
 

83 

 
 
 
 
 

Chapter 6 

Complex Systems: A New 
Epistemological Crisis  
 

6.1  The Twenty-first Century: Starved for Data 

The preceding chapter discussed the manner in which the modern scientific 
epistemology originating with Galileo reached a deep understanding in the first 
half of the Twentieth Century; however, the book on epistemology is far from 
closed. The epistemological challenges confronting the Twenty-first Century are 
the most severe since the dawning of the Seventeenth Century. They arise from a 
desire to model complex systems that exceed human conceptualization ability. 
As a consequence, people attempt to use highly flexible mathematical structures 
with large numbers of parameters that can be adjusted to fit the data, the result 
often being models that fit the data well but lack structural representation of the 
phenomena and thus are not predictive outside the range of the data. The 
situation is exacerbated by uncertainty regarding model parameters on account of 
insufficient data relative to model complexity, which in fact means uncertainty 
regarding the models themselves. More importantly from the standpoint of 
epistemology, the amount of available data is often miniscule in comparison to 
the amount needed for validation. The desire for knowledge has far outstripped 
experimental/observational capability. We are starved for data. 
 With all the talk these days of “Big Data,” one must remember that bigness is 
relative to need. While the current amount of data may be big relative to small 
systems, it is paltry compared to the data required for large complex systems, 
especially if it is not collected with a sharp eye to the intended use, which often it 
is not. We need only recall the warnings of Bacon and Kant about groping in the 
dark. With complex systems, experimental design is even more imperative. Still, 
with or without experimental design, in many cases it is virtually impossible to 
obtain the data required for model validation.  

6.2  Gene Regulatory Networks 

The Twenty-first Century is sometimes viewed as the century of biology; yet in 
biology complexity reaches heights undreamed of until very recently. A human 
body consists of trillions of cells containing about 100,000 different types of 
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proteins and 30,000 genes interconnected in a myriad of signaling pathways, and 
let us not forget that each gene consists of a region of DNA, and the genome is 
subject to an immense number of single nucleotide polymorphisms, which are 
variations in a single nucleotide. We will discuss complexity in the context of 
modeling gene regulation in a single cell, which, although it represents only a 
small portion of the full system, presents unworkable levels of complexity even 
when only a relatively small number of genes are involved. 
 The regulatory system in a cell is mainly based in its genetic structure. The 
basic paradigm has two parts. Transcription refers to the process by which the 
genetic information in a gene is copied into messenger RNA (mRNA). When this 
process is occurring the gene is said to be expressing (or activated). Expression is 
governed by signaling proteins attaching themselves (binding) to the gene’s 
promoter region. In essence, each gene is controlled by the states of a set of 
genes, so that its activation or non-activation depends on a combination of the 
expression levels in its regulating genes. Translation, which occurs subsequent to 
transcription, refers to the production of protein based on the code carried by the 
mRNA. The resulting protein can either be involved in maintaining the cell 
structure or function as a signal (transcription factor) to instigate or prohibit 
further gene expression by binding to the promoter region of a gene and forming 
a complex with other transcription factors to regulate the gene. This process goes 
on continuously across the genome to produce signaling pathways that regulate 
gene activity dynamically. Other factors affect gene activity, but we will focus 
solely on this basic transcriptional system. 
 A gene regulatory network (GRN) is a mathematical model comprised of a 
set of entities called “genes” and a regulatory structure that governs their 
behavior over time. GRNs can be finely detailed, as with differential-equation 
models, or coarse-grained, with discrete expression levels transitioning over 
discrete time. There is no expectation that coarse models closely represent actual 
molecular structure; rather, their purpose is to model interaction at the gene level 
in order to serve as a framework for studying regulation and provide rough 
models that can be used to develop strategies for controlling aberrant cell 
behavior, such as finding optimal drug treatments. While it might appear that 
gene-level modeling mistakenly ignores the molecular interaction constituting 
genetic activity, as well as the myriad of other molecular activity in a cell, it 
needs to be recognized that, while biological function requires chemistry, biology 
is not chemistry. Although there is no clear dividing line, biology concerns the 
operation of the cell at the level of genes, proteins, and other macromolecules 
involved in the life functions of the cell, not the physiochemical infrastructure of 
these macromolecules. 

