ADVANCES IN Sampling Theory and Techniques

ADVANCES IN Sampling Theory and Techniques

Leonid P. Yaroslavsky

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Names: Yaroslavsky, L. P. (Leonid Pinkhusovich), author.

Title: Advances in sampling theory and techniques / L. Yaroslavsky.

Description: Bellingham, Washington : SPIE, [2020] | Includes bibliographical references and index.

Identifiers: LCCN 2019042348 | ISBN 9781510633834 (paperback) | ISBN 9781510633841 (pdf) | ISBN 9781510633858 (epub) | ISBN 9781510633865 (kindle edition)

Subjects: LCSH: Signal processing–Digital techniques–Mathematics. | Image processing–Digital techniques–Mathematics. | Fourier transformations.

Classification: LCC TK5102.9 .I225 2020 | DDC 621.382/20151952–dc23 LC record available at https://lccn.loc.gov/2019042348

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. Last updated 5 March 2020 For updates to this book, visit http://spie.org and type "PM315" in the search field. Cover image courtesy of udi Steinwell.

Contents

Pr	eface		ix	
1	Intro	duction	1	
	1.1 1.2	A Historical Perspective of Sampling: From Ancient Mosaics to Computational Imaging Book Overview	1 5	
Pa	rt I: S	ignal Sampling	9	
2	Sam	pling Theorems	11	
	2.1 2.2	Kotelnikov–Shannon Sampling Theorem: Sampling Band-Limited 1D Signals Sampling 1D Band-Pass Signals	11 14	
	2.3	Sampling Band-Limited 2D Signals; Optimal Regular Sampling Lattices	16	
	2.4	Sampling Real Signals; Signal Reconstruction Distortions due to Spectral Aliasing	17	
	2.5	The Sampling Theorem in a Realistic Reformulation	21	
	2.6	Image Sampling with a Minimal Sampling Rate by Means of Image Sub-band Decomposition	29	
	2.7	The Discrete Sampling Theorem and Its Generalization to Continuous Signals	31	
		2.7.1 Theorem formulation	31	
		2.7.2 Discrete sampling theorem formulations for specific transforms	33	
	2.8	2.7.3 The general sampling theorem Exercises	39 39	
3	Com	pressed Sensing Demystified	41	
	3.1 3.2	Redundancy of Regular Image Sampling and Image Spectra Sparsity Compressed Sensing: Why and How It Is Possible to Precisely	41	
	3.3	Reconstruct Signals Sampled with Aliasing Compressed Sensing and the Problem of Minimizing the Signal	43	
	3.4	Sampling Rate Exercise	47 49	

4	Imag	e Samp	oling and Reconstruction with Sampling Rates Close to the	
	Theo	oretical	Minimum	51
	4.1	The A	SBSR Method of Image Sampling and Reconstruction	51
	4.2	Experi	mental Verification of the Method	56
	4.3	Some	Practical Issues	62
	4.4		Possible Applications of the ASBSR Method of Image ing and Reconstruction	64
		4.4.1	Image super-resolution from multiple chaotically sampled video frames	64
		4.4.2	Image reconstruction from their sparsely sampled or decimated projections	65
		4.4.3	Image reconstruction from sparsely sampled Fourier spectra	67
	4.5	Exerci	ses	67
5	Sign	al and I	mage Resampling, and Building Their Continuous Models	71
	5.1	Signal/ Interpo	/Image Resampling as an Interpolation Problem; Convolutional	71
	5.2	•	te Sinc Interpolation: A Gold Standard for Signal Resampling	72
	5.3		Igorithms of Discrete Sinc Interpolation and Their Applications	77
	0.0	5.3.1 5.3.2	Signal sub-sampling with DFT or DCT spectral zero-padding Signal sub-sampling (zooming-in) by means of DFT- and	77
			DCT-based perfect fractional shift algorithms	81
		5.3.3	Quasi-continuous signal spectral and correlational analysis using the perfect fractional shift algorithm	84
		5.3.4	Fast image rotation using the fractional shift algorithm	88
	5.4		Signal and image resampling using scaled and rotated DFTs te Sinc Interpolation versus Other Interpolation Methods:	89
			mance Comparison	92
	5.5	Exerci	ses	96
6	Disc	rete Sin	c Interpolation in Other Applications and Implementations	97
	6.1	Preciso 6.1.1	e Numerical Differentiation and Integration of Sampled Signals Perfect digital differentiator and integrator	97 97
		6.1.2	Conventional numerical differentiation and integration algorithms versus perfect DFT/DCT versions: performance	
	0.0		comparison	100
	6.2		("Elastic") Image Resampling: Sliding-Window Discrete Sinc	100
	6.0	•	Dation Algorithms	106 108
	6.3	6.3.1	Data Resampling for Image Reconstruction from Projections	108
		0.3.1	Discrete Radon transform and filtered back-projection method for image reconstruction	108
		6.3.2	Direct Fourier method of image reconstruction	108
		6.3.3	Image reconstruction from fan-beam projections	110
	6.4	Exerci	-	112
	÷.,			

