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Abstract. Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response
(pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast
cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating
NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regres-
sion modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the
course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast
cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue,
produced models with robust predictions. Notably, logistic regression based on z-score normalization using
only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be
a significant predictor of pCR (AUC ¼ 0.92; 95% CI: 0.82 to 1). This observation suggests that patients who
show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR.
This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for
optimization of chemotherapy strategies in breast cancer. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JBO.24.2.021202]
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1 Introduction
Neoadjuvant chemotherapy (NAC) is a widely used treatment
method for breast cancer that permits increased conservation of
breast tissue during tumor resection and limits the need for
axillary node treatment and surgery.1 In addition, pathologic
complete response (pCR) to NAC, defined as no residual
invasive carcinoma, has been correlated with improved
survival compared to incomplete response.2,3 Unfortunately,
this assessment occurs after the completion of NAC. The

ability to predict response to NAC at an earlier timepoint dur-
ing chemotherapy, by contrast, could enable physicians to
dynamically optimize the treatment regimen, thereby avoiding
unnecessary therapy doses, reducing tissue damage, and
improving patient outcomes.

NAC response is typically evaluated with physical exams and
radiologic imaging in current clinical practice. Unfortunately,
these methods are inadequate predictors of pCR.4–6 Magnetic
resonance imaging (MRI) provides better correlation with
pathology than mammography or ultrasound.7 Broadly, func-
tional monitoring techniques offer significantly improved corre-
lation with response relative to structural imaging modalities.
Magnetic resonance spectroscopy (MRS),8 contrast-enhanced

*Address all correspondence to: Jeffrey M. Cochran, E-mail: cochranj@sas
.upenn.edu

Journal of Biomedical Optics 021202-1 February 2019 • Vol. 24(2)

Journal of Biomedical Optics 24(2), 021202 (February 2019)

https://doi.org/10.1117/1.JBO.24.2.021202
https://doi.org/10.1117/1.JBO.24.2.021202
https://doi.org/10.1117/1.JBO.24.2.021202
https://doi.org/10.1117/1.JBO.24.2.021202
https://doi.org/10.1117/1.JBO.24.2.021202
https://doi.org/10.1117/1.JBO.24.2.021202
mailto:cochranj@sas.upenn.edu
mailto:cochranj@sas.upenn.edu
mailto:cochranj@sas.upenn.edu


MRI,9 and positron emission tomography (PET),10–12 have
predictive value with respect to pCR, but MRI, MRS, and
PET all have practical constraints, which limit the frequency
of monitoring in clinical care. These limitations include cost,
the use of contrast agents, and ionizing radiation for PET.

The present contribution investigates the utility of diffuse
optical monitoring for prediction of pCR during NAC and
adds an analysis to prior reports of a multicenter trial.13

Briefly, diffuse optical techniques measure functional hemo-
dynamic properties of tissue with nonionizing near-infrared
radiation. These optical methods are relatively low cost and
can be employed at the bedside. Furthermore, the technology
offers a quantitative tool to predict treatment outcome based
on longitudinal measurements during therapy.14,15 Diffuse
optical spectroscopic imaging (DOSI) and tomography (DOT)
probe deeply, i.e., several centimeters, into tissue and provide
information about tissue optical absorption (μa) and reduced
optical scattering (μ 0

s), from which deoxygenated-(HHb) and
oxygenated-hemoglobin (HbO2) concentrations, as well as
lipid and water (H2O) concentrations can be deduced.16,17

The concentrations of HHb and HbO2, in turn, are readily
utilized to calculate total hemoglobin concentration (HbT)
and tissue oxygen saturation (StO2). These parameters have
been shown to discriminate malignant from healthy tissue
in the breast,18–23 and several studies have employed DOSI
techniques to explore functional changes in malignancies
during NAC and have correlated these changes with response
to therapy.13,24–35

We recently reported the first results of ACRIN-6691,
an American College of Radiology Imaging Network (ACRIN)
multicenter clinical trial of patients monitored longitudinally by
DOSI throughout their NAC regimen.13 The primary aim of
ACRIN-6691 was to evaluate whether a change in a particular
DOSI endpoint, the tissue optical index (TOI), could be used
to predict a clinical endpoint, pCR, by the midpoint of NAC,
∼2 to 3 months after the first infusion. The TOI combines tissue
deoxyhemoglobin concentration (HHb), water, and lipid into
a single index (see Sec. 2). In that initial study, we reported
significant reductions in tumor to normal (T/N) TOI ratios
for pCR subjects. A 40% or greater change in this parameter at
midpoint, combined with baseline tumor StO2 greater than
median values (77%) was shown to be a promising predictor of
pCR (AUC ¼ 0.83; 95% CI: 0.63 to 1).13

In this study, we explore the ACRIN-6691 secondary aim of
predicting pCR much earlier in the 3- to 6-month NAC cycle
by examining DOSI response parameters within 10 days of
therapy initiation. To address this goal, we develop and retro-
spectively apply z-score normalization21 and a logistic regres-
sion algorithm36 to correlate DOSI-measured parameters of
malignant breast lesions to subjects’ posttherapy pathologic
response status. Our hypothesis is that identification and opti-
mization of this z-score DOSI index could predict pCR to
NAC at an early timepoint in the course of therapy, providing
significant potential for clinical utility.