6.2.1  Deterministic Boolean networks  

In the late 1960s, Stuart Kauffman introduced a discrete model known as a 
Boolean network [Kauffman, 1993]. Each gene can have logical values 1 or 0, 
corresponding to expressing or not expressing, respectively, and regulation is 
specified by logical operations among genes. Thus, the functional relationships 
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between genes can be specified by a truth table. While the Boolean model is very 
coarse, it does model the thinking of cancer biologists, who speak of a gene being 
on or off under different conditions. Moreover, although the original formulation 
is two-valued, 0 or 1, the concept applies to any number of discrete gene values. 
 Formally, a Boolean network is defined by k binary variables, x1, x2,…, xk, 
where the value xi of gene gi at time t + 1 is determined by the values of some 
regulator genes at time t via a Boolean function fi operating on the regulator 
genes. A typical function would be of the form x3 = f3(x2, x4) = x2  x4, where  
means “and.” This means that gene g3 is on (expressing) at time t + 1 if and only 
if genes g2 and g4 are on (expressing) at time t. There are k such Boolean 
functions, one for each gene, and together they determine the deterministic 
dynamic evolution of the system over time. If there are four genes, then a typical 
dynamic trajectory over three time points would look like 0101 → 1100 → 1101. 
Given an initial state, a Boolean network will eventually reach a set of states, 
called an attractor cycle, through which it will cycle endlessly. Each initial state 
corresponds to a unique attractor cycle and the set of initial states leading to a 
specific attractor cycle is known as the basin of attraction of the attractor cycle. 
 We consider a small network involving the tumor suppressor gene p53. In 
mammalian genomes p53 is a transcription factor for hundreds of downstream 
genes that modulate cell cycle progression, repair damaged DNA, and induce 
senescence and apoptosis (cell self-destruction). Figure 6.1 shows some major 
pathways involving p53 that are activated in the presence of DNA double strand 
breaks. Adapted from [Batchelor, et al., 2009], it is not meant to be inclusive. An 
arrow indicates an activation signal, and a blunt end indicates suppression. Note 
that p53 activates Mdm2 and activated Mdm2 has a suppressing effect on p53. 
Even in this small network one can see the complicating effect of feedback.  
 Given this kind of pathway diagram, which is inherently logical, one would 
like to find Boolean networks whose state transitions generate the pathways 
[Layek et al., 2011]. The problem is ill-posed because there may be numerous 
networks that realize the pathways and there may be logical inconsistencies 
among the pathways since they have been found under various conditions in 
different studies. These kinds of issues are common with complex systems. 
 We consider two Boolean networks having states [ATM, p53, Wip1, Mdm2] 
generated for the pathways in Fig. 6.1. An external input signal, denoted 
dna_dsb, takes on the value 1 or 0, depending on whether there is or is not DNA 
damage. This leads to two 4-gene Boolean networks determined by the following 
logical rules [Imani and Braga-Neto, 2016]: 
 

 ATMnext = dna_dsbWip1  

 p53next = Wip1ATMMdm2   
 Wip1next = p53 

 Mdm2next = Wip1)53p(Wip1))(p53ATM(   
 
The symbols , , and ¯ represent logical “and”, “or”, and “not”, respectively. 
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Figure 6.1 p53 pathways (adapted from [Imani and Braga-Neto, 2016]). 
 
 
 The state transition diagrams for these networks are shown in Fig. 6.2: (a) 
dna_dsb = 0; (b) dna_dsb = 1. Absent damage, from any initial state the network 
evolves into the single attractor state 0000; with damage, the network evolves 
into a 5-state attractor cycle in which p53 (state number 2) oscillates between 
expressing and not expressing. If one were to observe the network without 
knowing the damage status, then network behavior would appear stochastic, for 
instance, 0001  0000 when dna_dsb = 0 and 0001  1000 when dna_dsb = 1. 
 
 

    
 
                                (a)                                                                 (b)  

 

Figure 6.2 State transition diagrams for p53 networks: (a) no damage—single attractor 
state; (b) damage—five-state attractor cycle. 
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6.2.2  Probabilistic Boolean networks  

