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Preface

Whereas modern science concerns the mathematical modeling of phenomena,
essentially a passive activity, modern engineering involves determining
operations to actively alter phenomena to effect desired changes of behavior.
It begins with a scientific (mathematical) model and applies mathematical
methods to derive a suitable intervention for the given objective. Since one
would prefer the best possible intervention, engineering inevitably becomes
optimization and, since all but very simple systems must account for
randomness, modern engineering might be defined as the study of optimal
operators on random processes. The seminal work in the birth of modern
engineering is the Wiener—Kolmogorov theory of optimal linear filtering on
stochastic processes developed in the 1930s. As Newton’s laws constitute the
gateway into modern science, the Wiener—Kolmogorov theory is the gateway
into modern engineering.

The design of optimal operators takes different forms depending on the
random process constituting the scientific model and the operator class of
interest. The operators might be linear filters, morphological filters,
controllers, classifiers, or cluster operators, each having numerous domains
of application. The underlying random process might be a random signal/
image for filtering, a Markov process for control, a feature-label distribution
for classification, or a random point set for clustering. In all cases, operator
class and random process must be united in a criterion (cost function) that
characterizes the operational objective and, relative to the criterion, an
optimal operator found. For the classical Wiener filter, the model is a pair of
jointly distributed wide-sense stationary random signals, the objective is to
estimate a desired signal from an observed signal via a linear filter, and the
cost function to be minimized is the mean-square error between the filtered
observation and the desired signal.

Besides the mathematical and computational issues that arise with
classical operator optimization, especially with nonlinear operators, nonsta-
tionary processes, and high dimensions, a more profound issue is uncertainty
in the scientific model. For instance, a long recognized problem with linear
filtering is incomplete knowledge regarding the covariance functions (or
power spectra in the case of Wiener filtering). Not only must optimization be
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xii Preface

relative to the original cost function, be it mean-square error in linear filtering
or classification/clustering error in pattern recognition, optimization must also
take into account uncertainty in the underlying random process. Optimization
is no longer relative to a single random process but instead relative to an
uncertainty class of random processes. This means the postulation of a new
cost function integrating the original cost function with the model uncertainty.
If there is a prior distribution (or posterior distribution if data are employed)
governing likelihood in the uncertainty class, then one can choose an operator
from some class of operators that minimizes the expected cost over the
uncertainty class. In the absence of a prior distribution, one might take a
minimax approach and choose an operator that minimizes the maximum cost
over the uncertainty class.

A prior (or posterior) distribution places the problem in a Bayesian
framework. A critical point, and one that will be emphasized in the text, is
that the prior distribution is not on the parameters of the operator model, but
on the unknown parameters of the scientific model. This is natural. If the
model were known with certainty, then one would optimize with respect to the
known model; if the model is uncertain, then the optimization is naturally
extended to include model uncertainty and the prior distribution should be on
that uncertainty. For instance, in the case of linear filtering the covariance
function might be uncertain, meaning that some of its parameters are
unknown, in which case the prior distribution characterizes uncertainty
relative to the unknown parameters.

A basic principle embodied in the book is to express an optimal operator
under the joint probability space formed from the joint internal and external
uncertainty in the same form as an optimal operator for a known model by
replacing the mathematical structures characterizing the standard optimal
operator with corresponding structures, called effective structures, that
incorporate model uncertainty. For instance, in Wiener filtering the power
spectra are replaced by effective power spectra, in Kalman filtering the
Kalman gain matrix is replaced by the effective Kalman gain matrix, and in
classification the class-conditional distributions are replaced by effective class-
conditional distributions.

The first three chapters of the book review those aspects of random
processes that are necessary for developing optimal operators under
uncertainty. Chapter 1 covers random functions, including the moments
and the calculus of random functions. Chapter 2 treats canonical expansions
for random functions, a topic often left uncovered in basic courses on
stochastic processes. It treats discrete expansions within the context of Hilbert
space theory for random functions, in particular, the equivalence of canonical
expansions of the random function and the covariance function entailed by
Parseval’s identity. It then goes on to treat integral canonical expansions in
the framework of generalized functions. Chapter 3 covers the basics of
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classical optimal filtering: optimal finite-observation linear filtering, optimal
infinite-observation linear filtering via the Wiener—Hopf integral equation,
Wiener filtering for wide-stationary processes, recursive (Kalman) filtering via
direct-sum decomposition of the evolving observation space, and optimal
morphological filtering via granulometric bandpass filters.

For the most part, although not entirely, the first three chapters are a
compression of Chapters 2 through 4 of my book Random Processes for Image
and Signal Processing, aimed directly at providing a tight background for
optimal signal processing under uncertainty, the goal being to make a one-
semester course for Ph.D. students. Indeed, the book has been developed from
precisely such a course, attended by Ph.D. students, post-doctoral students,
and faculty.

Chapter 4 covers optimal robust filtering. The first section lays out the
basic definitions for intrinsically Bayesian robust (IBR) filtering, the
fundamental principle being filter optimization with respect to both internal
model stochasticity and external model uncertainty, the latter characterized
by a prior distribution over an uncertainty class of random-process models.
The first section introduces the concepts of effective process and effective
characteristic, whereby the structure of the classical solutions is retained with
characteristics such as the power spectra and the Wiener—Hopf equation
generalized to effective power spectra and the effective Wiener—Hopf
equation, which are relative to the uncertainty class. Section 4.2 covers
optimal Bayesian filters, which are analogous to IBR filters except that new
observations are employed to update the prior distribution to a posterior
distribution. Section 4.3 treats model-constrained Bayesian robust (MCBR)
filters, for which optimization is restricted to filters that are optimal for some
model in the uncertainty class. In Section 4.4 the term “robustness” is defined
quantitatively via the loss of performance and is characterized for linear filters
in the context of integral canonical expansions, where random process
representation is now parameterized via the uncertainty. Section 4.5 reviews
classical minimax filtering and applies it to minimax morphological filtering.
Sections 4.6 and 4.7 extend the classical Kalman (discrete time) and Kalman—
Bucy (continuous time) recursive predictors and filters to the IBR framework,
where classical concepts such as the Kalman gain matrix get extended to their
effective counterparts (effective Kalman gain matrix).