2 Materials and Methods

2.1 Trial Design and Subjects

Data for this study were collected during the ACRIN 6691
multisite trial using a DOSI instrument developed at the
University of California, Irvine.13 Subjects provided written
informed consent, and the HIPAA-compliant protocol and

Table 1 Subject and tumor characteristics. Demographic, histologi-
cal, and immunohistochemical data are provided for all subjects and
divided into complete responder (pCR) and noncomplete responder
(non-pCR) groups. For histological information, IDC refers to invasive
ductal carcinoma, ILC refers to invasive lobular carcinoma, and DCIS
is ductal carcinoma in-situ. ER, PR, and Her2 represent estrogen
receptor, progesterone receptor, and human epidermal growth factor
receptor status, respectively.

pCR (N ¼ 15) Non-pCR (N ¼ 18)

Age (years)

Mean� SD (range) 49.0� 11.6
(30 to 67)

49.4� 10.9
(28 to 66)

Menopausal status, n (%)

Pre 5 (33) 9 (50)

Peri 1 (7) 2 (11)

Post 9 (60) 7 (39)

Maximum tumor size (mm)

Mean� SD (range) 37.9� 22.8
(12 to 95)

37.5� 18.1
(11 to 75)

Histological findings, n (%)

IDC 9 (60) 12 (67)

ILC 0 (0) 1 (6)

IDC/DCIS 4 (27) 5 (28)

IDC/ILC 1 (7) 0 (0)

Unknown 1 (7) 0 (0)

ER status, n (%)

Positive 5 (33) 16 (89)

Negative 8 (53) 2 (11)

Unknown 2 (13) 0 (0)

PR status, n (%)

Positive 5 (33) 11 (61)

Negative 8 (53) 7 (39)

Unknown 2 (13) 0 (0)

Her2 status, n (%)

1 5 (33) 4 (22)

2 1 (7) 9 (50)

3 5 (33) 1 (6)

Unknown 4 (27) 4 (22)

Molecular subtype, n (%)

Her2 positive 3 (20) 1 (6)

HR positive 0 (0) 2 (11)

Luminal A 0 (0) 3 (17)

Luminal B 6 (40) 11 (61)

Triple negative 4 (27) 1 (6)

Unknown 2 (13) 0 (0)
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informed consent were approved by the American College
of Radiology Institutional Review Board, the NCI Cancer
Therapy Evaluation Program, and each site’s Institutional
Review Board. All 60 enrolled subjects were females between
the ages of 28 and 67 with biopsy-confirmed invasive ductal
carcinomas and/or invasive lobular carcinomas of at least
2 cm in length along the greatest dimension. For each subject,
the chemotherapy regimen was determined by the subject’s
physician. Chemotherapy type was not controlled in this
study, except that regimens were required to include at least
one cytotoxic chemotherapeutic agent.

pCR to therapy was defined as no residual invasive primary
carcinoma without regard to residual lymph node disease
and was determined for each subject from postsurgery
pathology reports. Subjects that achieved partial response were
not distinguished from nonresponders because of statistical
considerations, i.e., sample size, and due to the previously

reported correlation between complete response and improved
survival.2,3 Table 1 contains demographic information, as well
as tumor histology and immunohistochemistry for complete
and noncomplete responders.

A number of enrolled subjects were excluded from the final
data set. Of these, three subjects withdrew from the study.
An additional 13 subjects were not included in the imaging
analysis because of the following DOSI scan issues: mandatory
baseline DOSI was not performed (n ¼ 1), baseline DOSI was
nonevaluable (n ¼ 8), mandatory midtherapy DOSI was not
performed (n ¼ 3), or too few normal region points were avail-
able (n ¼ 1). A DOSI scan was considered nonevaluable in
case of unrealistic physiological values or incorrect instrument
configuration. This decision was made on blinded, deidentified
data using instrument calibration and raw data QC reports.13

A flowchart for this exclusion process can be found in
Fig. 6 in the Appendix.

