PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Fluoride glass fibers are used for various passive and active applications. Current fibers are made from fluorozirconate glasses. Their intrinsic strength is smaller than that of silica fibers and their surface may be damaged by liquid water. The discrepancy between the reported values of the fiber strength reflects the major part of the extrinsic defects in the failure mechanism. The surface of the glass preform determines fiber strength to a large extent and numerous defects are induced during fiber processing. These defects are largely correlated to the chemical action of water.
Dynamic fatigue measurements have been carried out. They show that the average strength depends on fiber length even though when a proof test is made prior to measurement. Fiber strength is not constant for all fiber segments originating from the same preform. Atmospheric humidity also influences fiber strength and dried fiber show much larger failure stress. Aqueous solutions corrode surface fiber resulting in the significant decrease of the fiber strength. Structural relaxation may occur in fibers under stress inducing permanent bending and reduction of applied stress. Fibers hermetically packaged are more reliable and some of them have been used in outdoors conditions for years. While surface has to be protected from water in any case, controlling extrinsic defects should lead to the large improvement of the fluoride fiber strength.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Marcel Poulain, Nicolas Gougeon, Gwenael Mazé, "Mechanical properties of fluoride glass fibers," Proc. SPIE 4940, Reliability of Optical Fiber Components, Devices, Systems, and Networks, (30 April 2003); https://doi.org/10.1117/12.477393