Scientific Charge-Coupled Devices

Scientific Charge-Coupled Devices

James R. Janesick

SPIE PRESS

A Publication of SPIE—The International Society for Optical Engineering Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Janesick, James R.
Scientific charge-coupled devices / James R. Janesick.
p. cm. — (SPIE Press monograph ; PM83)
Includes bibliographical references and index.
ISBN 0-8194-3698-4
1. Charge coupled devices. I. Title. II. Series.

TK7871.99.C45 J36 2000 621.36'7-dc21

00-036616 CIP

Published by

SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 Phone: 360/676-3290 Fax: 360/647-1445 Email: spie@spie.org WWW: www.spie.org

Copyright © 2001 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

Printed in the United States of America.

To the Universe.

Contents

	Prefa	ace		xiii	
1	History, Operation, Performance, Design, Fabrication and Theory .				
	1.1	Scienti	fic CCD History	3	
	1.2	Operati	ion and Performance	22	
		1.2.1	Operation	22	
		1.2.2	Performance Functions	25	
		1.2.3	Performance Specifications	36	
	1.3	Archite	ecture, Design, Photolitography and Fabrication	37	
		1.3.1	Architecture	37	
		1.3.2	Design and Photolithography	42	
		1.3.3	Processing and Fabrication	51	
	1.4	CCD T	'heory	61	
		1.4.1	MOS Capacitor	61	
		1.4.2	Surface-Channel Potential Well	65	
		1.4.3	Buried-Channel Potential Well	70	
	Refe	erences		92	
		Further	r Reading	93	
2	CCD Transfer Curves and Optimization				
	2.1	CCD T	ransfer Curves	95	
		2.1.1	CCD Performance	95	
		2.1.2	CCD Camera Performance	96	
		2.1.3	CCD Camera Calibration	97	
	2.2	Photon	1 Transfer	97	
		2.2.1	Photon Transfer Derivation	98	
		2.2.2	Photon Transfer Curve	101	
		2.2.3	Camera Gain Constants	105	
		2.2.4	Camera Gain Histogram	108	
		2.2.5	Camera Gain Uncertainty	110	
		2.2.6	Dynamic Range	113	
		2.2.7	Linearity	117	
		2.2.8	Flat-Field Signal-to-Noise	120	
		2.2.9	Contrast Signal-to-Noise	121	

		2.2.10 High-Speed Photon Transfer Generation		125
		2.2.11 Photon Transfer Simulation		130
	2.3	X-Ray Transfer		131
		2.3.1 X-ray Characteristics and Use		131
		2.3.2 Fe^{55}		132
		2.3.3 X-ray Images		139
		2.3.4 X-ray Transfer		141
		2.3.5 X-ray Histograms		143
		2.3.6 Fano-Noise-Limited Performance		147
		2.3.7 Cadmium X Rays		151
	2.4	QE Transfer	· · ·	151
	2.5	CCD Clock and Bias Optimization		156
		2.5.1 Clock and Bias		156
		2.5.2 Set-point Transfer Curves		160
	Refe	rences	•••	165
3	Cha	rge Generation		167
	31	Charge Generation		167
	3.2	OF Formulas	•••	170
	J.2	3.2.1 Backside Illumination	• •	170
		3.2.1 Frontside Illumination	•••	173
		3.2.3 Miscellaneous OE Losses	•••	174
		3 2 4 Monte Carlo Simulation		177
	33	Frontside Illumination	•••	178
	5.5	3.3.1 Phosphor Coatings	•••	178
		3.3.2 Virtual Phase		183
		3.3.3 Open Pinned Phase		188
		3.3.4 Thin Gate	•••	190
		3.3.5 Transparent Gate		194
		3.3.6 Poly Hole Gate		194
	3.4	Backside Illumination		195
		3.4.1 Thinning		195
		3.4.2 Quantum Efficiency Hysteresis		196
		3.4.3 Accumulation and OE Pinning		199
		3.4.4 Self-Accumulation		201
		3.4.5 Accumulation Theory		214
		3.4.6 Passive Accumulation		227
		3.4.7 Active accumulation		256
		3.4.8 Antireflection coatings		266
	Refe	rences		268

