Laser amplifiers at high repetition rate are critical for many applications in the chemical, physical and biological sciences. A variety of laser sources from XUV to THz can be derived from Ti:Sapphire laser amplifiers at moderate to low conversion efficiencies. High repetition rate applications require NIR and IR sources based on optical parametric chirped pulse amplifier (OPCPA) to drive these sources, offsetting the conversion efficiency losses with an even higher average power beam to drive the frequency conversion processes. We use these technologies at next generation free-electron laser (FEL) facilities. The Linac Coherent Light Source (LCLS), LCLS-II upgrade, will provide sub-femtosecond and femtosecond X-ray pulses at 100 kHz, and later up to 1 MHz repetition rate. The higher repetition rate benefits pump-probe experiments for weakly scattering samples and serves a variety of experiments which require attenuation to avoid perturbation and damage of the sample by the X-ray probe. A millijoule R&D laser amplifier was developed to test experimental conditions for optical laser beam delivery at LCLS-II. The laser can be operated at two distinct wavelength ranges. At 800 nm center wavelength we use the second harmonic of an Yb:YAG amplifier system to pump an OPCPA in a BBO crystal. A second tunable version operates between 1.45-2 m center wavelength using the fundamental Yb:YAG beam to pump a KTA OPCPA with average output powers in excess of 100 W. Currently the amplifier is operated 24 hours, 7 days a week. It is based on a simple and robust design, which ensures long term stability with good output beam quality.
|