From the perspective of each of the two p53 networks, the damage signal is a 
latent variable exterior to the network. Given the value of the latent variable, the 
network is deterministic; however, latency means that the damage signal is not 
part of the network and is not observed. Hence, when observed the network is 
stochastic. One might argue that the problem would be solved by including 
dna_dab in the network. That would just push the latency further out because 
dna_dab is being influenced by other unobserved physical events. The central 
point is that the model system cannot be isolated from interaction with its 
environment, so, recalling Russell, even if the universe is deterministic, one 
would have to include all events not totally disconnected from the network, a 
practical impossibility.  
 One can incorporate both p53 Boolean networks into a single network by 
viewing each individual Boolean network as a context (constituent) of a network 
whose regulatory structure is defined at a given time point by setting the damage 
signal to either 0 or 1. The new network maintains that regulatory structure until 
it randomly switches to the other Boolean regulation, say dna_dsb = 0 to dna_dsb 
= 1, with some switching probability. The resulting network is called a 
probabilistic Boolean network (PBN) [Shmulevich and Dougherty, 2010]. The 
PBN inherits the attractor structures of the constituent Boolean networks, the 
difference being that context switching can result in the network jumping out of 
an attractor cycle into a different basin of attraction and then transitioning into a 
different attractor cycle. While the p53 PBN has two contexts, the general 
definition of a PBN allows any number of context Boolean networks. It also does 
not require binary-valued genes.  
 To illustrate network (and biological pathway) switching, suppose there is no 
damage and the network has settled into the attractor state 0000, as shown in Fig. 
6.2(a). Since the role of the p53 network is to respond to DNA damage and since 
there is no damage, this dormant state is what one might expect. Suppose DNA 
damage is detected. Then dna_dsb flips to 1, the Boolean network of Fig. 6.2(b) 
becomes operative, and the state changes from 0000 to 1000 in the next time 
step, so that almost immediately the 5-state cyclic attractor is entered and p53 
oscillates between 0 and 1 on each cycle. 
 The PBN model incorporates randomness in a structured manner. Should this 
uncertainty be considered intrinsic, as in the case of quantum mechanics? One 
could certainly argue that there are hidden variables and that, if we could observe 
all of them, then the uncertainty would be eliminated. The debate is academic 
because the physical system is too complex and consists of tens of thousands of 
variables—genes, proteins, and other macromolecules within a single cell plus all 
elements pertaining to extra-cellular signaling. Forming a sufficiently extensive 
model to eliminate latency is impossible. There are two choices: use a 
deterministic model if the latency is very small, or include the latency-induced 
stochasticity in the model, as with PBNs.  
 Further randomness can be introduced to a Boolean network via 
perturbations. Specifically, for each gene there is some small perturbation 
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probability that it will randomly switch values. This is practical because there is 
random variation in the amount of mRNA and protein produced. Perturbations 
allow a network to jump out of an attractor cycle and, as with context switching, 
eventually transition to a new attractor. A probabilistic Boolean network is 
usually assumed to have perturbation randomness in addition to context-
switching randomness. 

6.3  Validation of Complex Systems 

In the classical deterministic scenario, a model consists of a few variables and 
physical constants. The relational structure of the model is conceptualized by the 
scientist via intuition gained from thinking about the physical world. Intuition 
means that the scientist has some mental construct regarding the interactions 
beyond positing a skeletal mathematical system he believes is sufficiently rich to 
capture the interactions and then depending upon data to infer the relational 
structure and estimate a large number of parameters. Classically, there are few 
parameters to estimate and they are estimated from a handful of experiments. 
Owing to the deterministic character of the model, it can be tested with a few 
numerical predictions whose disagreement with future observations is due to 
either experimental error or model failure, with the former being mitigated by 
careful experimentation. The theory is contingently accepted if predictions are 
deemed to be concordant with observations.  
 As model complexity grows to tens, then hundreds, and then thousands of 
variables and parameters, the classical procedures become increasingly difficult 
to carry out. The problem is exacerbated by stochasticity because prediction then 
includes testing the accuracy of probability distributions in the model. Systems 
with thousands of variables are virtually unvalidatable. 

6.3.1  Validation of deterministic models 

For a deterministic model, initial conditions can be set and, in principle, the state 
at some future time determined exactly, although in practice there will be some 
experimental variability. If the initial conditions of a test experiment are aligned 
with those of the model and the experiment run to some future time, then 
agreement between the final model and experimental states can be checked. 
Large-scale deterministic systems have high-dimensional state vectors, so that 
test experiments are more demanding; nevertheless, the ultimate comparison is 
still between model and experimental state vectors. It is prudent to run tests using 
a variety of initial conditions so that a large portion of the state space is tested. 
 Consider validating a Boolean network with k genes. Initializing the state 
vector at x0, one determines the state vectors x1, x2,…, xb at times t = 1, 2,…, b 
via the regulatory logic, initializes the experimental set-up at z0, runs the 
experiment taking measurements at each step to compute z1, z2,…, zb, and checks 
for agreement between x1, x2,…, xb and z1, z2,…, zb, or perhaps just at some 
subset of time points.  
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 To see why it is prudent to consider various initial conditions, suppose the 
Boolean network has two attractor cycles A1 and A2, with corresponding basins 
B1 and B2. If the initial state lies in basin B1, then after some number of steps the 
network will arrive in attractor cycle A1. If A1 and A2 correspond to modeling two 
different phenotypes, since the regulatory pathways in the different phenotypes 
are different, the model might be a good fit for one phenotype but not the other, 
and this would never be tested by a single initial condition in basin B1. One 
would at least need to test initial conditions in the two basins. Beyond that, a 
single initial condition in a basin will lead to a specific state trajectory, so that 
disagreements on other pathways might not show up. Thus, prudence dictates 
testing a number of initial conditions. As network complexity increases, so does 
the number of tests.  
 As an example, suppose there is a mutation and the p53 network of Fig. 
6.2(b) is altered so that state 0000 becomes an attractor; that is, the network stays 
in 0000 when there is DNA damage. This can happen with a single alteration in 
the regulatory logic: when the network is in state 0000, instead of ATMnext = 1, 
ATMnext = 0. This is a serious mutation because p53 remains off when there is 
DNA damage so that the downstream effects that it should actuate are not 
actuated. Regarding validation, the mutated network has two attractors, the 
singleton 0000 and the original 5-state attractor cycle. If one proceeds to validate 
the network starting from initial state 1101, then the experiment should end with 
state 0000. Is this sufficient validation? All that has been tested is the path 1101 
 1010  0000. What about initialization at 0101 or, more importantly, at 0111 
or 1111, where the cyclic attractor would be tested? It is clear that testing must 
involve more than a single initial state. 