4	Charge Collection			273
	4.1	Charge	Collection	273
	4.2	Well Ca	pacity	274
		4.2.1	Bloomed Full Well	275
		4.2.2	Surface Full Well	277
		4.2.3	Optimum Full Well	277
		4.2.4	Clocking Modes	280
		4.2.5	Full Well Transfer	280
		4.2.6	Full Well Data	283
		4.2.7	Self-induced Emission and Thermionic Emission	289
		4.2.8	Clocked Antiblooming	293
		4.2.9	Antiblooming Structures	300
		4.2.10	High-Speed Erasure	305
		4.2.11	Window Clocking	310
		4.2.12	Multipinned Phase (MPP)	310
	4.3	Fixed-p	attern Noise	318
		4.3.1	Pixel Nonuniformity	318
		4.3.2	Flat Fielding	321
		4.3.3	Fixed-pattern Sources	325
	4.4	Charge	Diffusion	332
		4.4.1	Charge Diffusion	332
		4.4.2	Measurement and Modeling Techniques	338
		4.4.3	Aliasing and Beating	373
	Refe	erences		383
5	Cha	rge Trar	nsfer	387
	5.1	Charge	Transfer	387
	5.2	Transfe	r Mechanisms	390
		5.2.1	Diffusion Drift	393
		5.2.2	Self-induced Drift	395
		5.2.3	Fringing Field Drift	396
		5.2.4	High-Speed Data	400
		5.2.5	Clock Propagation	405
		5.2.6	Substrate Bounce	408
	5.3	CTE M	easurement Techniques	418
		5.3.1	X-ray Transfer	418
		5.3.2	Extended Pixel Edge Response (EPER)	423
		5.3.3	First Pixel Edge Response	429
		5.3.4	Pocket Pumping	430
		5.3.5	Charge Injection	433
	5.4	Traps		433
		5.4.1	Design Traps	434
		5.4.2	Process traps	439

		5.4.3	Bulk Traps	. 45	53
		5.4.4	Radiation-induced Traps	. 46	56
		5.4.5	Proportional and Fixed Loss	. 46	56
		5.4.6	Fat-zero	. 46	59
		5.4.7	Notch Channel CCD	. 47	12
	5.5	Transfe	er Power	. 47	/6
		5.5.1	Charge Motion Power	. 47	78
		5.5.2	Potential Power	. 48	32
		5.5.3	Reactive Power	. 48	32
	Refe	rences		. 48	36
6	Cha	rge Mea	surement	. 48	39
	61	Charge	Measurement	48	39
	6.2	Output	Amplifier Characteristics	49	90
	0.2	6.2.1	Operation	. 49	90
		622	Voltage Gain	49	98
		6.2.3	Loading	. 49	99
		6.2.4	Output Impedance	. 50)3
		6.2.5	Time Response	. 50)4
		6.2.6	Frequency Response	. 50)4
		6.2.7	Bias	. 50)7
		6.2.8	Sensitivity	. 50)9
		6.2.9		. 51	16
		6.2.10	Temperature Characteristics	. 51	19
		6.2.11	Lightly Doped Drain	. 52	20
		6.2.12	Amplifier Luminescence	. 52	23
		6.2.13	Multistage Amplifiers	. 52	27
		6.2.14	Power Consumption	. 53	31
	6.3	Output	Amplifier Noise	. 53	32
		6.3.1	Johnson Noise	. 53	32
		6.3.2	Reset Noise	. 53	37
		6.3.3	White Noise	. 54	41
		6.3.4	Flicker Noise	. 54	13
		6.3.5	Shot Noise	. 55	53
		6.3.6	Contact and Popcorn Noise	. 55	55
		6.3.7	Output Amplifier Noise Equation	. 55	55
	6.4	Correla	ated Double Sampling	. 55	56
		6.4.1	Correlated Double Sampling Circuit Elements	. 55	57
		6.4.2	Correlated Double Sampling Circuits	. 55	58
		6.4.3	Camera Gain Constant	. 56	51
		6.4.4	Correlated Double Sampling Transfer Function	. 56	53
	6.5	Dual S	lope Processor	. 57	78
		6.5.1	Dual Slope Circuit Elements	. 57	78
		6.5.2	Dual Slope Transfer Function	. 57	79

