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Abstract. cDNA microarrays provide simultaneous expression mea-
surements for thousands of genes that are the result of processing
images to recover the average signal intensity from a spot composed
of pixels covering the area upon which the cDNA detector has been
put down. The accuracy of the signal measurement depends on using
an appropriate algorithm to process the images. This includes deter-
mining spot locations and processing the data in such a way as to take
into account spot geometry, background noise, and various kinds of
noise that degrade the signal. This paper presents a stochastic model
for microarray images. There are over 20 model parameters, each
governed by a probability distribution, that control the signal intensity,
spot geometry, spot drift, background effects, and the many kinds of
noise that affect microarray images owing to the manner in which
they are formed. The model can be used to analyze the performance
of image algorithms designed to measure the true signal intensity be-
cause the ground truth (signal intensity) for each spot is known. The
levels of foreground noise, background noise, and spot distortion can
be set, and algorithms can be evaluated under varying conditions.
© 2002 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1486246]

Keywords: cDNA microarray; image simulation.

Paper JBO-01046 received July 6, 2001; revised manuscript received Jan. 4, 2002;
accepted for publication Jan. 14, 2002.
-
-

-

e
s

s

h

-
-
-
y
s

ity.
fully
ini-
-
are
of
ess
i-

y of
elp

of

ed
e
e
flu-
tors.
ain
ela-
e

e
-
m-

ch
to

ari-
1 Introduction
Since the inception of cDNA microarray technology1 as a
high throughput method to gain information about gene func
tions and characteristics of biological samples, many applica
tions of the technology have been reported.2–10 With the im-
provement of the technology, including fabrication,
fluorescent labeling, hybridization, and detection, many com
puter software packages for extracting signals arising from
tagged mRNA hybridized to arrayed cDNA locations have
been designed and applied in various experiments.11–13As re-
ported in Ref. 11, a target detection procedure has been impl
mented that utilizes manually specified target arrays, extract
the background via the image histogram, predicts target shap
and then evaluates the intensities from each cDNA location
and its corresponding ratio quantity.

While most software packages are satisfactory for routine
image analysis and the extraction of information regarding
phenomena with highly expressed genes, the desire to di
cover subtle effects via microarray experiments will ulti-
mately drive experiments towards the limit of the
technology,13 with less starting mRNA and/or more weakly
expressed genes. Weak signals and their interaction wit
background fluorescent noise are most problematic. Problem
include the nonlinear trend in expression scatter plots, fishtail
ing at lower signal range, low measurement quality of expres
sion levels due to uneven local background, and small cDNA
deposition areas. These artifacts, or sources of uncertaint
creep into higher-level statistical data analyses, such as clu
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tering and classification, raising concerns about their valid
Numerous remedies have been proposed, such as care
designed experiments in which duplications are used to m
mize the uncertainty.14,15 However, given the scarcity of cer
tain biological samples, large duplications of experiments
often impractical. To improve detection and quantification
weak targets, it is important to understand the entire proc
of microarray formation, from fabrication to the scanning m
croscope. Use of the knowledge that the average intensit
the background fluorescence is normally distributed to h
design a background detection algorithm is one example
incorporating prior knowledge into detection methods.16

A complex electrical-optical-chemical process is involv
in cDNA-microarray technology, from fabrication of th
cDNA slide, to preparing the RNA, to hybridization, to th
capture of images created from excitation of the attached
ors. This complex process possesses multiple random fac
Images arising from it must be processed digitally to obt
the gene expression intensities and/or ratios that quantify r
tive expression levels.11 The efficacy of the analysis to b
carried out on the ratios, be it clustering,3,17–19

classification,5,10 prediction,20,21or some other, depends on th
ability of the imaging algorithm to extract sufficiently accu
rate and consistent intensity levels from the spots. As is co
mon in imaging applications, it is difficult~or perhaps impos-
sible! to utilize physical ground truth as a standard by whi
to evaluate algorithm performance. Hence, it is common
proceed by modeling the imaging process to simulate the v
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Balagurunathan et al.
ous aspects of the real image process.22–24 Image processing
algorithms can be applied to the simulated process to evalua
their performance. One might also concurrently adjust the
model parameters to see how changing various random com
ponents of the formation process impacts upon the final im
ages, and therefore the ability to extract meaningful informa
tion. For instance, an algorithm might have biases at low
signal intensities or high noise intensities that are not presen
at higher signal intensities or lower noise intensities. Here i
should be recognized that ‘‘ground truth’’ refers to the true
signal intensity, not the actual quantity of mRNA in the
sample corresponding to the DNA in the spot.

