Exquisite angular resolution (< 0.5 arcsec) and high effective area (≥ 2 m^2 @ 1 keV) are requirements for a next-generation X-ray observatory capable of tackling outstanding problems in high energy astrophysics, including understanding how black holes grow over cosmic time and how hot baryonic material is distributed on the largest scales. However, realizing a telescope with this performance is challenging, as the thin optics required are susceptible to fabrication errors, thin film stress, and mounting deformations. One potential method of addressing these errors to fabricate adjustable X-ray optics – mirrors with actuators capable of correcting the optic’s figure following mounting. In this work, we present interferometric measurements of an adjustable X-ray optics prototype with lead titanate zirconate (PZT) actuators. We detail the realized actuator performance and correctability of the mirror prototype, and discuss the implications for the next-generation of adjustable mirrors.
|