
101 

 
 
 
 
 

Chapter 7 

Translational Science under 
Uncertainty 
 

7.1  Translational Science 

Modern engineering begins with a scientific model but in addition to the model 
there is an objective, such as making a decision based on observations, filtering a 
signal to reduce noise or accentuate particular frequencies, or intervening in a 
natural system to force its behavior in a more beneficial direction. The situation 
changes from modeling behavior to affecting behavior. In medicine, engineering 
is popularly called translational science, which accurately describes modern 
engineering. A scientific model, whose purpose is to provide a conceptualization 
of some portion of the physical world, is transformed into a model characterizing 
human action in the physical world. Scientific knowledge is translated into 
practical knowledge by expanding a scientific system to include inputs that can 
be adjusted to affect the behavior of the system and outputs that monitor the 
effect of the external inputs and feed back information on how to adjust the 
inputs [Dougherty, 2009a]. For example, in biomedical science models are 
created with the intention of using them for diagnosis, prognosis, and therapy.  
 If one is going to transform a physical process, then the conceptualization of 
that physical transformation takes the form of a mathematical operator on some 
mathematical system, which itself is a scientific model for the state of Nature 
absent the transformation. It may be that one cannot obtain a model that can be 
validated via prediction—that is, a model that has scientific validity—but one 
may nevertheless find a model that can be used to determine a beneficial 
operator. The product of pure science is a validated model, whereas the product 
of translational science is an operator that transforms some aspect of Nature in a 
quantifiably useful manner. When modeling a cell, the endpoint for pure science 
is a representation of the dynamical interaction between its macromolecules; for 
translational science the endpoint might be determination of a drug that will 
block a signal activating unwanted cellular proliferation. For translation, the 
scientific model is an intermediate construct used to facilitate control of Nature; 
its descriptive power is of concern only to the degree that it affects the operator 
designed from it. For translational science, the epistemological requirements for 
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accepting the model as scientifically valid are replaced by requirements regarding 
the performance of the operator derived from it. The epistemology of pure 
science is replaced by the epistemology of practical science [Dougherty, 2016]. 
 The aim of the present chapter is to discuss the basic aspects of translational 
science in the classical framework of a fully known model and then to examine 
the situation where the model is uncertain. It is in the presence of uncertainty that 
the epistemology of translational science confronts operator design in the context 
of Twenty-first Century complexity. Optimal operator design under uncertainty 
will be considered in three settings: therapeutic intervention in gene regulatory 
networks, pattern classification, and signal filtering. Each of these requires some 
mathematics, but only in the case of signal filtering is some special knowledge 
required, and we have tried to keep that to a minimum so that the basic ideas are 
accessible to most readers. 

7.2  Anatomy of Translational Science 

There are two basic operator problems concerning systems. One is analysis: 
given a system, characterize the properties of the transformed system resulting 
from the operator in terms of the properties of the original system. Often it is not 
mathematically feasible to characterize completely the transformed system, or 
only certain properties of the original system may be known, so that the best one 
can do is to characterize related properties of the transformed system. This is fine 
so long as one can characterize those properties of interest to the application. As 
an example, for a linear operator on a stochastic process, it is usually sufficient to 
characterize the output covariance function in terms of the input covariance 
function. 
 The second basic operator problem is synthesis: given a system, design an 
operator to transform the system in some desirable manner. Synthesis represents 
the critical act for intervention and forms the basis of modern engineering 
(translational science). One could grope in the dark, trying one operation after 
another and observing the result; however, since groping is not grounded in 
scientific knowledge, we do not consider it to be translational science. In the 
context of translational science, synthesis begins with the relevant scientific 
knowledge constituted in a mathematical theory that is used to arrive at an 
optimal (close to optimal) operator for accomplishing a desired transformation 
under the constraints imposed by the circumstances. A criterion, called a cost 
function (objective function) is defined to judge the goodness of the response—
the lower the cost, the better the operator. The objective is to find an optimal way 
of manipulating the system, which means minimizing the cost function. 
 Translational-scientific synthesis originated with optimal time series filtering 
in the classic work of Andrey Kolmogorov [Kolmogorov, 1941] and Norbert 
Wiener [Wiener, 1949]—although published in 1949, an unpublished version of 
Wiener’s work appeared in 1942. In the Wiener–Kolmogorov theory, the 
scientific model consists of two random signals, one being the true signal and the 
other being an observed “noisy” variant of the true signal. The translational aim 
is to linearly operate on the observed signal so as to transform it to be more like 
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the true signal. Being that a linear operator is formed by a weighted average, the 
synthesis problem is to find an optimal weighting function for the linear operator 
and the goodness criterion is the mean-square difference between the true and 
filtered signals (for a detailed account of the translational nature of the Wiener–
Kolmogorov theory, see [Dougherty, 2009b]). 
 For translational science, synthesis generally involves four steps:  
 
1. Construct the mathematical model. 
2. Define a class of operators. 
3. Define the optimization problem via a cost function. 
4. Solve the optimization problem. 
 
 One might prefer a valid scientific model when synthesizing an operator 
because design would then be based on a system that accurately reflects Nature 
and thus would portend a better performing operator; however, there is no 
requirement that the model provides a predictive representation of Nature when 
application is the goal. With translation, one approaches Nature with the aim of 
achieving a practical benefit, which is contextual, relative to the cost function and 
the conditions of application. A translational perspective may be the only viable 
option when only a targeted objective can reduce the scale of the problem to one 
that is experimentally, mathematically, and computationally tractable. The 
predictive capacity of the scientific model is not primary because it is merely a 
tool and the relevant knowledge applies to the objective, not to the tool. The 
objective is an optimally performing operator, where performance is measured by 
the cost function.  
 In practice, optimality will not be achieved because a physical realization of 
the mathematical operator must be constructed. Moreover, since there is no 
assumption of validity regarding the scientific model, one cannot expect that a 
translationally optimal operator will perform optimally relative to a validated 
model, although it might. Thus, while the theoretical objective is an optimal 
mathematical operator, the practical objective is a close-to-optimal physical 
operator. The actual performance can be evaluated by applying the designed 
physical operator and estimating the cost function from the data. This is often 
less burdensome than model validation; nevertheless, there may still be 
insufficient data for obtaining a good estimate, depending on the complexity of 
the cost function and the difficulty of testing. 

