PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The purpose of this study is to investigate the electrical properties of graphene transparent conductive film under visible light irradiation. Sample in the study is chemical vapor deposition (CVD) growth graphene on the surface of copper foils and then transferred to the SiO2 substrate. Three monochromatic visible lights with wavelength of 635nm, 520nm and 450nm representing red (R), green (G) and blue (B) lights are used as irradiation sources. Results show that the graphene resistances increase slowly under light irradiation with all the three different wavelengths, while decrease slowly after the light is switched off. Light irradiation with higher power density will induce larger relative resistance change. When graphene is irradiated at the same density, blue light irradiation may result in the largest resistance change.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.