Optical Coherence Elastography (OCE) is a non-invasive elastography technique, which can deduce the elastic properties of tissue by measuring the displacement or deformation in tissue caused by internal or external excitation. In recent years, it has been well accepted that the biomechanical properties of cornea are associated with various ophthalmic diseases. OCE has exhibited a good potential in measuring corneal elasticity, and however in vivo quantitative measurement remains challenging. Thus, in this paper, we designed an OCE system equipped with a load-measuring stress sensor to measure the deformation and geometric parameters of cornea during compression. Furthermore, a compressive OCE corneal elasticity measurement model was developed based on shell theory, which is dedicated to translating the measured value into Young's modulus. Finally, the method was evaluated on both artificial eye model and porcine cornea ex vivo. The results indicate that the OCE measurement combined with shell model can potentially aid in clinical measurement on cornea elasticity in vivo.
|