7.2.1  Structural intervention in gene regulatory networks 

When every gene in a Boolean network (or PBN) has a positive perturbation 
probability, then for any state x the probability that the network is in state x in the 
long run (in the limit) is independent of the initial state. This limiting probability 
is called a steady-state probability and the collection of all such probabilities is 
called the steady-state distribution. Not every network possesses a steady-state 
distribution. For instance, consider a 3-gene deterministic Boolean network with 
two basins: 100  010  001  000 and 110  011  101  111. Then the 
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long-run probability of 000 is 1 if the network is initialized at 100 and is 0 if it is 
initialized at 110. There is no steady-state distribution. 
 Assuming the existence of a steady-state distribution, structural intervention 
in a gene regulatory network involves a one-time change of the regulatory 
structure to reduce the steady-state probabilities of undesirable (pathological) 
states [Qian and Dougherty, 2008]. This means minimizing the sum of the 
steady-state probabilities corresponding to the undesirable states. Following 
[Yoon et al., 2013], to illustrate structural intervention we consider a mammalian 
cell cycle Boolean network with perturbation (p = 0.01) based on a regulatory 
model proposed by [Faure et al., 2006]. Intervention is based on the fact that in 
molecular biology there are techniques for “pathway blockage.” We employ a 
structural intervention that models small interfering RNA (siRNA) interference 
in regulatory relationships: an intervention blocks the regulation between two 
genes in the network.  
 The cell cycle involves a sequence of events resulting in the duplication and 
division of the cell. It occurs in response to growth factors and under normal 
conditions it is a tightly controlled process. The model contains 10 genes: CycD, 
Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, and CycB, with genes 
numbered in this order. The cell cycle in mammals is controlled via extra-cellular 
stimuli. Positive stimuli activate Cyclin D (CycD) in the cell, thereby leading to 
cell division. CycD inactivates the Rb protein, which is a tumor suppressor. 
When gene p27 and either CycE or CycA are active, the cell cycle stops, because 
Rb can be expressed even in the presence of cyclins. States in which the cell 
cycle continues even in the absence of stimuli are associated with cancerous 
phenotypes. For this reason, states with down-regulated CycD, Rb, and p27 (x1 = 
x2 = x3 = 0) are undesirable.  
 The regulatory model, shown in Fig. 7.1, has blunt arrows representing 
suppressive regulations and normal arrows representing activating regulations. 
Genes are assumed to be regulated according to the majority vote rule. At each 
time point, a gene takes the value 1 if the majority of its regulator genes are 
activating and the value 0 if the majority of the regulator genes are suppressive; 
otherwise, it remains unchanged. A structural intervention removes an arrow 
from the regulatory graph because it blocks a regulation between two genes. By 
the optimization methods of [Qian and Dougherty, 2008] it is determined that the 
structural intervention that maximally lowers undesirable steady-state probability 
blocks the regulatory action from gene CycE to p27 and reduces total undesirable 
steady-state probability from 0.3405 to 0.2670. The steady-state distributions for 
the original network and the treated network are shown in Fig. 7.2. 
 The translational character of structural intervention is reflected in how the 
four aspects of synthesis are manifested:  
 
1. Model the cell cycle by a Boolean network with perturbation. 
2. An intervention operator blocks a single regulation between two genes. 
3. The cost is the total steady-state probability of the undesirable states. 
4. An optimal action is found via the method of [Qian and Dougherty, 2008]. 
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Figure 7.1 Mammalian cell cycle network (adapted from [Yoon et al., 2013]). 
 

 
(a) 

 

 
(b) 

 

Figure 7.2 Steady-state distribution for mammalian cell cycle network (states listed 
numerically): (a) original and (b) after optimal structural intervention. (Part (a) adapted 
from [Yoon et al., 2013]). 
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 In practice, basing the optimization on a cost function alone may not be 
satisfactory and constraints on the optimization may need to be imposed. In the 
case of gene regulation optimization can be phenotypically constrained, meaning 
that when altering steady-state probabilities one may wish to constrain where the 
probability is moved [Qian and Dougherty, 2012]. For instance, while lowering 
steady-state probability for undesirable states, one may wish to keep it from 
being moved to states known to be associated with carcinogenesis or to states 
that do not typically occur in healthy cells. In general, the optimization problem 
should be set up with input from cancer biologists. 

7.3  Operator Design in the Presence of Model Uncertainty 

To formulate optimization when there is model uncertainty, consider a stochastic 
model M with uncertainty class . For example, M might be a gene regulatory 
network with some unknown regulations, so that  consists of all possible 
parameter vectors corresponding to the unknown regulations. Let C be a cost 
function and  be a class of operators on the model whose performances are 
measured by the cost function. This means that for each operator    there is a 
cost C() of applying  on model   . For example, suppose  consists of 5 
drugs, meaning that each operator acts by applying a drug. Suppose the goal of 
the drug treatment is to reduce the expression of a particular gene g associated 
with metastasis in breast cancer and that the gene regulatory network being used 
is uncertain, so that there is an uncertainty class  of models. The cost function 
might be the average gene expression for g over some time interval after the drug 
has had time to take effect. Then C() is the average gene expression over the 
time interval when drug  is applied to model . Since the full network model is 
unknown, there being uncertain parameters, one would like to choose a drug 
whose performance works well over the uncertainty class. 
 An intrinsically Bayesian robust (IBR) operator on M is an operator IBR  
 such that the expected (average) value over  of the cost C() is minimized 
by IBR, the expected value being with respect to a prior probability distribution 
() over  [Dalton and Dougherty, 2014]. An IBR operator is robust in the 
sense that on average it performs well over the whole uncertainty class. Since 
each parameter vector    corresponds to a model, a probability distribution 
on the space of possible models quantifies our belief that some models are more 
likely to be the actual full model than are others. Such a distribution reflects prior 
knowledge. If there is no prior knowledge beyond the uncertainty class itself, 
then the prior distribution is taken to be uniform, meaning that all models are 
assumed to be equally likely. 
 Denoting the expected value over  by E, an IBR operator minimizes the 
expected value of the cost:  
 