Fig. 1 Timeline and schematic of DOSI measurement during NAC. (a) Each enrolled subject underwent
NAC for a period of 4 to 6 months. DOSI measurements were made at four timepoints throughout
the course of therapy: (1) baseline—prior to the administration of therapy, (2) early—5 to 10 days
after the first dose of therapy, (3) midpoint—the midpoint of the therapy regimen, (4) final—at least
7 days after the final dose of therapy and prior to tumor resection. Note that some subjects are missing
data at one or more of the nonbaseline timepoints, and the measurements at the final timepoint were not
used due to their limited predictive utility. (b) Top left: DOSI instrument and probe. Right: a grid of points,
over a surface area ranging from 7 cm × 7 cm to 15 cm × 16 cm, were measured on the lesion-bearing
breast. This grid was chosen to encompass both the tumor and a portion of the surrounding healthy
tissue. The grid of points was marked using a transparency, which was then used to mirror the grid
for measurements on the contralateral breast. The transparency was also used to ensure consistent
measurement locations across all timepoints. The tumor region was chosen to be all contiguous points
with magnitude greater than half of the maximum TOI measurement. The tumor-bearing breast normal
region was defined as all points outside the tumor region and areola, excluding a 1-cm margin around
both the tumor and areola. The contralateral breast normal region was defined as all measured points,
excluding the areola and a 1-cm margin around the areola. Bottom left: a sample DOSI image of the
TOI contrast mapped onto a 3-D breast surface (see Sec. 2).
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2.2 Optical Imaging Methods

The DOSI instrument used in this study combines multispectral
frequency-domain and broadband diffuse optical spectroscopy
to measure tissue concentrations of oxygenated hemoglobin
(HbO2), deoxygenated hemoglobin (HHb), water (H2O), and
lipid, as well as the tissue scattering amplitude (A) and power
(b), as defined by a simplified Mie scattering model.37 The com-
bination of these measured parameters permits calculation of
total tissue hemoglobin concentration (HbT ¼ HbO2 þ HHb),
tissue oxygen saturation (StO2 ¼ HbO2∕HbT), and the tissue
reduced scattering coefficient (μ 0

s). For a full description of
the DOSI method and instrument performance in the multicenter
ACRIN-6691 trial, see Ref. 38.

The DOSI instrument measured subjects using a handheld
probe (handpiece) placed in contact with the patient’s breast.
Four timepoints were acquired throughout the course of each
patient’s NAC regimen13 (see Fig. 1). The first measurement
(baseline) occurred prior to the first dose of chemotherapy.
The second measurement, which is referred to as the early
measurement timepoint, was performed between 5 and 10 days
after the first chemotherapy treatment. The third measurement
(midpoint) occurred in the middle of the therapy regimen,
and a final measurement was made after the completion of
therapy but prior to tumor resection. During each subject’s
baseline measurement, a grid of ∼50 to 240 points that encom-
passed both the palpated tumor region and the surrounding
normal tissue was measured on the lesion-bearing breast.
A mirrored grid of points was measured on the contralateral
breast (see Fig. 1). These measurement grids were recorded
using a hand-marked transparency film that was produced for
each subject in order to guide DOSI handpiece placement to
the grid points during each measurement session as previously
described.13

2.3 Statistical and Analytic Methods

In this study, we trained a logistic regression algorithm to dis-
criminate between responders and nonresponders based on
DOSI-measured parameters (list of parameters available in
Table 2 in the Appendix). The tumor region for each subject
was determined using a TOI ½TOI ¼ ðHHb · H2OÞ∕lipid�. This
TOI parameter has been empirically shown to differentiate
malignant tissue from normal tissue in the breast.19 The full-
width-at-half-maximum contour around the point of maximum
TOI in the baseline measurement of the lesion-bearing breast
was designated as the edge of the tumor region. This region
remained constant throughout all longitudinal measurements
for a given subject. The normal region on the lesion-bearing
breast was defined as all points outside the tumor region exclud-
ing the areola and 1-cm margins around the areola and tumor
region (see Fig. 1). These margins were not included in the nor-
mal region to limit signal contamination due to the partial vol-
ume effect.

In practice, significant inter- and intrasubject variation in
optically measured physiological parameters of the breast can
arise,21,39 and these systemic variations can bias the logistic
regression. Moreover, the optically measured tissue parameters
are not normally distributed (see Fig. 2).

To remedy these issues, we introduce and employ a z-score
normalization method to define target variables for prediction of
pathologic response. Briefly, the natural logarithm of each data
point is first taken. Then, the mean and standard deviation of a

normal (healthy) region of tissue are used to transform raw
tumor data into z-score data as in

EQ-TARGET;temp:intralink-;e001;326;367Zj ¼
ln Xj − hln XjNormi

σ½ln XjNorm �
: (1)

Here, Xj is the unnormalized j’th measured parameter in
the tumor region, XjNorm is the unnormalized j’th measured
parameter in the normal (healthy) region of the tumor-bearing
breast, hln XjNormi represents the mean over all points in the
normal (healthy) region, and σ½ln XjNorm � represents the standard
deviation over all points in the normal (healthy) region. Zj is
then the tumor region z-score relative to the healthy tissue
for the j’th parameter. Each Zj parameter was averaged over
all spatial points in the tumor region for a given subject
and timepoint. As a result, the logistic regression algorithms
can utilize a single tumor quantity for each subject, for each
timepoint, and for each measured parameter.