6.3.2  Validation of stochastic models 

With a stochastic model, the situation is more challenging. Given an initial state, 
the final state will not be determined exactly; rather, there will a probability 
distribution of possible final states. Hence, comparison must be between the state 
distribution, which is generally multivariate, and a state histogram generated by 
many experimental runs, the number of required runs growing exponentially with 
the number of variables. Distributional statistical tests are required. For instance, 
with hypothesis testing one decides between two hypotheses—the distributions 
match or they do not match. A decision to accept the theory depends on the 
acceptance threshold. The theory and test are inter-subjective, but the decision to 
accept or reject depends on subjective considerations, as with a hypothesis test, 
where the acceptance region depends on a chosen level of significance. The 
overall procedure can be onerous (or impossible) depending on the number of 
experimental runs required, especially with complex systems, where distributions 
are high-dimensional. Validation of a wave pattern in the double-slit experiment 
constitutes a low-dimensional example of the method: compare the electron 
distribution on the detector with the pattern predicted by the wave model. 
 To illustrate the problem, consider the p53 network in Fig. 6.2(b). State 0000 
is important because, if there is no damage, then the ground state is 0000, but 
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now there is damage. At once the cyclic attractor is entered, so that oscillation of 
p53 takes place. Now suppose ATM is unstable and is subject to perturbation 
with some probability. While cycling through the attractor states, suppose at state 
0011 ATM flips to 1 so that the network is in state 1011. It will then transition 
through 0000 into the attractor cycle. After several cycles suppose the network 
arrives at state 1100 and ATM flips to 0 so that the network is in state 0100. Then 
it will transition through 1011 and 0000 to again be in the attractor cycle. The 
point is that starting at the initial state 0000 the network will not reach a 
determined state after a given amount of time; instead, there will be probabilities 
of being in many, or all, states. To check the model this probability distribution 
must be tested against living cells, which is extremely difficult even for modest 
sized networks. This is for one initial state among 16 possible initial states. For a 
Boolean network with k genes there are 2k possible initial states.  

6.4  Model Uncertainty 

Parameter estimation is a basic aspect of model construction and historically it 
has been assumed that data are sufficient to estimate the parameters, for instance, 
correlations that are part of the model; however, when the number of parameters 
is too large for the amount of data, accurate parameter estimation becomes 
impossible. The result is model uncertainty.  
 Insufficient data for accurate estimation is an old problem in statistics. For a 
simple illustration, consider a one-dimensional variable governed by a normal 
distribution with known standard deviation and unknown mean . The standard 
method of estimating  is to take a random sample of points x1, x2,…, xn and form 
the sample mean (x1 + x2 +…+ xn)/n. The sample mean provides a good estimate 
of the mean if the sample size n is sufficiently large. The precision of the 
estimate can be quantified in terms of the sample size. If the sample size is small, 
then rather than a point estimate it may be preferable to provide an interval 
estimate of the form [a, b], so that there is no specific estimate of the mean. In 
effect, this means that one is assuming that the “true” model is among the infinite 
number of possible models compatible with the interval estimate.  
 For a situation in which model complexity plays a role, consider the p53 
network for no damage and suppose that the regulatory function for ATM is 
unknown. The truth table defining the regulatory structure for the network has 64 
= 424 rows because there are 24 possible input states for each of the four genes: 
0000, 0001,…, 1111. This means that there are 64 parameters taking values 0 or 
1. If there is no existing knowledge concerning the regulation of ATM, then there 
are 16 unknown parameters: f1(0000), f1(0001),…, f1(1111). Since each of these 
can have two possible values, 0 or 1, there are 216 possible networks, one for each 
combination. Owing to uncertainty, instead of one network there is an 
uncertainty class of 65,536 possible networks. Each is represented by a 
parameter vector k of length 16, so that the uncertainty class takes the form  = 
{1, 2,…, 65,536}. This is for a single unknown regulatory function in a single 4-
gene binary network! 
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 If there is prior knowledge that can be applied, then the uncertainty class can 
be reduced. For example, suppose it is known that ATMnext = 0 if Wip1 = 1. This 
knowledge would result from a scenario in which the presence of the Wip1 
transcription factor on the promoter region of ATM blocks the binding of 
activating proteins. In this case, there are only 8 unknown parameters, f1(0000), 
f1(0001),…, f1(0111), and 28 networks in the uncertainty class. This kind of huge 
complexity reduction puts a premium on prior (existing) knowledge in model 
construction. The effect of prior knowledge will be seen in the next chapter when 
we discuss model-based operator design. 