 E[C(IBR)] = min{E[C()],   }. (7.1) 
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If the uncertainty class is finite, say,  = {1, 2,…, m}, then the expected cost 
over the uncertainty class is a weighted average, the costs being weighted by the 
prior distribution: 
 
 E[C()] = 

1
C ()(1) + 

2
C ()(2) + ... + 

m
C ()(m). (7.2) 

 
If  is infinite, then the expected value over  is given by the integral of the cost 
over  with respect to the prior distribution: 
 

 E[C()] = 


  dC )()( . (7.3) 

 
 The basic idea is straightforward: find an operator that minimizes the average 
cost when applied to all models in the uncertainty class. Based on existing 
knowledge, which is captured in the known parameters and the prior probability 
distribution over the uncertainty class, an IBR operator provides the best robust 
performance across the uncertainty class. When one possesses no knowledge 
concerning the likelihoods of the models in the uncertainty class and the prior 
distribution is uniform over , then (1) = (2) = … = (m) = 1/m in Eq. (7.2). 

7.3.1 IBR structural intervention in gene regulatory networks 

We return to the mammalian cell cycle network but now consider intrinsically 
Bayesian robust structural intervention. Uncertainty occurs because there are D 
pairs of genes for which the existence of a regulatory relationship is known but 
the type of relationship, activating or suppressing, is unknown. Consequently, the 
network uncertainty class  consists of 2D possible networks, where each    
corresponds to a specific assignment of regulation types to the D uncertain edges. 
The uncertainty class is governed by a uniform prior distribution, meaning that 
we have no knowledge concerning model likelihood and all uncertain parameters 
have prior probability 1/2D. As previously assumed, a structural intervention 
blocks the regulatory action between a pair of genes in the network. Once gain, 
the cost function is the total undesirable steady-state probability. Based on the 
given mammalian cell cycle network, simulations have been run in [Yoon et al., 
2013] that incrementally increase the number of edges with unknown regulation 
from D = 1 to D = 10. In each case, 50 uncertain networks are created by 
randomly selecting uncertain edges while keeping the regulatory information for 
the remaining edges. 
 Grouping the models with 1 to 5 uncertain edges, 54.0% of the time the IBR 
structural intervention is the actual optimal intervention, which blocks the 
regulation from CycE to p27. As seen in Section 7.2.1, when applied to the full 
model, this reduces total undesirable steady-state probability to 0.2639. The 
second most selected IBR intervention blocks the regulation from CycE to Rb. It 
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is chosen 41.6% of the time and reduces total undesirable steady-state probability 
to 0.2643. Four other interventions are chosen a total of 4.4% of the time.  
 Since the optimization provides the intervention that works best on average 
over the uncertainty class, it may choose an intervention that performs poorly on 
the full network. In this simulation, blocking regulation between CycB and p27 is 
selected 2.0% of the time and only reduces undesirable steady-state probability to 
0.3244. When the simulation is run with 6 to 10 uncertain edges, blocking CycE 
to p27 or blocking CycE to Rb accounts for 88.8% of the IBR interventions, as 
opposed to 95.6% of the IBR interventions for 1 to 5 uncertain edges. This 
change reflects the greater uncertainty.  

7.4  Pattern Classification 

Pattern classification is used in every applied discipline because it is the 
mathematical formulation of decision making and every discipline requires 
decisions. In cancer medicine, classification can be between different kinds of 
cancer, stages of tumor development, or prognoses. This section considers 
optimal binary classification when the model is known and when it is uncertain. 

7.4.1  Optimal classification for a known feature-label distribution 

The basic idea for classification is that features are calculated on objects from 
two different populations, and based on a vector of features a classifier decides 
which population an object belongs to. For instance, gene expressions are 
measured for k genes, and based on the measurements it is decided which drug 
should be administered. A feature vector belongs to one of two classes, labeled 0 
and 1. The model is stochastic and consists of feature-label pairs (X, Y), where X 
= (X1, X2,…, Xk) and Y = 0 or Y = 1. A classifier  is a decision function on the 
set of feature vectors: (X) = 0 or (X) = 1. It partitions the feature space into 
two regions, R0 and R1. 
 For classification, the scientific model consists of two distributions, called 
class-conditional distributions: f(x|0) and f(x|1) are the probability distributions 
governing the behavior of feature vectors in class 0 and class 1, respectively. The 
model also requires the probability c0 that a randomly selected object comes from 
class 0, which automatically gives the probability c1 that it comes from class 1 
since c1 + c0 = 1. Taken together, f(x|0), f(x|1), and c0 provide the feature-label 
distribution f(x, y) governing the feature-label vectors. For simplicity, we assume 
that c0 = c1 = ½, so that the classes are equally likely.  
 The error of any classifier  is the probability of erroneous classification, 
[] = P((X)  Y), which can be found from the feature-label distribution. 
Letting  denote the set of all classifiers on the model, an optimal classifier is 
called a Bayes classifier and is denoted by Bay. It has minimum error among all 
classifiers in  and need not be unique. Given c0 = c1 = ½, a Bayes classifier is 
defined by a simple rule: for a given feature vector x,  
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 Bay(x) = 







)0|()1|( if ,0

)0|()1|( if ,1

xx

xx

ff

ff
. (7.4) 

 
This is equivalent to Bay(x) = 1 if and only if f(x, 1)  f(x, 0), which intuitively 
means that (x, 1) is more likely than (x, 0). The error of a Bayes classifier is 
known as the Bayes error. It is denoted by Bay and is the minimum among the 
errors of all classifiers on the feature-label distribution. While there may be many 
Bayes classifiers for a feature-label distribution, the Bayes error is unique. 
 Consider a single measurement X of a system that has a normal distribution 
with mean 0 and standard deviation  when the system is in the unperturbed 
state, but when the system is perturbed in a particular way the normal distribution 
shifts so that its mean becomes  > 0, while maintaining the same standard 
deviation. We desire a classifier to predict the state of the system (unperturbed or 
perturbed) based on the measurement X. Assuming equal likelihood for the two 
states, Fig. 7.3 shows that a Bayes classifier is defined by  
 