Thus every predictor data point used in the regression model
is measured in units of standard deviations from the mean of
a given parameter in healthy tissue. In addition to transforming
all parameters to be approximately the same magnitude, this
method better accounts for the intersubject systemic variations
by finding the difference of each parameter from the mean
value of the normal (healthy) tissue. It also more fully accounts
for intrasubject variation in healthy tissue by normalizing
with the healthy tissue standard deviation. A concrete example
of this statistical transformation scheme is shown in Fig. 2
for early timepoint tissue oxygen saturation. In this study,

Fig. 2 Histograms of the early timepoint normal tissue StO2 for
all subjects. (a) Fractional histograms of the unnormalized StO2
of the normal tissue on the tumor-bearing breast at the early
timepoint for each subject. Each line represents a different subject.
(b) Fractional histograms of the z-score normalized log-transformed
StO2 data of the normal tissue on the tumor-bearing breast at the early
timepoint for each subject. Each line represents a different subject.
Note that with the z-score normalization, the distributions for all
subjects have the same mean and an approximately Gaussian distri-
bution. This effect is consistent across all measured parameters and
timepoints.
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we explored z-score normalization schemes that defined the
normal region as either the healthy breast (excluding the
areola) or all tissue on the lesion breast outside a certain
margin of the tumor region (excluding the areola). See Fig. 1
for a graphical representation of these different normalization
regions.

In the logistic regression framework, a response parameter
for a given model is defined as

EQ-TARGET;temp:intralink-;e002;63;664Ri ¼ βo þ
XNj

j¼1

βj · Zi
j: (2)

Here, Ri is the given model’s log odds of response for the
i’th subject, βo is the intercept term of the fitted weight vector,
βj is the weighting term for the j’th measured parameter used in
the model, Zi

j is the z-score for the j’th measured parameter of
the i’th subject, and Nj is the number of parameters used in

a particular model. The full weight vector ~β is

EQ-TARGET;temp:intralink-;e003;63;539

~β ¼ ½βo; β1; : : : ; βNj
�: (3)

The ~β weight vector is fit using MATLAB’s native logistic
regression function, mnrfit.40 The response parameter R can
then be transformed into a probability of response parameter
PR using a logistic function

EQ-TARGET;temp:intralink-;e004;326;706PR ¼ 1

1þ e−R
: (4)

The parameter PR represents the probability that a subject
will achieve pCR. It has a range from 0 to 1, and it can readily
be used to predict each subject’s status as either a pathologic
complete responder, or noncomplete responder, depending on
threshold levels.

Because we are working with a small dataset, we employed a
leave-one-out validation protocol41 to test the regression model.
Briefly, a series of logistic regression models are created for
each parameter set we wish to test, and each of these models
leaves one of the subjects out of the dataset (see Fig. 3). The

weight vector created by each of these models ~βi is the weight
vector created when the i’th subject is left-out; it is used to
produce a probability of response prediction for the i’th subject

ðPi
RÞ, which is independent of the ~βi model. This well-known

Fig. 3 Data analysis flowchart. (1) Data processing—measured quantities at all spatial points and
all n subjects across the first three timepoints are first divided into tumor and normal (healthy) regions
(see Fig. 1). All tumor points are then z-score normalized to their respective normal (healthy) regions
[see Eq. (1)], and the mean is taken for a given subject and timepoint. Finally, one-, two-, or three-
model parameters are chosen from among the combinations of measured quantities and timepoints
as model inputs. (2) Leave-one-out logistic regression—a set of n logistic regression algorithms are

performed, each of which leaves out a single subject from the training data and produces a ~βi weight

vector. Each ~βi is then used to calculate the probability of response for the subject left out of the given
training set [see Eqs. (2) and (4)]. (3) Model evaluation—ROC analysis is performed using the calculated

Pi
R values to determine the AUC and a median weight vector h~βi is calculated from the n resulting ~βi

vectors.
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approach provides the most robust and least biased validation
given our sample size, which precludes the use of a significantly
large independent test set.41 For completeness, we compared
the leave-one-out protocol to other methods. For example,
we also tested k-fold cross validation with k ¼ 3, 5, and 10;

these schemes produced ~β vectors and AUC values that were
similar to those of the leave-one-out protocol.

The quality of the resultant models was empirically deter-
mined using DeLong’s method for the area under the curve
(AUC) and 95% confidence interval of a receiver-operating-
characteristic (ROC) analysis graph for the PR parameter.42

The ROC analysis is performed using each of the individual

leave-one-out models, and the reported weight vector h~βi will
be the median ~β from the series of models created for each
parameter set, with the interquartile range (IQR) of these models
reported as uncertainty. We also calculated a single-logistic
regression model run across the entire dataset; it produced

very similar ~β vectors to the median ~β vector approach described
above.