	6.6	Remnar	nt Signal and Noise	582
		6.6.1	Remnant Signal	582
		6.6.2	Remnant Noise	583
	6.7	Skipper	Amplifier	585
		6.7.1	Introduction	585
		6.7.2	Operation	586
		6.7.3	Performance	588
		6.7.4	Design	592
		6.7.5	Signal-to-Noise (Extended Images)	595
		6.7.6	Signal-to-Noise (Point Images)	599
	Refe	rences		602
	non	ionees .		002
7	Nois	se Source	es	605
	7.1	On-chip	Noise Sources	605
		7.1.1	Dark Current	605
		7.1.2	Spurious Charge	649
		7.1.3	Fat-zero	654
		7.1.4	Transfer Noise	656
		7.1.5	Residual Image	657
		7.1.6	Luminescence	665
		7.1.7	Cosmic Rays and Radiation Interference	670
		7.1.8	Excess Charge	674
		7.1.9	Cosmetic Defects	678
		7.1.10	Blem Spillover	679
		7.1.11	Seam Noise	680
	7.2	Off-chi	p Noise Sources	684
		7.2.1	Light Leak	684
		7.2.2	Preamplifier Noise	684
		7.2.3	ADC Quantizing Noise	686
		7.2.4	Clock-Jitter Noise	697
		7.2.5	Electromagnetic Interference	699
		7.2.6	Grounding	706
		7.2.7	Image Cross Talk	711
		7.2.8	Noise-Reduction Techniques	714
		7.2.9	Noise-Reduction Summary	716
	Refe	erences		719
8	Dan	nage		721
	8.1	Radiati	on Damage	721
		8.1.1	Introduction	721
		8.1.2	Near-Earth Radiation Environment	723
		8.1.3	Radiation Units	726
		8.1.4	Transient Events	736

CONTENTS

	8.1.5	Ionization Damage Equivalence	749		
	8.1.6	Ionization Damage	750		
	8.1.7	Clock and Bias for Minimum Ionization Damage and			
		Control	759		
	8.1.8	Ionization Damage Measurements	761		
	8.1.9	Bulk Damage	773		
8.2	Electric	al, Thermal and ESD Damage	837		
	8.2.1	Electrical Damage	837		
	8.2.2	Thermal Damage	838		
	8.2.3	Electrostatic Discharge (ESD) Damage	839		
References					
Appendixes					
Glossary of CCD Terms					
Inde	Index 8				

Preface

This book began from a series of lecture notes for courses held on charge-coupled devices and digital camera systems at UCLA Extension and SPIE meetings in the mid-1980s. These sessions were well attended and met with great enthusiasm by the scientific and commercial imaging communities. The courses, and the enthusiasm, continue today after 15 years.

The courses are intended for scientists, engineers, and hardware managers involved with CCD imaging sensors and camera systems. The material details advances made in pixel count (arrays as large as 10,000 by 10,000 pixels), quantum efficiency (spectral coverage of 1 to 11,000 Å), charge transfer efficiency (99.9999% efficient per pixel transfer), read noise (less than $1 e^-$ rms), large dynamic range (greater than 10^6), and high-speed operation (diffusion-limited). The CCD technologies used to achieve such high levels of performance are discussed. The courses also review the electronic design of slow-scan and fast-scan CCD imaging camera systems. Applications include near-IR, visible, UV, EUV, x-ray, and particle cameras. The success of these courses prompted us to bring these notes together, along with additional detailed discussions, into a single comprehensive reference manual and tutorial. It is a timely collection, as the CCD has recently celebrated its thirtieth birthday.

