Hybrid solar system converts the incident solar radiation into electrical energy by utilizing complete solar spectrum. Such a system uses spectrum splitting solar concentrator for separation of solar spectrum into light and heat component and focusses on high-efficiency multi-junction solar cell and heat receiver. In this paper, chirped volume holographic grating (CVHG) is investigated as solar concentrator cum spectrum splitter. The grating is designed to separate the visible light of solar spectrum from the infrared wavelength band. The main advantage of CVHG over normal volume gratings are high diffraction efficiency, large bandwidth separation and lightweight. Chirp rate, period of grating, modulation index, thickness of grating, and grating profile are the critical parameters to be optimized. CVHG using photopolymer as a recording medium was designed with a dimension of 200x200x100µm3. The grating was simulated using rigorous coupled wave analysis for the incident solar spectrum wavelength ranging from 0.3 to 3.0 µm. CVHG designed with hyperbolic index profile showed concentration ratio of 15x and spectrum separation at 1.0µm.
|