 Bay(x) = 







2/ if ,0

2/ if ,1

x

x
, (7.5) 

 
and the error is the area of the shaded region.  
 For a more visual example, consider the two normal two-dimensional class-
conditional distributions in Fig. 7.4. They have different mean vectors in the 
plane and have the same covariance matrix (which determines the shape of the 
surfaces). A Bayes classifier is defined by the straight line that separates the 
plane into regions R0 and R1. If x  R0, then Bay(x) = 0; if x  R1, then Bay(x) = 
1. If the covariance matrices were not equal, then the class-conditional 
distributions would not have the same shape and the decision boundary would be 
quadratic instead of linear. 
 

 
 

Figure 7.3 Bayes classifier for one-dimensional normal class-conditional distributions. 



110  Chapter 7 

 
 

Figure 7.4 Bayes classifier for two-dimensional normal class-conditional distributions. 
 

 Considering features and labels as physical measurements, the feature-label 
distribution represents knowledge of the variables X1, X2,…, Xk, Y. The Bayes 
error is intrinsic to the model and quantifies the separability of the classes 
relative to the features. We desire features that separate well the class-conditional 
distributions. Given a feature-label distribution, one can in principle find a Bayes 
classifier and the Bayes error; however, for important models, only in rare cases 
have these been analytically derived from the feature-label distribution, but they 
can be approximated by numerical methods.  
 Corresponding to the four generic steps for optimal operator synthesis are the 
following four steps for classification:  
 
1. Construct the feature-label distribution. 
2. The operators consist of classifiers on the feature-label distribution. 
3. The cost is classifier error. 
4. An optimal operator is given by a Bayes classifier. 

7.4.2  Intrinsically Bayesian robust classification 

Model uncertainty arises when full knowledge of the feature-label distribution is 
lacking. Knowledge must come from existing scientific knowledge regarding the 
features and labels or be estimated from data. Since accurate estimation of 
distributions requires a huge amount of data, the amount increasing rapidly with 
dimension and distributional complexity, full knowledge of the feature-label 
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distribution is rare. With model uncertainty, there is an uncertainty class  of 
parameter vectors corresponding to feature-label distributions. In this setting, an 
intrinsically Bayesian robust classifier is defined by minimizing the expected 
error across the uncertainty class. Letting [] denote the error of classifier  on 
model  and recalling Eq. (7.1), an IBR classifier satisfies 
 

      E[[IBR]] = min{E[[]],   } = 











 ,)(][min dθ , (7.6) 

 
where () is the prior distribution over  and where the integral has the same 
dimensionality as the parameter vectors in . 
 We return to the classification problem of Fig. 7.3 with the supposition that  
is unknown but is known to lie in the interval [0, b]. Then the uncertainty class  
= [0, b] corresponds to an infinite number of feature-label distributions. Absent 
other knowledge of , it is assumed to be uniformly distributed over [0, b], 
meaning that it is described by the prior distribution () = 1/b if   [0, b] and 
() = 0 if   [0, b]. For each value of   [0, b], a Bayes classifier is defined 
by Eq. (7.5) and its error is found as in Fig. 7.3. Then, according to Eq. (7.6), an 
IBR classifier satisfies 
 

 E[[IBR]] = min







 
b

d
b 0

,][
1

, (7.7) 

 
where the integral is one-dimensional. 
 The minimization of Eq. (7.6) is analogous to the minimization for 
determining a structural intervention in a gene regulatory network except that, 
whereas for structural intervention as defined for the mammalian cell cycle 
network one can compute a finite number of operator costs (undesirable steady-
state probabilities) and take the least, for IBR classification there is an infinite 
number of operators (classifiers) to consider. As expressed in Eq. (7.6), and 
exemplified in Eq. (7.7), one is left with the problem of finding a minimizing 
classifier when the collection of classifiers is infinite. A formula is needed that 
produces an IBR classifier.  
 This problem is solved in [Dalton and Dougherty, 2013] under very general 
conditions. The method uses effective class-conditional distributions for the 
uncertainty class. These are defined by the expected values of the individual 
class-conditional distributions over the uncertainty class. Formally, let f(x|0; ) 
and f(x|1; ) denote the class-conditional distributions for   . Then the 
effective class-conditional distributions are defined by the expected values 
(averages) of these over the uncertainty class: 
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 f(x|0; ) = E[f(x|0; )] = 


 df )();0|(x , (7.8) 

 

 f(x|1; ) = E[f(x|1; )] = 


 df )();1|(x . (7.9) 

 
Continuing to assume that c0 = c1 = ½, an IBR classifier is found in exactly the 
same manner as a Bayes classifier, except that the effective class-conditional 
distributions are used: 
 

 IBR(x) = 







);0|();1|( if ,0

);0|();1|( if ,1

xx

xx

ff

ff
. (7.10)  

7.5  Posterior Distribution 

In addition to a prior distribution coming from existing knowledge, suppose one 
has a data sample S independently sampled from the full model. Then a posterior 
distribution is defined by *() = (|S), which is the prior distribution 
conditioned on the sample. The posterior distribution is derived using standard 
statistical techniques, although, depending on the prior distribution, it may not be 
mathematically feasible to obtain an exact expression for *() and numerical 
methods may be used to approximate it. Once the posterior distribution has been 
found, the IBR theory can be used with *() in place of (), the resulting 
operator being known as an optimal Bayesian operator. As illustrated in Fig. 7.5, 
under appropriate conditions, as the sample grows, the posterior distribution 
becomes more tightly centered about the parameter vector for the full model.  
 