Models based on the z-scores of each single measured
parameter (HHb, HbO2, lipid, H2O, HbT, StO2, and TOI) at
the baseline, early, and midpoint timepoints were tested, and
the most predictive models were chosen using the AUC
value as a criterion. To explore any additional benefit from
multivariate models, combinations of two and three measured
parameters were also evaluated. Models with more than three
parameters were not tested to avoid overfitting. Data from
the final timepoint were not used because our focus in this
work is on early diagnosis.

Other, more commonly used, normalization methods were
also tested to demonstrate the improvement in predictive ability
provided by z-score normalization. These comparisons included
tumor-to-normal ratio normalization without information about
the normal tissue heterogeneity, as well as raw tumor physio-
logical values without normalization, and baseline-normalized
values, which represent changes in the measured parameters
over the course of the therapy regimen. All statistical analysis
was performed using MATLAB R2015a (The Mathworks, Inc.,
Natick, Massachusetts, USA).40

3 Results
The final data set was derived from n ¼ 33 subjects who had
complete data sets at the baseline and midpoint timepoints.
For models that used measured parameters from the early time-
point, slightly fewer subjects were used (n ¼ 29) due to missing
data at this timepoint. All subjects had biopsy-confirmed inva-
sive carcinomas and underwent an NAC regimen determined by
their physicians.13

For the logistic regression algorithm, z-score normalization
to the healthy tissue on the lesion breast, as opposed to normali-
zation to the contralateral breast, produced more predictive mod-
els. Recall that we derive z-score data for multiple data types
(HbO2, HHb, HbT, StO2, H2O, and lipid) at multiple timepoints
(baseline, early, and midpoint) (all data available in Table 3
in the Appendix). The single best regression model used
only the early timepoint tissue oxygen saturation (eStO2). The

weight vector for this model was h~βi ¼ ½βo ¼ 0.79� 0.09;
βeStO2

¼ 2.29� 0.04�. This finding suggests that, at early time-
points, tumors that are not hypoxic relative to the surrounding
normal tissue, or tumors that are only slightly hypoxic and
within the normal region’s confidence interval, are more likely

to be pathologic complete responders to NAC. By contrast,
tumors that were significantly hypoxic relative to the normal
tissue were likely to be nonresponders (see Fig. 4 for data sum-
mary in traditional units). When ROC analysis was performed,
this model produced an AUC ¼ 0.92 with a 95% confidence
interval of AUC ¼ 0.82 to 1 (see Fig. 5). Additionally, the

small uncertainties of the h~βi components, relative to the

median, indicate that the fitted h~βi did not vary significantly
across the leave-one-out validation protocol.

Two- and three-parameter models did not improve upon the
single-parameter model AUC. Higher-order models, e.g., four-
parameter, were not considered in order to avoid overfitting of
the data.

Notably, in addition to the early timepoint oxygen saturation,
a two-parameter model using only baseline data provided an
AUC ¼ 0.83 with a 95% confidence interval of AUC ¼ 0.70

to 0.97, thus enabling an even earlier prediction of a subject’s
pCR status, albeit with lower accuracy than the early timepoint
oxygen saturation. This two-parameter model incorporated
the baseline oxygen saturation (bStO2) and water concen-

tration (bH2O), and the median weight vector was h~βi ¼
½βo ¼ 0.14� 0.09; βbStO2

¼ 1.69� 0.06; βbH2O
¼ 0.65� 0.03�.

Again, the uncertainties in the h~βi components for H2O and
StO2 are small, signifying a consistent fitted model across

Fig. 4 Tumor and normal StO2 versus probability of response. This
graph shows the probability of response predicted by the regression
model using only early timepoint StO2 (see Fig. 5). Contour lines of
constant probability are also included. The probability of response
(shading) is plotted versus the difference between the absolute
tumor region percent oxygen saturation and the absolute normal
region percent oxygen saturation (horizontal axis), and the size of
the confidence interval for the absolute normal region oxygen satura-
tion, corresponding to one standard deviation in the log-transformed
data (vertical axis). Note that the oxygen saturation in this figure is
not log-transformed or z-score normalized. Each cross represents
a subject that was a pathologic complete responder while each circle
indicates a nonresponding subject. All subjects that had tumor
regions with absolute oxygen saturations that were higher than their
normal regions achieved pCR. Subjects whose tumor regions were
only slightly hypoxic relative to their normal regions were more likely
to achieve pCR if the subjects’ normal regions had larger confidence
intervals. These observations indicate that a subject is likely to
be a pathologic complete responder if the oxygen saturation of
the tumor region is either higher than that of the normal region or
well within the normal region’s confidence interval. A subject whose
tumor was significantly hypoxic relative to the normal tissue was likely
to be a nonresponder.
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the leave-one-out validation procedure. The fact that βbStO2
>

βbH2O
indicates that the oxygen saturation is a more significant

predictor of pCR than water concentration at the baseline
timepoint. As with the early timepoint model, subjects with
hypoxic tumors were less likely to achieve pCR.

