Taurus is a balloon-borne cosmic microwave background (CMB) experiment optimized to map the E-mode polarization and Galactic foregrounds at the largest angular scales (𝓁 < 30) and improve measurements of the optical depth to reionization (τ). This will pave the way for improved measurements of the sum of neutrino masses in combination with high-resolution CMB data while also testing the ΛCDM model on large angular scales and providing high-frequency maps of polarized dust foregrounds to the CMB community. These measurements take advantage of the low-loading environment found in the stratosphere and are enabled by NASA’s superpressure balloon platform, which provides access to 70% of the sky with a launch from Wanaka, New Zealand. Here we describe a general overview of Taurus, with an emphasis on the instrument design. Taurus will employ more than 10,000 100mK transition edge sensor bolometers distributed across two low-frequency (150, 220GHz) and one high-frequency (280, 350GHz) dichroic receivers. The liquid helium cryostat housing the detectors and optics is supported by a lightweight gondola. The payload is designed to meet the challenges in mass, power, and thermal control posed by the super-pressure platform. The instrument and scan strategy are optimized for rigorous control of instrumental systematics, enabling high-fidelity linear polarization measurements on the largest angular scales.
|