 

 
 

Figure 7.5 Tightening of the posterior distribution with increasing data. 
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7.5.1  Optimal Bayesian classification  

For classification, the sample data consist of feature-label pairs and these are 
used to find the posterior distribution [Dalton and Dougherty, 2011]. Effective 
class-conditional distributions are defined by Eqs. (7.8) and (7.9) with *() in 
place of (), and an optimal Bayesian classifier (OBC) is defined by Eq. (7.10) 
[Dalton and Dougherty, 2013]. An OBC has minimum expected error relative to 
the posterior distribution *(), which contains all of our knowledge, prior 
knowledge as interpreted via the prior distribution and experimental data.  
 Owing to the growing concentration of the posterior distribution around the 
full model, as illustrated in Fig. 7.5, as the sample size grows ever larger, the 
OBC typically converges to a Bayes classifier for the full model (Fig. 7.6). While 
this is an attractive property and is common for optimal Bayesian operators 
defined via posterior distributions, its practical significance is limited because the 
basic problem is lack of data.  
 Figure 7.7 illustrates OBC behavior. There is an uncertainty class of feature-
label distributions, each possessing normal class-conditional distributions with 
equal covariance matrices. The dotted lines are level curves for the normal class-
conditional distributions corresponding to the average means and covariance 
matrices relative to a given posterior distribution. The dashed straight line is the 
decision boundary for the Bayes classifier corresponding to average mean and 
covariance parameters. The solid line is the boundary for the OBC. Note that 
every feature-label distribution in the uncertainty class and the average feature-
label distribution have linear (straight line) Bayes classifiers; however, the OBC 
has a more complex decision boundary. This results from the fact that all class-
conditional distributions in the uncertainty class are normal but the effective 
class-conditional distributions are not normal. 
 

 
 

Figure 7.6 Convergence of the OBC to the Bayes classifier. 
 

 
 

Figure 7.7 Comparison of OBC and Bayes classifier for an average model. 



114  Chapter 7 

7.5.2  Distribution-free classification 

In pattern recognition it is common to assume no prior knowledge concerning the 
feature-label distribution, so that classifier design is distribution-free. Hence, the 
subject has grown around the notion of a classification rule, which is some 
procedure applied to the sample data to construct a classifier, such as a support 
vector machine, neural network, or a host of other procedures. The particularities 
of classification rules are not of interest here. For our purposes, one need only 
recognize that a classification rule uses sample data to construct a classifier, and 
individual performance depends on the unknown feature-label distribution and 
sample size. The rules are heuristic, in the sense that their formulation is based on 
some guiding principle rather than optimization.  
 Once a classifier is designed, the salient issue is its error. The problem is that, 
given a sample, we cannot find the error of the resulting classifier because the 
feature-label distribution is not known. The problem then is to find an estimate of 
the error. In general, this can be approached in two ways.  
 If there is an abundance of sample data, then the data can be split into two 
disjoint sets: a training set used to design the classifier and test set used to 
estimate the error of the classifier. Once the classifier is designed, the test error is 
the proportion of errors it makes on the test set. This error is called the hold-out 
error owing to the fact that the test set has been held out from the training 
procedure. How good is the hold-out estimate? The obvious answer would be to 
quantify goodness by | ̂   |, where  and ̂  are the true and estimated errors, 
respectively; however, this is impossible because the true error is unknown. 
Instead, we consider how well the estimation procedure works on average. This 
performance measure is given by the root-mean-square (RMS) error, which is the 
square root of the expected value of | ̂   |2, namely, RMS = E[| ̂   |2]1/2, 
which is the square root of the mean-square error (MSE) and where the 
expectation (average) is taken with respect to the sampling procedure.  
 As it stands, the RMS cannot be found because it requires knowledge of the 
feature-label distribution. Nevertheless, it is known that, irrespective of the 
feature-label distribution, RMS  1/(2m1/2), where m is the size of the test set 
[Devroye, et al., 1996]. This is a good result since it is distribution-free and for a 
test sample of the modest size m = 100, RMS  0.05. It does not depend on 
dimension (number of features) or classifier complexity. Even though the 
accuracy of the specific estimate is not known, there is a precise bound on 
estimation performance. While the RMS bound for classification error estimation 
is encouraging, one should keep in mind that a classifier is a very simple model, 
just a binary function.  
 Because classifier error quantifies the predictive capacity of a classifier, error-
estimation accuracy is the salient epistemological issue for classification. Hence, 
the bound on the hold-out estimate is a fundamental epistemological measure.  
 Hold-out error estimation requires a sufficiently large sample so that there 
are enough data to design the classifier (a problem we will not consider) and 
enough independent data for error estimation. Based on the RMS bound, 100 test 
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points provides reasonably good error estimation. If sample data are limited, say, 
to a sample size of 100, then hold-out error estimation cannot be employed and 
the error must be estimated using the training data. Numerous methods have been 
proposed for training-data-based error estimation, each possessing different 
properties [Braga-Neto and Dougherty, 2015]. The simplest method is known as 
resubstitution, where the error estimate is the proportion of errors made by the 
designed classifier on the training data. Resubstitution is usually optimistically 
biased (often strongly) and therefore rarely used. Error-estimation methods in 
which the training data are re-sampled for design and testing within the training 
data include cross-validation and bootstrap. These tend to perform poorly on 
small samples owing to large variance and lack of regression with the true error. 
There are very few known distribution-free RMS bounds for training-data error 
estimation. For the few cases in which distribution-free RMS bounds are known, 
they are very weak and a large sample is required to obtain an acceptable bound, 
which renders the bound useless because training-data error estimation methods 
are being used precisely because the sample is too small to split into training and 
test data. In sum, the salient epistemological issue for small-sample classification 
is that quantifiable distribution-free error estimation is virtually impossible. 
 If one has distributional knowledge in the form of an uncertainty class and a 
prior distribution, then a posterior distribution can be derived using the sample 
data, in which case the error of a designed classifier can be estimated as the 
expected error over the posterior distribution. The resulting estimate is known as 
the Bayesian error estimate (BEE) [Dalton and Dougherty, 2011]. This can be 
done because the true error of the classifier can be evaluated for each model in 
the uncertainty class, after which these errors are averaged with respect to the 
posterior distribution. It can be proven that the resulting error estimate is optimal 
relative to the expected (average) RMS over the uncertainty class. It may not be 
best for all models in the uncertainty class, but it is best on average, which means 
it is best relative to all of our knowledge, prior distribution plus sample data.  
 In sum, given a prior distribution on the uncertainty class and sample data, the 
OBC is the optimal classifier and the BEE is the optimal error estimate. Absent 
prior knowledge, small-sample classification is essentially pointless owing to the 
impossibility of obtaining an error estimate whose accuracy can be quantified. 