This book is written for a wide audience—from the novice to the advanced CCD user. The level of the book's presentation is suitable for students in physics and engineering who have received a standard preparation in modern solid state physics and electronic circuits. Numerous examples throughout the text provide valuable exercises for students and perspective for the professional imaging engineer in terms of modern CCD performance. The text captures 30 years of experimentation with the technology, giving the less-experienced engineer the benefit of the lessons learned during the development of the CCD. Although the book focuses on scientific devices, it is also of interest to other imaging engineers who work with commercial CCDs for broadcasting and photography. Other areas of overlap include CMOS, CID, and photodiode imaging arrays. The book can be used as a reference for participants in educational short courses organized by SPIE and other educational institutions as well.

Scientific Charge-Coupled Devices contains more than 500 figures and illustrations which present experimental and modeling data products taken from many scientific CCDs in operation. The majority of these sensors are found in space imaging cameras that are currently generating new and exciting facts about the universe in which we live. The book provides hundreds of modeling equations used to support the data presented. It has been very important that theory and experiment work hand-in-hand to bring about a sensor that is nearly textbook perfect. This intimate connection also shows us the physical limitations of device performance and what potential advances might be made in the future. Also, the CCD has inspired its own language to describe its unique characteristics and operational features. Therefore, we have included a glossary of CCD terms to which the reader can refer.

The book is organized into eight chapters. Chapter 1 reviews historical aspects of the scientific CCD as taken from the author's perspective and experiences. As with most celebrated technologies, the CCD of today was not born overnight; the technical and political climates that gave rise to the CCD imaging revolution was complex and interesting. Chapter 1 also includes a review of the basics of CCD operation and performance which serve as the book's skeleton—charge generation, charge collection, charge transfer and charge measurement—as well as performance characteristics and related specifications. The chapter will also acquaint the reader with different CCD architectures and how the sensors are designed and fabricated. Presented is basic solid state CCD theory, which is necessary to understand and support the experimental findings presented in subsequent chapters. In particular the potential well, which is responsible for collecting and transferring charge, is studied in detail.

Chapter 2 introduces standard tests and absolute units used to characterize, optimize, and calibrate CCD performance, presented in the form of transfer curves. For example, an important transfer curve called photon transfer produces a multitude of critical performance data products: read noise, full well, dynamic range, linearity, signal-to-noise, etc. The chapter will also take the reader through a CCD clock and bias optimization procedure using transfer curves as a guide. The material in this section is considered advanced but it is critically important in order to achieve the high and reliable performance results that CCD camera users demand.

Chapter 3 discusses the first major operation performed by the CCD: charge generation. It is shown that the charge generation process is capable of covering an enormous wavelength range, from the IR to the hard x ray, covering more than four decades of spectral range (i.e., 1 to 11,000 Å). We will review several loss mechanisms that prevent incoming photons from interacting with the CCD. Discussions are then given to high-performance frontside-illumination CCDs whose design features reduce interaction loss. We then discuss the highest-sensitivity device available to the imaging community, the backside-illuminated CCD. Detailed studies are given on the backside accumulation process required by this technology.

Chapter 4 on charge collection explores the ability of the CCD to form an image after charge is generated. Three performance parameters associated with charge collection efficiency are elaborated: well capacity, pixel nonuniformity, and charge diffusion. The modulation transfer function (MTF) is discussed in considerable detail in quantifying charge diffusion effects and limiting performance.

Chapter 5 deals with charge transfer, the third basic CCD operation. Discussions include a review of the charge transfer efficiency (CTE) requirements for

PREFACE

high-performance large-area arrays and physical descriptions responsible for highspeed charge movement. The chapter discusses several CTE measurement techniques in characterizing charge traps that limit CTE performance. Numerous operational, process and design solutions are given to solve CTE problems when encountered. We close the chapter with a short discussion on the power dissipated behind the charge transfer process.

