Infrared (IR) imaging is important in many disciplines but is limited by inefficient, noisy and expensive cameras. Nonlinear interferometers (NLI) enable imaging with undetected photons, where correlated visible-IR photon pairs convey information about an object illuminated in the IR but detected by a visible camera. We introduce compact PPLN based Michelson-style NLI sand discuss their operation in the context of a comprehensive model, exploring the influence of internal losses, IR seeding, and parametric gain on interferometer contrast and visibility. We show that NLI performance can be enhanced for samples with low transmission even in the presence of significant experimental losses.
|