Reflectance confocal microscopy (RCM) can provide in vivo images of the skin with cellular-level resolution; however, RCM images are grayscale, lack nuclear features and have a low correlation with histology. We present a deep learning-based virtual staining method to perform non-invasive virtual histology of the skin based on in vivo, label-free RCM images. This virtual histology framework revealed successful inference for various skin conditions, such as basal cell carcinoma, also covering distinct skin layers, including epidermis and dermal-epidermal junction. This method can pave the way for faster and more accurate diagnosis of malignant skin neoplasms while reducing unnecessary biopsies.
|