6.5  Data Mining 

The classical approach to model design is to construct a mathematical structure 
satisfying the scientist’s conceptualization of phenomenal behavior and then 
estimate model parameters. As models become more complex, in addition to 
increasing numbers of parameters to estimate, conceptualizing interacting 
phenomena becomes more taxing. Thus, it has become popular to posit a very 
general mathematical structure and then, instead of using some statistically best 
estimate such as maximum likelihood to estimate individual parameters, the 
parameters are manipulated as a group until the model fits the data to some 
desired degree. Data-fitting algorithms can be ingenious and may take advantage 
of high-performance computing to employ models with thousands of parameters. 

6.5.1  Overfitting  

At first glance, this approach, known as data mining, may seem attractive and 
appear to circumvent the need for conceptualization; however, fitting the data 
without a satisfactory conceptualization of the interactions (law) underlying the 
behavior of the phenomena can easily lead to a model that overfits the data. The 
model fits the data but does not model the relevant physical processes, the result 
being that it poorly predicts future observations and may not even successfully 
predict existing data not used in model construction. Indeed, the mathematical 
structure (neural network, graph, etc.) may not be of a suitable form to model the 
physical processes but is sufficiently flexible on account of its complexity and 
high dimensionality that it can be fit to the data. To add to the predicament, even 
if the fitted structure should happen to provide a good model for the underlying 
processes, there often is no method for precisely estimating its accuracy. Hence, 
if it is accurate, there is no way to know so.  
 Climate scientists Tibaldi and Knutti articulate the problem as manifested in 
their discipline:  
 

Most models agree reasonably well with observations of the present-day 
mean climate and simulate a realistic warming over the Twentieth 
Century (of course, the specific performance depends on each 
model/metric combination), yet their predictions diverge substantially for 
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the Twenty-First century, even when forced with the same boundary 
conditions. [Tibaldi and Knutti, 2007] 

 
Recall Reichenbach: “Observation informs us about the past and the present, 
reason foretells the future.” Perhaps some reason has been used in constructing 
climate models, but not enough. Faced with the complexity of climate systems, is 
it reasonable to believe that there can ever be enough reason? 
 To illustrate overfitting, consider the problem of finding a regression 
function y = g(x) that best estimates the value of Y given a value of X, where X 
and Y possess a joint distribution. We denote the random value of Y given a fixed 
value X = x by Y|x. The best estimate in the mean-square sense is the one that 
minimizes the average value of |Y|x  x|2 among all possible estimates x. This 
average value is known as the expected value and is denoted by E, so the aim is 
to minimize E[|Y|x  x|2]. The minimum mean-square estimate is the mean of Y|x, 
which is denoted by Y|x.  
 In the case of a bivariate normal distribution, if the means of X and Y are X 
and Y, respectively, their standard deviations are X and Y, respectively, and the 
correlation coefficient is , then the regression function is given by  
 

 Y|x = Y + )( X
X

Y x 



 , (6.1) 

 
which is a straight line with slope Y/X.   
 A basic problem in statistics is to estimate the regression function from 
points randomly drawn from the joint distribution. Since for normal distributions 
the regression function is a straight line, given a joint normal distribution the 
estimated regression function is taken to be a straight line also. This sample 
regression line constructed from the data is the line y = a + bx that minimizes the 
error sum of squares 
 
