In this paper, we demonstrate the fabrication of a chemical sensor for 2,4-dinitrotoluene (DNT), based on an opticalfiber- microsphere coated with upconversion nanocrystals functionalized with layers of polyelectrolytes - poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH). The design consists of a microsphere, which supports whispering-gallery-modes (WGM), coupled to an optical fiber. The NaYF4-Yb3+,Er3+ nanocrystals have a bright fluorescence around 550 nm and 650 nm when irradiated with 980 nm, which is enhanced by the WGM. When functionalized with PAA/PAH layers, these nanocrystals can be coated on the microsphere with control over layer thickness. The presence of DNT on the surface of the microsphere quenches the fluorescence as the absorption spectrum of DNT has peaks in 500 - 600 nm. The effect of concentration of the analyte on the magnitude of quenching has been studied. The paper discusses the design, fabrication and characterization of the chemical sensor.
|