Properties of Sampled Signals1157.1The Discrete Uncertainty Principle1157.2Sinc-lets: Sharply-Band-Limited Basis Functions with Sharply Limited Support1177.3Exercises121Part II: Discrete Representation of Signal Transformations1258Basic Principles of Discrete Representation of Signal Transformations1279Discrete Representation of the Convolution Integral1299.1Discrete Convolution1299.2Point Spread Functions and Frequency Responses of Digital Filters1309.3Treatment of Signal Borders in Digital Convolution13510Discrete Representation of the Fourier Integral Transform13910.11D Discrete Fourier Transforms13910.22D Discrete Fourier Transforms13910.3Discrete Cosine Transform14610.4Boundary-Effect-Free Signal Convolution in the DCT Domain15110.5DFT and Discrete Frequency Responses of Digital Filters15510.6Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function159A1.11D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2Discrete Fourier Transforms and the Discrete Sinc Function169A2.1Invertibi	7	Тро Г	Discrete Uncertainty Principle, Sinc-lets, and Other Peculiar			
7.1 The Discrete Uncertainty Principle 115 7.2 Sinc-lets: Sharply-Band-Limited Basis Functions with Sharply Limited Support 117 7.3 Exercises 121 Part II: Discrete Representation of Signal Transformations 125 8 Basic Principles of Discrete Representation of Signal Transformations 127 9 Discrete Representation of the Convolution Integral 129 9.1 Discrete Convolution 129 9.2 Point Spread Functions and Frequency Responses of Digital Filters 130 9.3 Treatment of Signal Borders in Digital Convolution 135 10 Discrete Representation of the Fourier Integral Transform 139 10.1 1D Discrete Fourier Transforms 139 10.2 2D Discrete Fourier Transforms 144 10.3 Discrete Cosine Transform 146 10.4 Boundary-Effect-Free Signal Convolution in the DCT Domain 151 10.5 DFT and Discrete Frequency Responses of Digital Filters 155 10.6 Exercises 157 Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function 151 A1.1 1D Fourier Series	'	• •				
7.2 Sinc-lets: Sharply-Band-Limited Basis Functions with Sharply Limited Support 117 7.3 Exercises 121 Part II: Discrete Representation of Signal Transformations 125 8 Basic Principles of Discrete Representation of Signal Transformations 127 9 Discrete Representation of the Convolution Integral 129 9.1 Discrete Convolution 129 9.2 Point Spread Functions and Frequency Responses of Digital Filters 130 9.3 Treatment of Signal Borders in Digital Convolution 135 10 Discrete Representation of the Fourier Integral Transform 139 10.1 1D Discrete Fourier Transforms 139 10.2 2D Discrete Fourier Transform 144 10.3 Discrete Cosine Transform 144 10.4 Boundary-Effect-Free Signal Convolution in the DCT Domain 151 10.5 DFT and Discrete Frequency Responses of Digital Filters 155 10.6 Exercises 157 Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function 159 A1.1 1D Fourier Series 160 A1.3 1D Integral Fourier Transform		-				
Limited Support1177.3Exercises121Part II: Discrete Representation of Signal Transformations1258Basic Principles of Discrete Representation of Signal Transformations1279Discrete Representation of the Convolution Integral1299.1Discrete Convolution1299.2Point Spread Functions and Frequency Responses of Digital Filters1309.3Treatment of Signal Borders in Digital Convolution13510Discrete Representation of the Fourier Integral Transform13910.11D Discrete Fourier Transforms14610.22D Discrete Fourier Transforms14610.4Boundary-Effect-Free Signal Convolution in the DCT Domain15110.5DFT and Discrete Frequency Responses of Digital Filters15510.6Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function159A1.11D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poiscon Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5<			• •	110		
7.3Exercises121Part II: Discrete Representation of Signal Transformations1258Basic Principles of Discrete Representation of Signal Transformations1279Discrete Representation of the Convolution Integral1299.1Discrete Convolution1299.2Point Spread Functions and Frequency Responses of Digital Filters1309.3Treatment of Signal Borders in Digital Convolution13910.11D Discrete Fourier Transforms13910.22D Discrete Fourier Transforms13910.22D Discrete Fourier Transforms14410.3Discrete Cosine Transform14610.4Boundary-Effect-Free Signal Convolution in the DCT Domain15110.5DFT and Discrete Frequency Responses of Digital Filters15510.6Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function169A1.11D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.1Invertibility of Discrete Fourier Tr				117		
8 Basic Principles of Discrete Representation of Signal Transformations 127 9 Discrete Representation of the Convolution Integral 129 9.1 Discrete Convolution 129 9.2 Point Spread Functions and Frequency Responses of Digital Filters 130 9.3 Treatment of Signal Borders in Digital Convolution 135 10 Discrete Representation of the Fourier Integral Transform 139 10.1 1D Discrete Fourier Transforms 139 10.2 2D Discrete Fourier Transforms 144 10.3 Discrete Cosine Transform 146 10.4 Boundary-Effect-Free Signal Convolution in the DCT Domain 151 10.5 DFT and Discrete Frequency Responses of Digital Filters 155 10.6 Exercises 157 Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function 159 A1.1 1D Fourier Series 160 A1.3 1D Integral Fourier Transform 161 A1.4 2D Integral Fourier Transform 163 A1.5 Delta Function, Sinc Function, and the Ideal Low-Pass Filter 165 A1.6 Poisson Summation Formula 1		7.3		121		
9 Discrete Representation of the Convolution Integral 129 9.1 Discrete Convolution 129 9.2 Point Spread Functions and Frequency Responses of Digital Filters 130 9.3 Treatment of Signal Borders in Digital Convolution 135 10 Discrete Representation of the Fourier Integral Transform 139 10.1 1D Discrete Fourier Transforms 139 10.2 2D Discrete Fourier Transforms 144 10.3 Discrete Cosine Transform 146 10.4 Boundary-Effect-Free Signal Convolution in the DCT Domain 151 10.5 DFT and Discrete Frequency Responses of Digital Filters 155 10.6 Exercises 157 Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function 159 A1.1 1D Fourier Series 160 A1.3 1D Integral Fourier Transform 161 A1.4 2D Integral Fourier Transform 163 A1.5 Delta Function, Sinc Function, and the Ideal Low-Pass Filter 165 A1.6 Poisson Summation Formula 167 A1.7 Discrete Fourier Transforms and 167 A1.6	Ра	rt II: D	iscrete Representation of Signal Transformations	125		
