Land surface phenology (LSP) can improve the characterisation of forest areas and their change processes. The aim of this work was: i) to characterise the temporal dynamics in Mediterranean Pinus forests, and ii) to evaluate the potential of LSP for species discrimination. The different experiments were based on 679 mono-specific plots for the 5 native species on the Iberian Peninsula: P. sylvestris, P. pinea, P. halepensis, P. nigra and P. pinaster. The entire MODIS NDVI time series (2000–2016) of the MOD13Q1 product was used to characterise phenology. The following phenological parameters were extracted: the start, end and median days of the season, and the length of the season in days, as well as the base value, maximum value, amplitude and integrated value. Multi-temporal metrics were calculated to synthesise the inter-annual variability of the phenological parameters. The species were discriminated by the application of Random Forest (RF) classifiers from different subsets of variables: model 1) NDVI-smoothed time series, model 2) multi-temporal metrics of the phenological parameters, and model 3) multi-temporal metrics and the auxiliary physical variables (altitude, slope, aspect and distance to the coastline). Model 3 was the best, with an overall accuracy of 82%, a kappa coefficient of 0.77 and whose most important variables were: elevation, coast distance, and the end and start days of the growing season. The species that presented the largest errors was P. nigra, (kappa= 0.45), having locations with a similar behaviour to P. sylvestris or P. pinaster.
|