7.6  Translational Science under Model Uncertainty 

When the uncertainty class is finite, an intrinsically Bayesian robust operator can 
be found by computing a finite number of costs, as in Eq. (7.2); however, for 
infinite uncertainty classes, some other approach must be found. In the case of 
classification, for each model in the uncertainty class the individual class-
conditional distributions are considered as characteristics of the full model that 
define an optimal operator (Bayes classifier) for that model. The methodology of 
[Dalton and Dougherty, 2013] is to construct effective characteristics and then 
prove that an IBR operator, which in this case is an IBR classifier, can be 
constructed in the same way as an individual optimal operator (Bayes classifier) 
by replacing the individual model characteristics with effective characteristics. 
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Thus, with model uncertainty we have the following IBR synthesis protocol, 
which will be illustrated in subsequent subsections: 
 

1. Construct the mathematical model. 
2. Define a class of operators. 
3. Define the basic optimization problem via a cost function. 
4. Solve the basic optimization problem via characteristics of the model. 
5. Identify the uncertainty class. 
6. Construct a prior distribution. 
7. State the IBR optimization problem. 
8. Construct the appropriate effective characteristics. 
9. Prove that the IBR optimization problem is solved by replacing the model 

characteristics by the effective characteristics.  

7.6.1  Wiener filter 

Wiener filtering involves two random signal processes, an unobserved true signal 
and an observed signal, with the aim being to apply a linear filter on the observed 
signal to estimate the true signal. For details, see Section 4.7.2 in [Dougherty, 
1999]. Here, for those with some background in filtering, we provide highlights 
without supporting theory to illustrate how the various steps for translational 
synthesis apply. The true signal and observation processes, Y(t) and X(t), 
respectively, are jointly wide-sense stationary (WSS) and possess zero means. 
The autocorrelation function for the observation process is denoted by rX() and 
the cross-correlation function between the signal and observation processes is 
denoted by rYX(). 
 A linear filter with weighting function ĝ  takes the form 
 

 )(ˆ sY  =  
T

dttXtsg )()(ˆ , (7.11) 

 
where the integral is over an observation window T. The objective is to obtain an 
estimate of the true signal that minimizes the mean-square error (MSE) at a given 
point s, which is defined as  
 

 MSE )(ˆ sY  = ]|)()(ˆ[| 2sYsYE  . (7.12) 
 
 For any WSS random process, the power spectral density of the process is 
the Fourier transform of the autocorrelation function. For the observation 
process, it is given by SX() = F[rX](), where F denotes the Fourier transform. 
The cross power spectral density is SYX() = F[rYX](), the Fourier transform of 
the cross-correlation function between the signal and observation processes. 
SX() and SYX() are characteristics of the model, and under rather general 
conditions it is well-known that the Fourier transform of the optimal weighting 
function is  
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The optimal weighting function, which defines the Wiener filter, is obtained by 
taking the inverse Fourier transform. This is the major classical result of signal 
filter theory. It applies to images by performing all operations in two dimensions. 
 Figure 7.8 illustrates Wiener filtering with a digital image process consisting 
of random grains. Parts (a), (b), and (c) of the figure show an image generated by 
the process, that image degraded by both blurring and random point noise, and 
the noisy image filtered by the Wiener filter for the random process, respectively. 
The filtering problem is made more difficult when there is both blurring and 
point noise because for blurring alone the image can be “sharpened” and for 
point noise alone it can be “smoothed.” Mixed blurring and point noise is tricky 
because sharpening makes point noise worse and smoothing makes blurring 
worse. Without a mathematical approach to the problem it would be virtually 
impossible to find a close-to-optimal weighting function.  

 

          
              (a)               (b) 

 

           

            (c)              (d) 
 

Figure 7.8 Wiener filtering of blurred and noisy image: (a) original image, (b) degraded 
image, (c) optimally filtered image, (d) IBR filtered image (adapted from [Dalton and 
Dougherty, 2014]). 
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 Notice the basic four steps of translational synthesis in the present context: 
 
1. The model consists of two jointly WSS random processes. 
2. The operator class consists of linear filters over an observation window. 
3. Optimization: minimize the MSE as defined in Eq. (7.12). 
4. The optimization problem is solved by the Fourier transform of the weighting 

function in terms of the power spectra SX() and SYX(). 

7.6.2  IBR Wiener filter 

Model uncertainty arises in Wiener filtering when either the autocorrelation or 
cross-correlation function is unknown. For   , the signal and observation 
processes are Y(s) and X(t), respectively, and the autocorrelation and cross-
correlation functions are r,X() and r,YX(), respectively. The effective power 
spectra are the Fourier transforms of the expected autocorrelation function, 
S,X() = F[E[r,X]](), and the expected cross-correlation function, S,YX() = 
F[E[r,YX]](). While it is easy to write these down abstractly, the difficulty of 
evaluating them depends on how the observation process is modeled because 
they can involve complicated integrals.  
 With model uncertainty, the optimal linear filter has to minimize the 

expected mean-square error over the uncertainty class, E[MSE )(ˆ sY ]. Under 

rather general conditions the Fourier transform of the weighting function for the 
IBR Wiener filter is given by 
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[Dalton and Dougherty, 2014]. The form of the filter is the same as when the 
model is known, except that the characteristics SX() and SYX() are replaced by 
the effective characteristics S,X()and S,YX(). 
 For the Wiener filter, the second part of the IBR synthesis protocol takes the 
following form: 
 
5. The uncertainty class is defined in terms of the uncertain parameters in the 

autocorrelation and cross-correlation functions. 
6. A prior distribution is constructed for these parameters. 
7. IBR optimization: minimize the expected MSE.  
8. The effective characteristics are the effective power spectra. 
9. Prove that the IBR optimization problem is solved by replacing the model 

characteristics by the effective characteristics. 
 