 SSE = |y1  (a + bx1)|2 + |y2  (a + bx2)|2 + … + |yn  (a + bxn)|2, (6.2) 
 
where the sample points are (x1, y1), (x2, y2),…, (xn, yn). As the number of data 
points grows, the sample regression line becomes closer to the true regression 
line (in a probabilistic sense).  
 Suppose one does not know that the joint distribution is normal. Then the 
true regression line can take almost any form. Should the regression line be 
highly nonlinear, then assuming a straight line, in particular, using the best-fit 
regression line for a normal distribution would constrain the estimation to one 
that is far from accurate regardless of the number of data points. To avoid this 
kind of constraint, instead of assuming a linear regression, one can assume a 
polynomial regression. But what order polynomial should be chosen? Should it 
be high order to better fit the data? Such a choice may provide excellent data 
fitting on account of complexity and the large number of parameters to be 
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adjusted, but this may result in overfitting if the assumed regression model is 
overly complex relative to the true regression equation.  
 Figure 6.3 provides an example involving a joint normal distribution with 
means X = Y = 3, standard deviations X = Y = 1, and correlation coefficient  
= 0.5. Each part of the figure shows ten randomly generated data points, the true 
regression line, and a sample regression line found via the error sum of squares 
for the assumed form of the line: linear, cubic, fifth-order polynomial, seventh-
order polynomial, ninth-order polynomial, and eleventh-order polynomial. As the 
order of the polynomial grows, the sample regression line fits the data better but 
gets further away from the true regression line. This is classic overfitting.  
 

 
 

 
Figure 6.3 Polynomial regression lines of increasing degree fit to two different sets of 10 
randomly generated points from a bivariate normal distribution. 
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 If fitting the data is the sole aim, then having enough computing power to fit 
a complex model, say, one with tens of thousands of parameters in an equally 
vast dimensional space, is typically the sole issue; however, scientifically, fitting 
the data is not a sensible aim. A hundred points are lost in thousand-dimensional 
space and are easily overfit. Think of modeling the approximately 30,000 genes 
in the human genome. The bigness of data depends on its relation to model 
dimension, not simply the number of gigabytes.  
 The complexity dilemma—choosing low model complexity and not 
capturing behavioral complexity versus choosing high model complexity and 
overfitting the data—is caused by ignorance. One is trying to model phenomena 
without sufficient knowledge to do so. 
 Maxwell addresses the issue squarely: 
 
  As students of physics we observe phenomena under varied 

circumstances and endeavor to deduce the laws of their relations. Every 
natural phenomenon is, to our minds, the result of an infinitely complex 
system of conditions. What we set ourselves to do is to unravel these 
conditions, and by viewing the phenomenon in a way which is in itself 
partial and imperfect, to piece out its features one by one, beginning with 
that which strikes us first, and thus gradually learning how to look at the 
whole phenomenon so as to obtain a continually greater degree of 
clearness and distinctness. In this process, the feature which presents 
itself most forcibly to the untrained inquirer may not be that which is 
considered most fundamental by the experienced man of science; for the 
success of any physical investigation depends on the judicious selection 
of what is to be observed as of primary importance, combined with a 
voluntary abstraction of the mind from those features which, however 
attractive they appear, we are not yet sufficiently advanced in science to 
investigate with profit. [Maxwell, 2003]  

 
 In Maxwell’s phraseology, an “untrained inquirer” throwing together a huge 
number of features in the hope that some data-mining algorithm in conjunction 
with massive computational machinery will discover a nugget is “not yet 
sufficiently advanced in science.” Or, as stated by William Barrett, “The absence 
of an intelligent idea in the grasp of a problem cannot be redeemed by the 
elaborateness of the machinery one subsequently employs.” [Barrett, 1979] 

6.5.2  Asymptotic theory 

The complexity dilemma arises from insufficient knowledge to make sufficient 
assumptions to render principled model design feasible. Modeling assumptions 
carry risk in the sense that the phenomena may not satisfy them; in fact, they will 
almost certainly not satisfy them. Nevertheless, absent assumptions there can be 
no propositions. Omitting distributional assumptions might seem desirable so as 
not to limit the scope of the theory; however, as seen with regression, the absence 
of distributional assumptions easily leads to meaningless results.  
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 Can we appeal to asymptotic (sample size  ) statistical theory to 
guarantee model accuracy? Theorems concerning the convergence to zero of the 
difference between a parameter estimate and the parameter as sample size goes to 
infinity go back to Jacob Bernoulli (1655–1705). At best, asymptotic results may 
say something about estimation accuracy for large samples but they say virtually 
nothing about small samples—and small samples are the problem for complex 
systems. Even if data are abundant, unless there are distributional assumptions, 
an asymptotic theorem usually does not specify how large the sample must be 
and assumptions have to be imposed to obtain propositions concerning required 
sample size.  
 In 1925, Ronald Fisher commented on the limitations of asymptotic theory:  
 