For comparison, additional models were produced that
(1) used the contralateral breast for z-score normalization,
(2) used tumor-to-normal ratio normalization, i.e., with no
information about the standard deviation of the normal region,
and (3) used no normalization. With contralateral z-score
normalization, instead of z-score normalization to the healthy
tissue on the tumor-bearing breast, the aforementioned early
(eStO2) and baseline (bStO2 and bH2O) models had AUC values
of 0.67 and 0.64, respectively. With simple tumor-to-normal
ratio normalization, the same two-parameter sets produced
AUC values of 0.80 and 0.67, and when completely unnormal-
ized data were used, the eStO2 model produced an AUC ¼ 0.75
while the bStO2 and bH2O model produced an AUC ¼ 0.68.
Thus, for these parameter sets, z-score normalization to the
healthy tissue in the tumor-bearing breast provided the best
results.

4 Discussion
By application of a logistic regression model using z-score
normalized DOSI measurements, we derived a robust predictor
of response (AUC ¼ 0.92; 95% CI: 0.82 to 1) within the first
10 days after a subject’s initial chemotherapy dose. Using an
optimally chosen cutoff value of PR ¼ 0.50, which maximizes
the sum of the sensitivity and specificity, this model provided
an overall classification accuracy of 86% (25 of 29 subjects),
including a positive predictive value of 79% for subjects

predicted to achieve pCR (11 of 14), and a negative predictive
value of 93% for subjects predicted to not achieve pCR
(14 of 15). Prediction of response at this therapy timepoint
was a secondary aim of the ACRIN 6691 protocol13 and could,
with further validation, enable clinicians to modify the patient’s
therapeutic plan after a single dose. This ability holds potential
to improve patient outcomes and prevent unnecessary side
effects from ineffective treatments.

The best model indicated that low StO2 at the early timepoint
relative to the surrounding normal tissue was predictive of
nonresponse to chemotherapy. This observation suggests that
tumors that are well-perfused in the early stages of treatment,
and therefore are not hypoxic relative to healthy tissue, may
receive chemotherapy more efficiently. Such tumors are also
typically more responsive to therapy than hypoxic tumors,
which often exhibit resistance to treatment.43,44 Additionally,
the lack of hypoxia in complete responders could indicate
a decreased oxygen demand due to suppression of tumor
metabolism, a condition previously shown to be correlated
with response to therapy.45

Additionally, the two-parameter model using only the base-
line StO2 and water concentration (AUC ¼ 0.83; 95% CI: 0.70
to 0.97) also indicated that higher StO2 is correlated with pCR.
Though the AUC value is lower for this model compared to
the early timepoint StO2 model, prediction of response prior
to the initiation of therapy offers additional clinical utility.
These models are also consistent with previous studies, which
have observed correlation between pCR and optically measured
tissue oxygen saturation prior to the start of therapy31 and after
the first dose.29

Previous diffuse optical studies of response to breast
cancer NAC have correlated temporal changes in measured
physiological parameters with response to treatment.24–30,32

We compared our technique to this approach in the current
study. However, even the most predictive of the models derived
in this analysis that used the change in DOSI physiological
parameters between the baseline and early timepoints only
produced an AUC ¼ 0.63. The temporal change models of
StO2, in particular, could be limited by the large intersubject
dispersion of the baseline oxygen saturation; this large
dispersion prevents the change in StO2 from the baseline to
early timepoint from accurately reflecting the oxygenation
state of the tumor relative to the normal region. By contrast,
the model we have presented in this contribution does not
depend on the baseline StO2 and, as such, is not affected by
intersubject baseline variation.

Z-score normalization was implemented to place all param-
eters on the same magnitude scale, which mitigates systemic
physiological differences among the subject population and
accounts for the systemic effects of chemotherapy. For compari-
son, we also investigated models that used fully unnormalized
data and tumor-to-normal ratio normalization. However, since
neither model incorporates healthy tissue standard deviation,
neither model accounts for the heterogeneity of normal tissue.
With tumor-to-normal ratio normalization, a one-parameter
model with early timepoint StO2 produced an AUC ¼ 0.80,
and the two-parameter model with baseline timepoint StO2

and H2O produced an AUC ¼ 0.67. The AUC values for the
same models but with no normalization were even lower
(AUC ¼ 0.75 and AUC ¼ 0.67, respectively). Thus z-score
normalization improves the predictive power of the tissue
oxygen saturation logistic regression models.