The fundamental part of the protocol is the last step: find conditions under which 
the solution to the IBR optimization is solved by replacing the characteristics in 
the ordinary solution with effective characteristics—and prove it. 
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 A suboptimal Bayesian approach to filtering under model uncertainty was 
first taken in the case of nonlinear filtering of digital binary images [Grigoryan 
and Dougherty, 1999] and then for linear filtering of random signals as 
considered here [Grigoryan and Dougherty, 2001]. These solutions were 
suboptimal because they restricted filter selection to a filter that is optimal for at 
least one model in the uncertainty class. An intrinsically Bayesian robust linear 
filter, where there is no such constraint, was solved more recently. Interestingly, 
full optimization via the IBR paradigm is mathematically less complex than the 
suboptimal solution—once conditions are found so that ordinary characteristics 
can be replaced by effective characteristics. As is often the case in mathematics, 
framing a problem “correctly” makes the solution transparent. 

7.6.3  A more general synthesis protocol  

There is a long history of robust Wiener filtering under model uncertainty. The 
problem was first treated in the form of minimax optimization, where the aim was 
to find a filter having best worst-case performance: if possible, find a linear filter 
that has the minimum maximum MSE over all models in the uncertainty class 
[Kuznetsov, 1976; Kassam and Lim, 1977; Poor, 1980]. Minimax robustness is 
conservative. The drawback is that it can be overly conservative, especially if the 
uncertainty class is large. From a probabilistic perspective, a minimax robust 
filter can be overly influenced by outlier models because it does not take into 
account a prior (or posterior) distribution on the uncertainty class. To place 
minimax robust filtering into a translational synthesis framework, step 6 of the 
IBR synthesis protocol is omitted and the optimization of step 7 becomes 
minimization of the maximum MSE instead of the expected MSE.  
 Considering translational synthesis from a general perspective, a cost 
function is introduced based on minimization of the original full-model cost 
function relative to the uncertainty. In this view, IBR optimization has cost 
function C() = E[C()] and minimax robust optimization has cost function 
C() = max{C()}. From a completely general perspective, steps 6 through 9 
of the IBR synthesis protocol reduce to 
 
6. Choose a cost function on the uncertainty class. 
7. Optimization: minimize the cost function over the uncertainty class. 
8. Find conditions under which the optimization problem can be solved. 
 
 The IBR synthesis protocol is a special case of this general synthesis 
protocol. As stated, the IBR protocol assumes that IBR optimization will take the 
form of effective characteristics. While this has been the case thus far, it may turn 
out that for some synthesis problems an IBR operator will not be defined in terms 
of effective characteristics. Then IBR synthesis will fall into the more general 
paradigm with cost function C() = E[C()]. 
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7.7  Objective Cost of Uncertainty 

The IBR principle is to find an operator (classifier, filter, structural intervention, 
etc.) that, based on a cost function, is optimal over an uncertainty class relative to 
a prior (or posterior) distribution reflecting the state of our knowledge regarding 
the underlying physical processes. While an IBR operator is optimal over the 
uncertainty class , it is likely to be suboptimal relative to the full model. This 
loss of performance is the cost of uncertainty. 
 To quantify this cost, for  , let C be the cost function applied on model 
 and let  be an optimal operator for . Then C()  C() for any operator 
. Let IBR be an IBR operator for . Owing to the optimality of the IBR 
operator over the uncertainty class, E[C(IBR)]  E[C()] for any operator . 
An IBR operator is optimal over ; however, there is a cost to this choice 
relative to applying the optimal operator for  on  because C()  C(IBR) for 
all   .  
 For any   , the objective cost of uncertainty (OCU) relative to  is the 
cost differential between an IBR operator and an optimal operator for  applied 
on : 
 
 OCU() = C(IBR)  C(). (7.15) 

 
The cost of uncertainty relative to the full model is OCU(full), where full is the 
value of  for the full model; however, since the full model is unknown, this 
quantity cannot be calculated. Thus, as the basic quantification of uncertainty we 
use the mean objective cost of uncertainty (MOCU): 

 
 MOCU() = E[OCU()] = E[C(IBR)  C()] (7.16) 
 
[Yoon, et al., 2013]. If there is no uncertainty, then the uncertainty class contains 
only one model and MOCU() = 0; however, the converse is not true.  
 From a scientific perspective, one might prefer to use the entropy of the prior 
(or posterior) distribution because it measures uncertainty with respect to the 
model; however, entropy does not focus on the translational objective. There may 
be large entropy but with most (or all) of the uncertainty irrelevant to the 
objective. For instance, in controlling a network there may be much uncertainty 
in the overall network but a high degree of certainty regarding the mechanisms 
involved in the control. In this case, the entropy might be large but the MOCU be 
small, which is what matters from a translational perspective. Because the 
MOCU is intrinsic to the translational system, given our knowledge and objective 
(cost function), it quantifies the uncertainty in our knowledge with respect to our 
objective and therefore is an epistemological parameter. 
 Knowledge can be increased by generating data to produce a new posterior 
distribution. If there is a collection of possible experiments that can supply 
information relating to the unknown parameters, which experiment should be 
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performed first? (Here we ignore time and cost but these can be factored in if 
desired.) Since the MOCU quantifies the average lack of optimality owing to 
uncertainty, a reasonable course of action is to choose an experiment from the 
space of possible experiments that yields the minimum expected MOCU given 
the experiment [Dehghannasiri, et al., 2015]. This requires, for each possible 
experiment, computing the MOCU for every possible outcome of the experiment, 
averaging these MOCU values, and then taking the minimum of these averages 
over all possible experiments. The result is optimal experimental design relative 
to the objective uncertainty. This can be done in an iterative fashion, at each 
stage choosing an optimal experiment, running the experiment, updating to a new 
posterior distribution, re-computing the MOCUs, determining an optimal 
experiment, and so on.  
 Figure 7.9 illustrates the benefit of optimal experimental design in the 
context of IBR structural intervention (Section 7.3.1). Five parameters in a 
mammalian cell cycle network are randomly selected to be unknown; two 
sequences of five experiments are simulated, one in which the experiments are 
randomly chosen and another in which they are chosen via an optimized 
iteration; at each step of each sequence the total undesirable steady-state 
probability is computed for the IBR structural intervention; this procedure is 
repeated a number of times; and the average undesirable probabilities are 
computed and plotted on the vertical axis. The advantage of optimal experimental 
design is clear: on average, the objective knowledge gained from the first two 
optimally chosen experiments is equivalent to that gained via four randomly 
chosen experiments.  
 