Chapter 6 discusses charge measurement, the last major CCD operation. Discussions here are devoted to the sensor's output amplifier and off-chip signal processing electronics. We will describe the progress that has been achieved in the areas of design, processing and operation to achieve ultralow-noise performance. The chapter discusses other amplifier characteristics such as loading, output impedance, frequency response, sensitivity, linearity, and power consumption. The technique of correlated double sampling (CDS) is reviewed in detail, an important video processing circuit that delivers optimum S/N performance. The last section reviews a floating gate amplifier that allows subelectron noise performance.

Chapter 7 focuses on noise sources other than the CCD's output amplifier. The sources are grouped into two major categories: on-chip and off-chip. This chapter familiarizes the reader with the multitude of known noise sources, which can fundamentally be reduced below that of the noise generated by the output amplifier. Important noise sources include dark current, spurious charge, fat-zero, residual image, luminescence, cosmic rays, cosmetic defects, quantizing noise, clock jitter, electromagnetic interference, grounding noise and other sources.

Chapter 8 is on the subject of CCD damage. The majority of the chapter is devoted to the damage induced by high-energy radiation sources. Numerous design, processing, and operational solutions are given to address and alleviate the problem. Discussions on transient events produced by high-energy particles and photons are also provided. A technique that converts a complicated radiation environment into a single energy that produces the same damage is described. The last subject of this chapter is on electrical, thermal and ESD damage mechanisms.

In the course of the writing this book, many people have assisted me and offered their support. I would like to express my appreciation to the management of NASA's Jet Propulsion Laboratory for providing the rich environment for the research and investigation of CCDs from their conception; without their support this book could have not been written. I also thank Pixel Vision for the R&D environment directed toward high-speed backside-illuminated CCDs discussed in Chapter 5. I wish to express my gratitude to Tom Elliott for being my partner for nearly 15 years in generating the majority of the data products presented in this book. His artistic skills and ingenuity in conjunction with his natural curiosity about CCDs reflects upon the figures presented. Special thanks go to Jeff Pinter and Jim McCarthy, who through countless hours of CCD discussions on the black board brought excitement into the book. I have benefitted significantly from technical discussions with Stewart Collins, Taner Dosuoglu, Morley Blouke, Denis Heidtman, Dick Bredthauer, George Soli, Jim Westphal, Fred Landauer, Jim Gunn, Bob Locke, Mark Wadsworth, Michael Lesser, Bob Hlivak, Lloyd Robinson, Barry Burke, Willard Boyle, Jim Early, Albert Theuwissen, George Smith, Gene Weckler, Rudy Dyck, Ken Klaasen, Charles Chandler, Kurt Liewer, Dave Burrows, Gorden Garmire, Paul Vu, Dick Savoye, Rusty Winzenread, Andrew Holland, David Lumb, Fred Harris, Russ Schaefer, Taher Daud, Jerry Hynecke, Dave Norris, Robert Groulx, Raymond Frost, Arsham Dingzian, Gorden Hopkinson, Bev Oke, Terrence Lomheim, Gary Sims, Walter Kosonocky, Nelson Saks, Cheryl Dale, Paul Marshall, Fred Pool, Loren Acton, Bob Lockart, Dave Swenson, John Geary, Jim Beletic, Alice Reinheimer, Larry Hovland, Sandra Faber, Bedabrata Pain, John Flemming, and Harry Marsh.

Special thanks goes to Shouleh Nikzad in writing the section of MBE delta doping and Steve Holland on his biased ohmic contact on high-resistivity substrate, both included in Chapter 3. I am further indebted to Steve Holland, Peter Hughes, Gloria Putnam, Sharon Streams, and Rick Hermann for technical and copy editing of the entire manuscript. Finally, I wish especially to thank my wife Linda Janesick, daughter Amanda, sister Barb, and Mom and Dad for their assistance in many ways.