Little experience is sufficient to show that the traditional machinery of 
statistical processes is wholly unsuited to the needs of practical research. 
Not only does it take a canon to shoot a sparrow, but it misses the 
sparrow! The elaborate mechanism built on the theory of infinitely large 
samples is not accurate enough for simple laboratory data. Only by 
systematically tackling small sample problems on their merits does it 
seem possible to apply accurate tests to practical data. [Fisher, 1925] 

 
 Twenty years later, Harald Cramér strongly supported Fisher’s position: 
 

It is clear that a knowledge of the exact form of a sampling distribution 
would be of a far greater value than the knowledge of a number of 
moment characteristics or a limiting expression for large values of n. 
Especially when we are dealing with small samples, as is often the case 
in the applications, the asymptotic expressions are sometimes grossly 
inadequate, and a knowledge of the exact form of the distribution would 
then be highly desirable. [Cramér, 1945] 

 
 Fisher and Cramér, two giants of statistics, make it very clear that real-world 
problems are often small-sample problems and, for these, asymptotic theory will 
not do—and they never witnessed today’s complexity. Small-sample theory is 
necessary for statistics to play a major role in acquiring scientific knowledge. For 
the most part, data mining, which is void of small-sample theory, is high-
performance pre-Baconian groping in the dark.  

6.6  Limitations of Science 

While post-Galilean science has from the outset been restricted to mathematical 
representation and the ability to perform confirming experiments, the strong 
limitations of science, as a form of knowledge, implied by these restrictions has 
become clearer with the desire to apply scientific method to complex stochastic 
systems. The stumbling block is that the predominant problems in the Twenty-
first Century are very different from Einstein’s E = hf, which only requires 
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estimating Planck’s constant. Even modest-sized models in biology contain large 
numbers of parameters, dwarfing the complexity of the p53 network considered 
herein. Model uncertainty together with stochasticity precludes the possibility of 
full-model validation. Partial validation via prediction of some characteristics 
(features or properties) of the model may be feasible; however, even accepting 
Einstein’s stipulation that “it is only necessary that enough propositions of the 
conceptual system be firmly enough connected with sensory experiences,” this 
proviso must be applied to such a degree that validation can, at best, be only 
fragmentary. 
 Beyond the impediment of mathematical and computational complexity, 
limitations on measurement accuracy and the inability to perform the large 
number of experiments required to validate large stochastic systems limit the 
degree of validation, and therefore the knowledge carried by a model.  
 A salient example of experimental limitation on scientific knowledge occurs 
in climate science, where model validation can involve various characteristics, 
such as mean global temperature and the amount of atmospheric CO2. While 
these may be weak compared to full-model validation, application-wise they are 
important. Because the system is stochastic, prediction involves distributions and 
data must be obtained for constructing empirical distributions. Is this possible? If 
a prediction involves the earth and takes place over a long time period, then it 
may be hard to draw a sufficient number of points. For a time period of ten years, 
even without random initialization and using successive ten-year periods, it 
would take a millennium to generate a decent histogram. Reducing validation to 
model characteristics does not help; the impediment is that sufficient observation 
of the system is impossible. 
 Tibaldi and Knutti state the problem:  
 

The predictive skill of a model is usually measured by comparing the 
predicted outcome with the observed one. Note that any forecast 
produced in the form of a confidence interval, or as a probability 
distribution, cannot be verified or disproved by a single observation or 
realization since there is always a non-zero probability for a single 
realization to be within or outside the forecast range just by chance. Skill 
and reliability are assessed by repeatedly comparing many independent 
realizations of the true system with the model predictions through some 
metric that quantifies agreement between model forecasts and 
observations (e.g. rank histograms). For projections of future climate 
change over decades and longer, there is no verification period, and in a 
strict sense there will never be any, even if we wait for a century. The 
reason is that the emission scenario assumed as a boundary condition is 
very likely not followed in detail, so the observations from the single 
climate realizations will never be fully compatible with the boundary 
conditions and scenario assumptions made by the models. And even if 
the scenario were to be followed, waiting decades for a single 
verification dataset is clearly not an effective verification strategy. This 
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might sound obvious, but it is important to note that climate projections, 
decades or longer in the future by definition, cannot be validated directly 
through observed changes. Our confidence in climate models must 
therefore come from other sources. [Tibaldi and Knutti, 2007] 