Fig. 5 Early timepoint oxygen saturation prediction model. The
model providing the best predictions used the early timepoint
tissue oxygen saturation (eStO2). The median weight vector
h~βi ¼ ½βo ¼ 0.79� 0.09; βeStO2

¼ 2.29� 0.04� indicates that tumors
that are not hypoxic relative to the normal tissue on the tumor breast
are more likely to be pathologic complete responders to chemo-
therapy. (a) ROC analysis of eStO2 model—this model produced
an AUC ¼ 0.92 (95% CI: 0.82 to 1), indicating excellent predictive
value. (b) Boxplots of probability of response—the probability of
response boxplots, divided into subjects that achieved pCR
(n ¼ 12) and subjects that did not achieve pCR (n ¼ 17), indicate
clear separation between the two groups using this model (p ¼
8.74 × 10−6 using a two-sided student’s t -test). The hinges of the
boxplots represent the first and third quartiles of the data, the whiskers
represent the range of measurements within a distance 1.5× the IQR,
and the cross represents an outlier. Note that there is no overlap
between the IQRs of the probability of response of the complete
responders and noncomplete responders.
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For completeness, several other models were explored
that did not incorporate the baseline or early StO2. Some of
these produced predictions of response to therapy that
were significant (AUC ≈ 0.75 to 0.80). However, in addition
to having lower AUC values, these other models relied
on data from the midpoint timepoint, which increases the
time-to-prediction of response by ∼2 months. Furthermore,
the early timepoint measurements typically occur before
significant anatomic changes in tumor size arise. This feature
enables the DOSI measurement to sample known tumor
tissue more easily; at the midpoint of therapy, by contrast,
the tumor size has decreased and signal contamination
between the malignant and healthy tissue can occur and
limit the ability of DOSI to determine tumor physiological
parameters accurately. Note also that the physiological
predictions of these other models were consistent with our
two primary prediction models.

Another interesting and potentially important finding of the
present work is that the best models used z-score normalization
to the normal tissue on the lesion breast rather than the contra-
lateral breast. If, instead, the contralateral breast was used, our
one-parameter early StO2 model produced an AUC ¼ 0.67, and
the two-parameter model with baseline StO2 and H2O produced
an AUC ¼ 0.64. The comparatively better quality of the tumor
breast z-score normalized models suggests that measurement of
the contralateral breast is less important for early prediction
of response to therapy than previously thought. If this is true,
then the paradigm could eliminate the need for contralateral
measurement and reduce imaging time.

The results we have presented provide evidence for early pre-
diction of response with AUC results that are comparable to
other modalities, such as MRI,46,47 FDG-PET,11,47,48 and bio-
marker analysis.49,50 Some of these studies produced predictions
prior to or within the first 10 days of treatment initiation,48–50

whereas other approaches relied on imaging that occurred either
after 6 weeks of NAC,46 at the midpoint of therapy,11 or after the
completion of NAC.47 The potential advantage of the logistic
regression DOSI model is premised on its unique combination
of accurate prediction at an early timepoint in therapy and its
portability, low cost, and lack of ionizing radiation.

The primary limitations of this study are the relatively
small number of subjects and the highly variable chemotherapy
regimens across the subject population. Additionally, the initial
study had a fairly high dropout rate,13 introducing a potential
bias into the statistical analysis. The dropout rate is likely to
be artificially elevated in this study due to the difficulties
inherent in translating an experimental imaging technique
into a multisite setting for the first time.13 We do not anticipate
that these issues will affect the DOSI technique moving
forward. Finally, although the initial ACRIN 6691 trial was
a prospective study, this z-score parameter imaging metric
was retrospectively optimized using a standard leave-one-out
protocol for multiple potential models. The leave-one-out
technique limits overfitting and enhances the generalizability
of the prediction metric;41 it has been extensively used by
the cancer community.31,46,51–53 Of course, a fully prospective
validation of this single prediction model, as opposed to the
series of models tested here, will be necessary prior to clinical
adoption.

Per the first limitation noted above, application of this
model to a prospective study with a larger subject population
is a natural course of action. Importantly, because the DOSI

instrumentation has been shown to provide consistent perfor-
mance over time, across multiple instruments, and across multi-
ple measurement sites,38 we anticipate that the weight vector
derived for the early timepoint StO2 (see Fig. 5) could be
used with z-score normalized measurements in future DOSI
studies to calculate a probability of response, i.e., without creat-
ing a logistic regression model for each population. In this case,
the future study would serve as a direct, independent test set
for the results obtained by our current model. Additionally,
a logistic regression could also be run on this larger data set to
derive an improved prediction model based on a larger training
set. If a future study was performed on a significantly different
patient population, e.g., patients with tumors in nonbreast tissue,
then deriving a weight vector via logistic regression would
likely be beneficial.

In addition to providing evidence to further corroborate the
results of this pilot investigation, the larger subject population
may enable stratification of the subject population by tumor sub-
type and/or chemotherapy regimen. Our current results are
reported for a diverse patient population, various tumor molecu-
lar subtypes, and an assortment of chemotherapy regimens
(see Table 1). Tumor subtypes may have different levels of
tissue oxygen saturation and may respond to chemotherapy
differently.3,54 The physiological mechanisms of chemotherapy
regimens also vary. Thus, especially for parameters at the early
timepoint, response prediction might be improved by creating
individual models for different classes of chemotherapy and/
or different tumor subtypes. Also, independent hypoxia bio-
markers, such as carbonic anhydrase IX, and measurements
of vascular density, such as CD31 staining or DCE-MRI,
can be collected at similar timepoints and may enable better
understanding of the mechanisms responsible for correlations
between tissue oxygen saturation and response. Exploration
of these questions should be possible in a larger study.

