0.0012
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Using the derivative of the formula for the sum of a geometric series, this simplifies to

EQ-TARGET;temp:intralink-;e046;116;488Eðbits consumedÞ ¼ 1þ 2be−2
bλ − 2be−ð2b−1Þλ þ e−λ − e−2

bλ

ð1 − e−λÞ : (46)

The final compression ratio is then Eðbits consumedÞ∕b. The boundaries in λ for the ranges
of optimal compression are found by looking for the λ where compression ðλ; bÞ = compression
ðλ; bþ 1Þ. The results are shown in Table 1.

13 Conclusions

The following steps specify the operating mode (PC or SM), expected SNR, optimal exposure
time, and data volume. For a space-based astronomical observatory, knowing these parameters is
critical to mission design. The steps to set up an EMCCD for an observation are

1. Measure the CIC λCIC by amplifying short dark frames.
2. Use Eqs. (19) or (20) to find the target expected counts per exposure λ.

3. Choose a target SNR from science requirements.
4. Use Eqs. (22) and (24) to find the number of exposures N required.
5. Estimate the photon rate η (from radiometry).
6. Check if dynamic range (e.g., bright stars, stability) requires adjusting N and thus λ.
7. Use Eq. (15) to find the total observation time T.
8. Use Eq. (21) to check if SM has superior SNR.
9. Adjust T depending on maximum frame rate (PC) and cosmic ray tolerance (SM).

10. Choose amplification gain G based on device operation considerations.
11. Measure the readout noise μ by reading out unamplified short dark frames.
12. Use Eq. (41) to find the optimal cutoff τ̂.
13. Use Table 1 to find the compression code length and Fig. 5 for the compression ratio.

For a given observation of time T, the number of exposures N and exposure time T∕N must
be chosen to ensure that the required SNR is met for all image pixels, taking into account
variations in CIC, dark current, and signal brightness across the detector. The optimal photon-
counting cutoff τ̂ can be chosen per pixel, either in postprocessing or adaptively as exposures are
taken. Using these equations, even bright (but unsaturated) stars will have correctly computed
expected values.

Fig. 5 An encoding with 5-bit codes has the highest compression ratio for 0.053 < λ < 0.095,
which encompasses most of the range of λ for optimal SNR from Sec. 6. The most likely lossless
compression assuming optimal SNR is thus from 2:1 to 3:1. The optimal compression ratio for
λ < 0.01 is well fit by the approximation 0.264 × λ−0.825.
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