 
 

Figure 7.9 Random versus optimal experimental design (adapted from [Dehghannasiri et 
al., 2015]). 
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7.8  Small-Data Epistemology 

The current crisis in scientific epistemology results from a severe lack of data in 
relation to the complexity of the systems that people wish to model. Although 
“Big Data” is the buzzword, the profound problem for science and engineering is 
small data. There is insufficient data for validation and insufficient data for 
estimating model parameters. In the present chapter we have taken the view that 
insufficient data for estimation can be framed in terms of uncertainty classes with 
prior knowledge represented via a prior distribution over the uncertainty class 
and translational operator design optimized relative to the posterior distribution. 
 What kind of knowledge is this prior knowledge? Consider a numerical (not 
a vector) model parameter  and suppose, based on an accepted scientific theory, 
it is deduced that a    b. For instance in a multi-dimensional normal model,  
might represent the correlation between two features and in the physical system 
from which the features are constructed it may be that 0    0.5. Absent more 
knowledge concerning , we have taken the view that a uniform distribution over 
the interval [a, b] is a suitable form of prior knowledge.  is what it is, and that 
we do not know. True, we know that it is between a and b, but it is not uniformly 
distributed over [a, b]. Saying that  possesses a uniform prior distribution over 
[a, b] is not a statement pertaining to the actual value of .  
 Essentially, a prior distribution is a pragmatic construct based on belief as to 
where a parameter is located. It is clearly advantageous to have scientific 
knowledge that constrains the parameter and thereby constrains its prior 
distribution. Since a prior is a construct, not validated scientific knowledge, the 
more it is constrained by scientific knowledge and the more experience one has 
with the physical system, the more confident one can be that the prior distribution 
is concentrated around the full model. If one has confidence, then a tight prior is 
preferable because tighter priors require less data for good performance; 
however, there is risk because a prior distribution whose mass is concentrated 
away from the true parameter will perform worse than one that is uniform. These 
issues have long been discussed in the Bayesian literature.  
 In 1946, Harold Jeffreys proposed a uniform prior, referred to as Jeffrey’s 
prior [Jeffreys, 1946]. Objective-based methods were subsequently proposed, a 
few early ones being [Kashyap, 1971], [Bernardo, 1979], and [Rissanen, 1983]. 
The principle of maximum entropy can be seen as providing a method of 
constructing least-informative priors [Jaynes, 1957, 1968]. These methods are 
general and do not target any domain-specific type of prior information. More 
targeted approaches can be constructed that integrate scientific knowledge 
specific to the problem at hand. For instance, in relation to the pathway 
knowledge we have utilized in the p53 and mammalian cell cycle networks, one 
can construct a prior distribution quantifying and integrating prior knowledge in 
the form of signaling pathways [Esfahani and Dougherty, 2014]. In 1968, E. T. 
Jaynes remarked, “Bayesian methods, for all their advantages, will not be entirely 
satisfactory until we face the problem of finding the prior probability squarely.” 
[Jaynes, 1968] The problem remains. 
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 Yet we must remember that for translational science the prior distribution is a 
construct to facilitate operator design. Given a cost function, an IBR operator is 
optimal on average relative to the prior (or posterior) distribution but our real 
interest is an operator that is optimal relative to full, the value of  for the full 
model. Only rarely will an IBR operator be optimal for full. Can an IBR operator 
somehow be “validated” on the model corresponding to full? Strictly speaking, 
the question makes no sense if it means to show that an IBR operator is optimal 
for full; indeed, we expect it not to be optimal for full, which we do not know. 
An IBR operator has no direct connection to the full model. It is only related via 
the prior (or posterior) distribution.  
 Intrinsically Bayesian robust operators cannot cure the small-data 
epistemological problem for the complex systems that modern engineering 
wishes to study and control. What they can do is place operator design under 
uncertainty in a rigorous optimization framework grounded in an infrastructure 
utilizing prior knowledge and data, while providing uncertainty quantification 
relative to a translational objective at the level of the underlying processes. The 
deep problem is that there appears to be no way to objectively transform existing 
knowledge into a prior distribution. Although there are ways to construct a 
mathematically rigorous transformation, these ultimately involve subjective 
considerations.  
 Within the bounds set by existing scientific knowledge, the formalization of 
uncertainty, which is the prior distribution, must be constructed via subjectively 
imposed criteria. This is similar to the basic epistemology of prediction, since in 
the latter, even though the model and experimental protocol are inter-subjective, 
the decision whether to accept or reject a theory depends on subjective criteria; 
nevertheless, with model uncertainty the situation is more unsettling because it is 
not even clear that the notion of predictive validation can be tied to observations. 
If, however, we take the perspective that when application is primary and doing 
nothing is, in fact, a decision, then at least if one follows a formal translational 
science optimization protocol the overall procedure will be inter-subjective even 
though there may be disagreement regarding the criteria imposed for construction 
of the prior distribution. Subsequent to that construction, the prior distribution 
and cost function jointly form a hypothesis from which an optimal operator can 
be deduced. 
 
All men are mortal. 
Socrates is a man. 
Therefore, Socrates is mortal. 
 
But are all men mortal? 