9.1 Discrete Convolution 129 9.2 Point Spread Functions and Frequency Responses of Digital Filters 130 9.3 Treatment of Signal Borders in Digital Convolution 135 10 Discrete Representation of the Fourier Integral Transform 139 10.1 1D Discrete Fourier Transforms 139 10.2 2D Discrete Fourier Transforms 144 10.3 Discrete Cosine Transform 146 10.4 Boundary-Effect-Free Signal Convolution in the DCT Domain 151 10.5 DFT and Discrete Frequency Responses of Digital Filters 155 10.6 Exercises 157 Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function 159 A1.1 1D Fourier Series 160 A1.2 2D Fourier Transform 161 A1.4 2D Integral Fourier Transform 163 A1.5 Delta Function, Sinc Function, and the Ideal Low-Pass Filter 165 A1.6 Poisson Summation Formula 167 Appendix 2 Discrete Fourier Transforms and Their Properties 169 A2.1 Invertibility of Discrete Fourier Transforms and 167 <td< th=""><th>8</th><th>Basic</th><th>Principles of Discrete Representation of Signal Transformations</th><th>127</th></td<>	8	Basic	Principles of Discrete Representation of Signal Transformations	127		
9.2Point Spread Functions and Frequency Responses of Digital Filters 9.31309.3Treatment of Signal Borders in Digital Convolution13510Discrete Representation of the Fourier Integral Transform13910.11D Discrete Fourier Transforms13910.22D Discrete Fourier Transforms14410.3Discrete Cosine Transform14610.4Boundary-Effect-Free Signal Convolution in the DCT Domain15110.5DFT and Discrete Frequency Responses of Digital Filters15510.6Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function159A1.11D Fourier Series160A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173	9	Discrete Representation of the Convolution Integral				
9.3Treatment of Signal Borders in Digital Convolution13510Discrete Representation of the Fourier Integral Transform13910.11D Discrete Fourier Transforms13910.22D Discrete Fourier Transforms14410.3Discrete Cosine Transform14610.4Boundary-Effect-Free Signal Convolution in the DCT Domain15110.5DFT and Discrete Frequency Responses of Digital Filters15510.6Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function159A1.11D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173		9.1	Discrete Convolution	129		
10.11D Discrete Fourier Transforms13910.22D Discrete Fourier Transforms14410.3Discrete Cosine Transform14610.4Boundary-Effect-Free Signal Convolution in the DCT Domain15110.5DFT and Discrete Frequency Responses of Digital Filters15510.6Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function159A1.11D Fourier Series159A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173						
10.22D Discrete Fourier Transforms14410.3Discrete Cosine Transform14610.4Boundary-Effect-Free Signal Convolution in the DCT Domain15110.5DFT and Discrete Frequency Responses of Digital Filters15510.6Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta FunctionA1.11D Fourier Series159A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem173A2.5Convolution Theorem173	10	Discr	ete Representation of the Fourier Integral Transform	139		
10.3Discrete Cosine Transform14610.4Boundary-Effect-Free Signal Convolution in the DCT Domain15110.5DFT and Discrete Frequency Responses of Digital Filters15510.6Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta FunctionA1.11D Fourier Series159A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem173A2.5Convolution Theorem173		10.1	1D Discrete Fourier Transforms	139		
10.4Boundary-Effect-Free Signal Convolution in the DCT Domain15110.5DFT and Discrete Frequency Responses of Digital Filters15510.6Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function159A1.11D Fourier Series159A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173		10.2	2D Discrete Fourier Transforms	144		
10.5 DFT and Discrete Frequency Responses of Digital Filters15510.6 Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function159A1.11D Fourier Series160A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173		10.3	Discrete Cosine Transform	146		
10.6 Exercises157Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function159A1.11D Fourier Series159A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem173A2.5Convolution Theorem173		10.4	Boundary-Effect-Free Signal Convolution in the DCT Domain	151		
Appendix 1 Fourier Series, Integral Fourier Transform, and Delta Function159A1.11D Fourier Series159A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem173		10.5	DFT and Discrete Frequency Responses of Digital Filters	155		
A1.11D Fourier Series159A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem173A2.5Convolution Theorem173		10.6	Exercises	157		
A1.22D Fourier Series160A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem173A2.5Convolution Theorem173	Ар	pendi	x 1 Fourier Series, Integral Fourier Transform, and Delta Function	159		
A1.31D Integral Fourier Transform161A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173		A1.1	1D Fourier Series	159		
A1.42D Integral Fourier Transform163A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem173A2.5Convolution Theorem173		A1.2	2D Fourier Series	160		
A1.5Delta Function, Sinc Function, and the Ideal Low-Pass Filter165A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem173A2.5Convolution Theorem173		A1.3	1D Integral Fourier Transform	161		
A1.6Poisson Summation Formula167Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173		A1.4	2D Integral Fourier Transform	163		
Appendix 2 Discrete Fourier Transforms and Their Properties169A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173		A1.5	Delta Function, Sinc Function, and the Ideal Low-Pass Filter	165		
A2.1Invertibility of Discrete Fourier Transforms and the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173		A1.6	Poisson Summation Formula	167		
the Discrete Sinc Function169A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173	Ар	pendi	x 2 Discrete Fourier Transforms and Their Properties	169		
A2.2The Parseval's Relation for the DFT172A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173		A2.1	•			
A2.3Cyclicity of the DFT172A2.4Shift Theorem172A2.5Convolution Theorem173						
A2.4Shift Theorem172A2.5Convolution Theorem173						
A2.5 Convolution Theorem 173						
474 A A A A A A A A A A A A A A A A A A						
A2.6 Symmetry Properties 174						
A2.7 SDFT Spectra of Sinusoidal Signals 175				175		
A2.8 Mutual Correspondence between the Indices of ShDFT Spectral		AZ.Õ		177		
Coefficients and Signal Frequencies177A2.9DFT Spectra of Sparse Signals and Spectral Zero-Padding180		A2 0	• •			
A2.9 DFT Spectra of Sparse Signals and Spectra 2ero-Fadding 180 A2.10 Invertibility of the Shifted DFT and Signal Resampling 187						
A2.11 DFT as a Spectrum Analyzer 189						