5 Conclusion
Logistic regression modeling of z-score normalized physiologi-
cal parameters measured by DOSI was presented and found to
predict pCR to NAC. The best model successfully predicted
pCR (AUC ¼ 0.92; 95% CI: 0.82 to 1) using tumor and normal
tissue oxygen saturation measured within the first 10 days after
the initial dose of therapy based on data from the ACRIN 6691
clinical trial.13 This model suggests that if tumors are hypoxic
relative to the surrounding normal tissue, then they are less
likely to achieve pCR. These early predictions of therapeutic
efficacy are based on quantitative DOSI measurements of
tumor (and normal) tissue functional parameters, rather than
changes in tumor size, and the z-score normalization of the
tumor physiological data yielded improved prediction models
compared to tumor-to-normal ratio or unnormalized data.
Prospective validation is still needed to confirm these promising
results. With this validation, DOSI and logistic regression meth-
ods could be used early in NAC to optimize treatment outcomes
for individual patients.

Appendix
This appendix contains details about the subject exclusion
criteria (Fig. 6) and a more complete accounting of measured
z-score parameters for responders and nonresponders at all
timepoints (Tables 2 and 3).

Journal of Biomedical Optics 021202-8 February 2019 • Vol. 24(2)

Cochran et al.: Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy. . .



Disclosures
B. J. Tromberg reports intellectual property related to DOSI
breast imaging assigned to UC Regents and licensed by Infit,
Inc. D. R. Busch and A. G. Yodh have two pending patent
applications and A. G. Yodh has two other patents relevant
to this work (United States patents 8,082,015 and 6,076,010).

Some of these patents have been licensed to private companies,
but neither Dr. Yodh and Dr. Tromberg nor any of the other
authors have a financial interest in common with these entities.
The other authors have indicated no financial conflicts of
interest.

Acknowledgments
Funding for this study was provided through grants from
the American College of Radiology Imaging Network,
which receives funding from the National Cancer Institute
(Nos. U01-CA079778 and U01-CA080098); the National
Institutes of Health (Nos. P41-EB015893, R01-NS060653,
R01-EB002109, R01-CA142989, P41-EB015890, U54-
CA136400, T32-HL007915, R01-NS072338, and R01-
NS082309-01A1); the Chao Family Comprehensive Cancer
Center (No. P30-CA62203); the Thrasher Research Foundation;
the Arnold and Mabel Beckman Foundation; and the June
and Steve Wolfson Family Foundation. The diffuse optical
spectroscopic imaging instrumentation used in this study was
constructed in a university laboratory using federal grant
support (NIH). The authors thank the entire ACRIN staff for
their generous support in completing this study, including
Donna Hartfeil, Sharon Mallet, and Dunstan Horng; UCI
coordinators Montana Compton, Erin Sullivan, and Jennifer
Ehren; UCI engineers Amanda Durkin and Brian Hill; UPenn
coordinators Ellen Foster, Madeline Winters, and Sarah
Grundy, Dr. Angela DeMichele and Dr. Julia Tchou, clinical
coordinators at all sites, all clinicians who contributed to subject
recruitment, and the patients who generously volunteered their
time for this study.

Fig. 6 Subject exclusion chart. Of the 60 subjects accrued for this study, n ¼ 3 withdrew consent,
n ¼ 1 did not have central pathology data, and n ¼ 10 were excluded for lack of normal tissue
measurement. The other n ¼ 13 subjects were excluded due to lack of baseline DOSI measurement
(n ¼ 1), baseline DOSI measurements that were not evaluable (n ¼ 8), lack of midpoint DOSI measure-
ment (n ¼ 3), or too few normal region points were available (n ¼ 1). This subject population is identical
to the population used in the initial ACRIN 6691 study13 except that one fewer subject was used.
This additional excluded subject did have a normal tissue measurement but not a sufficient number
of spatial points in the normal region to perform the necessary standard deviation calculation [see
Fig. 2 and Eq. (1)].

Table 2 Definitions of measured DOSI parameters and their meth-
ods of calculation. HHb, HbO2, lipid, and H2O concentration are all fit
directly using the measured intensities throughout the wavelength
range. HbT, StO2, and TOI are all derived from the fit parameters.

Parameter Meaning Calculation Method

HHb Deoxy-hemoglobin
concentration

Multispectral fit of
absorption

HbO2 Oxy-hemoglobin
concentration

Multispectral fit of
absorption

Lipid Lipid concentration Multispectral fit of
absorption

H2O Water concentration Multispectral fit of
absorption

HbT Total hemoglobin
concentration

HbT ¼ HHbþ HbO2

StO2 Tissue oxygen saturation StO2 ¼ HbO2∕HbT

TOI Tissue optical index TOI ¼ ðHHb · H2OÞ∕lipid
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