Paper
13 November 2001 Formation of optical microlens by laser polymerization method
Author Affiliations +
Abstract
Optical lens of micrometer order diameter for coupling between optical fiber and laser diode were formed by argon ion laser polymerization method at visible light cured resin. Test resin materials consisted of triethylene glycol dimethacrylate for main resin, camphorquinon for photo initiator of visible light area, hydroquinon for inhibitor, and N,N-dimethylmethacrylate for reducing agent. In order to obtain the micro lens of short focal length and small spherical aberration, the use of this technique makes it possible to simultaneously form the polymerized aria on glass plate at the argon ion laser beam irradiation zone. The polmerized aria made a high quality micro lens without using molding pattern. We have verified our claims with visual inspection, ray trajectory calculations for measurement of side long spherical aberration (transverse aberration), Fourier transform infrared spectroscopy for degree of conversion analysis of polymerized resin area, and Duc de Chaulnes method for measurement of lens shape. The lens has a diameter of 300micrometers or more, a focal length of 500micrometers or more with an NA of 0.5, and transverse aberration plot of about 100% of the within the limits of +/- 25micrometers . This method can be applied for producing circular, non-circular, linear, and array micro lenses by scanning or patterning of argon ion laser beam.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kaoru Suzuki "Formation of optical microlens by laser polymerization method", Proc. SPIE 4437, Gradient Index, Miniature, and Diffractive Optical Systems II, (13 November 2001); https://doi.org/10.1117/12.448156
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Argon ion lasers

Polymerization

Glasses

Monochromatic aberrations

Chromatic aberrations

Microscopes

Absorption

Back to Top