viii		Contents
A2.12	Quasi-continuous Spectral Analysis	191
	Signal Resizing and Rotation Capability of the Rotated	
	Scaled DFT	192
A2.14	Rotated and Scaled DFT as Digital Convolution	194
Reference	s	197
Index		199

Preface

Signal sampling is the major method for converting analog signals into sets of numbers that form digital models of the signals. The key issues in the sampling theory and practice are

- What is the minimal amount of numbers, or what is the minimal sampling rate, sufficient to represent analog signals with a given accuracy?
- What kinds of signal distortions are caused by their sampling?
- What signal attributes determine the minimal sampling rate?
- How can one sample signals with sampling rates close to the theoretical minimum?
- Is it possible to resample sampled signals without introducing additional distortions due to the resampling?
- What are adequate discrete representations of signal transforms, such as convolution and Fourier transforms?

All of these issues are addresed in this book, supplemented by MATLAB[®] exercises, which you can download via the following link: http://spie.org/Samples/Pressbook_Supplemental/PM315_sup.zip

Researchers, engineers, and students will benefit from the most updated formulations of the sampling theory, as well as practical algorithms of signal and image sampling with sampling rates close to the theoretical minimum and interpolation-error-free methods of signal/image resampling, geometrical transformations, differentiation, and integration.

> Leonid Yaroslavsky December 2019