 
 Tibaldi and Knutti confront the epistemological crisis of the Twenty-first 
Century: the desire for valid scientific knowledge and the inability to get it on 
account complexity or experimental limitations. They state that “climate 
projections, decades or longer in the future by definition, cannot be validated 
directly through observed changes.” Combine this with Schrödinger’s statement 
that “there does not seem to be much sense in inquiring about the real existence 
of something, if one is convinced that the effect through which the thing would 
manifest itself, in case it existed, is certainly not observable.” One might argue 
that climate projections are not theoretically impossible, only pragmatically 
impossible. But does this matter in practice? Tibaldi and Knutti say that 
confidence must come from “other sources,” but this does not produce a 
validated scientific theory. There is no scientific truth.  
 Confronting the limits of verifiability in evolutionary theory, Kauffman calls 
for a new scientific epistemology: 
 

What we think of as natural law may not suffice to explain 
Nature. We now know for example, that evolution includes 
Darwinian pre-adaptations—unused features of organisms that 
may become useful in a different environment and thus emerge 
as novel functionalities, such as our middle ear bones, which 
arose from the jaw bones of an early fish. Could we pre-state all 
the possible Darwinian pre-adaptations even for humans, let 
alone predict them? It would seem unlikely. And if not, the 
evolution of the biosphere, the economy and civilization are 
beyond natural law. If this view holds, then we will undergo a 
major transformation of science. [Kauffman, 2007] 

 
Kauffman is expressing a desire for knowledge that lies outside the bounds of 
science but he wants it to be scientific in character. This can only be achieved if 
the requirements for scientific knowledge are weakened. 
 Regarding the inability to make predictions, in his essay, “Breaking the 
Galilean Spell,” Kauffman writes, 
 

This incapacity to foresee has profound implications. In the physicist 
Murray Gell-Mann’s definition, a ‘natural law’ is a compact description 
beforehand of the regularities of a process. But if we cannot even pre-
state the possibilities, then no compact descriptions of these processes 
beforehand can exist. These phenomena, then, appear to be partially 
beyond natural law itself. This means something astonishing and 
powerfully liberating. We live in a universe, biosphere, and human 
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culture that are not only emergent but radically creative. We live in a 
world whose unfoldings we often cannot prevision, prestate, or predict—
a world of explosive creativity on all sides. This is a central part of the 
new scientific worldview. [Kauffman, 2008] 
 

 Standing in opposition to Kauffman’s new scientific worldview is physicist 
Lee Smolin, who, in reference to string theory, writes, 
 
  A theory has failed to make any predictions by which it can be tested, 

and some of its proponents, rather than admitting that, are seeking leave 
to change the rules so that their theory will not need to pass the usual 
tests we impose on scientific ideas. It seems rational to deny this request 
and insist that we should not change the rules of science just to save a 
theory that has failed to fulfill the expectations we originally had for it. 
[Smolin, 2006] 

 
 The conflict between the desire for knowledge concerning complex systems 
and the impossibility of testing a model by observing future behavior lies at the 
center of the epistemological crisis of the Twenty-first Century. There appear to 
be four basic options for science: 
 
1. Dispense with modeling complex systems that cannot be validated. 
2. Model complex systems and pretend they are validated. 
3. Model complex systems, admit that the models are not validated, utilize them 

pragmatically where possible, and be extremely prudent when interpreting 
them. 

4. Strive to develop a new and perhaps weaker scientific epistemology. 
 
 Option three carries the risk of eviscerating science as a result of laziness; 
however, option one leaves major problems in medicine, engineering, economics, 
etc. that have substantial impact on the human condition outside of systematic 
investigation. Option three is certainly better than option two, which appears to 
be widespread. Recall Woodcock’s estimate that as much as 75% of published 
biomarker associations are not replicable—and although these may be high 
dimensional, their complexity is low compared to other systems being 
investigated. Pretending that theories are scientifically valid when they are not 
inevitably leads to poor policy decisions by political leaders who must put their 
faith in science, while at the same time rendering the scientific literature suspect. 
Pursuing option three may motivate a serious effort in regard to option four, 
which could lead to a multi-level epistemology that would support meaningful 
scientific theories at different levels of validation. 
 If the requirements of science are to be weakened, this needs to be done with 
great care, deep philosophic reflection, and in a manner that maintains a rigorous 
formal relationship between theory and phenomena. Given the substantial 
obstacles confronting the pursuit of scientific knowledge in complex systems, a 
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satisfactory resolution could easily be a century or more away, if at all. Human 
beings are limited in their capacity for knowledge. It took three centuries from 
the birth of modern science until quantum theory to fully clarify the 
epistemological revolution of Galileo, during which time the greatest minds took 
up the challenge. Perhaps we have reached our limit and the rules of the game 
cannot be relaxed without collapsing the entire enterprise into a Tower of Babel. 
Whatever the case, the issue is too important to ignore and let science aimlessly 
become “primitive and muddled.”  