When there is model uncertainty, a salient issue is the design of
experiments to reduce uncertainty; in particular, which unknown parameter
should be determined to optimally reduce uncertainty. To this end, Section 5.1
introduces the mean objective cost of uncertainty (MOCU), which is the
expected cost increase relative to the objective resulting from the uncertainty,
expectation being taken with respect to the prior (posterior) distribution.
Whereas entropy is a global measure of uncertainty not related to any
particular operational objective, MOCU is based directly on the engineering
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objective. Section 5.2 analyzes optimal MOCU-based experimental design for
IBR linear filtering. Section 5.3 revisits Karhunen-Loéve optimal compres-
sion when there is model uncertainty, and therefore uncertainty as to the
Karhunen—-Loéve expansion. The IBR compression is found and optimal
experimental design is analyzed relative to unknown elements of the
covariance matrix. Section 5.4 discusses optimal intervention in regulatory
systems modeled by Markov chains when the transition probability matrix is
uncertain and derives the experiment that optimally reduces model
uncertainty relative to the objective of minimizing undesirable steady-state
mass. The solution is computationally troublesome, and the next section
discusses complexity reduction. Section 5.6 examines sequential experimental
design, both greedy and dynamic-programming approaches, and compares
MOCU-based and entropy-based sequential design. To this point, the chapter
assumes that parameters can be determined exactly. Section 5.7 addresses the
issue of inexact measurements owing to either experimental error or the use of
surrogate measurements in place of the actually desired measurements, which
are practically unattainable. The chapter closes with a section on a genera-
lized notion of MOCU-based experimental design, a particular case being the
knowledge gradient.

The optimal Bayesian filter paradigm was first introduced in classification
with the design of optimal Bayesian classifiers (OBCs). Classically (Section
6.1), if the feature-label distribution is known, then an optimal classifier, one
that minimizes classification error, is found as the Bayes classifier. As
discussed in Section 6.2, when there are unknown parameters in the feature-
label distribution, then there is an uncertainty class of feature-label
distributions, and an optimal Bayesian classifier minimizes the expected error
across the uncertainty class relative to the posterior distribution derived from
the prior and the sample data. In order to compare optimal Bayesian
classification with classical methods, Section 6.3 reviews the methodology of
classification rules based solely on data. Section 6.4 derives the OBC in the
discrete and Gaussian models. Section 6.5 examines consistency, that is,
convergence of the OBC as the sample size goes to infinity. Rather than
sample randomly or separately (randomly given the class sizes), sampling can
be done in a nonrandom fashion by iteratively deciding which class to sample
from prior to the selection of each point or by deciding which feature vector to
observe. Optimal sequential sampling in these paradigms is discussed in
Section 6.7 using MOCU-based experimental design. Section 6.8 provides a
general framework for constructing prior distributions via optimization of an
objective function subject to knowledge-based constraints. Epistemological
issues regarding classification are briefly discussed in Section 6.9.

Clustering shares some commonality with classification in that both
involve operations on points, classification on single points and clustering on
point sets, and both have performances measured via a natural definition of
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error, classification error for the former and cluster (partition) error for the
latter. But they also differ fundamentally in that the underlying random
process for classification is a feature-label distribution, and for clustering it is
a random point set. Section 7.1 describes some classical clustering algorithms.
Section 7.2 discusses the probabilistic foundation of clustering and optimal
clustering (Bayes cluster operator) when the underlying random point set is
known. Section 7.3 describes a special class of random point sets that can be
used for modeling in practical situations. Finally, Section 7.4 discusses IBR
clustering, which involves optimization over both the random set and its
uncertainty when the random point set is unknown and belongs to an
uncertainty class of random point sets. Whereas with linear and morphologi-
cal filtering the structure of the IBR or optimal Bayesian filter essentially
results from replacing the original characteristics with effective characteristics,
optimal clustering cannot be so conveniently represented. Thus, the entire
random point process must be replaced by an effective random point process.

Let me close this preface by noting that this book views science and
engineering teleologically: a system within Nature is modeled for a purpose;
an operator is designed for a purpose; and an optimal operator is obtained
relative to a cost function quantifying the achievement of that purpose. Right
at the outset, with model formation, purpose plays a critical role. As stated by
Erwin Schrodinger (Schrodinger, 1957), “A selection has been made on which
the present structure of science is built. That selection must have been
influenced by circumstances that are other than purely scientific.... The
origin of science [is] without any doubt the very anthropomorphic necessity of
man’s struggle for life.” Norbert Wiener, whose thinking is the genesis behind
this book, states (Rosenblueth and Wiener, 1945) this fundamental insight
from the engineering perspective: “The intention and the result of a scientific
inquiry is to obtain an understanding and a control of some part of the
universe.” It is not serendipity that leads us inexorably from optimal operator
representation to optimal experimental design. This move, too, is teleological,
as Wiener makes perfectly clear (Rosenblueth and Wiener, 1945): “An
experiment is a question. A precise answer is seldom obtained if the question is
not precise; indeed, foolish answers — i.e., inconsistent, discrepant or
irrelevant experimental results — are usually indicative of a foolish question.”
Only in the context of optimization can one know the most relevant questions
to ask Nature.

Edward R. Dougherty
College Station, Texas
June 2018
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