Modeling anything but a very simple physical process is a
very challenging task. A physical process is typically influ-
enced, directly or indirectly, by forces whose interrelation is
unknown. The resulting model will be a random process. Eac
realization of the model depends on random variables chose
according to various model distributions. A good quantifiable
model must approximate the physical process and have rea
istic variability to describe the randomness of the system. In
the present work, microarray image formation is modeled by a
series of random processes influenced by almost two doze
parameters. We will describe the modeling process in terms o
the various random variables that determine spot size, shap
and intensity, as well as variables that affect the background
including noise. Each random variable is associated with a
distribution. In some cases, one may select the parameters
the distribution~such as mean and variance for a normal dis-
tribution! to reflect the image qualities of interest, such as
brightness, spot size, noise intensity, etc. In other cases, th
distribution of a random variable is dependent on the outcom
of some other variable, and it is possible that the parameter
governing the distribution of a random variable may them-
selves be random variables.

Although we postulate various distributions to govern the
variables in the model, one may wish to use other distribu
tions to characterize the signal and noise distributions. More
over, the experimenter is free to choose the parameters of th
distributions. Microarray technology is evolving rapidly, and
there are already many variations of the technology in use
Hence, model flexibility is mandatory. For instance, for a mi-
croarray system that does not produce doughnut holes in th
spots, the variables associated with the hole can be nullified
In the case of a stable system in use without change for
sufficiently long period to produce a large number of images
one can apply statistical estimation to determine some mode
parameters, such as those for spot radius. Clearly, these es
mates will only be of value to the specific system from which
they have been derived. Hence, they remain outside the sim
lation package per se.

The simulation algorithm produces spots at a preset grid o
locations that resemble the actual microarray. Each block co
responds to a specific pin of the robot hand, and the interbloc
variation is modeled in the simulation by allowing various
model parameters to be randomized by block. At the start o
each new block, the parameters of the spots are reset. Th
intention of the printing process is that spots possess regula
circular shapes. Due to mechanical fatigue, the adhesion pro
cess for the DNA solution concentration, and biochemical in-
teractions, various perturbations are possible in array prepar
508 Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3
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tion, printing, and scanning. Various features of the mo
simulate these random perturbations.

2 Simulation of cDNA Microarrays
The simulation of the cDNA microarray images is design
for two-color fluorescent systems with a scanning confo
microscope. A block diagram of the overall simulation pr
cess is given in Figure 1, which includes four main modul
fluorescent background simulation, simulation of cDNA targ
spot generation, postprocessing simulation and tagged im
file format~TIFF! image output. Each simulation module co
tains many sequential steps~such as spot formation! or alter-
native steps~such as different background fluorescence!. We
will discuss each step according to the order in Figure 1 in
following subsections.

2.1 Background Simulation
The fluorescent background level is an important part
expression-level estimation, since we routinely use the a
tive model to subtract the local background from the sig
intensity measurement. It is understood that when the sign
sufficiently low, the interaction between the fluorescent ba
ground and signal affect the estimation process in most im
analysis programs, resulting in lower measurement quality
the expression ratio. Many factors contribute to the obser
fluorescent background: autofluorescence from the glass
face or the surface of the detection instrument, nonspec
binding of fluorescent residues after hybridization, local co
tamination from posthybridization slide handling, etc. A pe
fect system would yield a flat background possessing a n
mal distribution, while a microscope without an autofoc
mechanism may produce a slanted background level if
slides are loaded unevenly. Some other extreme hybridiza
condition may cause higher nonspecific hybridization to
edge of the hybridization chamber, which effectively create
parabolic surface of background noise. We leave the lo
contamination to the processing module in Sec. 2.3.

The background derived from surface fluorescence u
laser excitation is usually governed by the Poisson proc
which can be approximated by a normal distribution when
arrival rate, or the accumulation of photons, is large enoug16

This property can be readily assessed by the histogram of
background region of the microarray images. Therefore, ba
ground noise is simulated by a normal distribution whose
rameters are randomly chosen to describe the processI b

;N(mb ,sb
2). If multiple arrays are desired, the inter-arra

difference is modeled by a uniform distribution:mb

;U(a,b). sb is given as a multiple ofmb: sb5kbmb . Typi-
cally, kb is about 10% of the mean background level.

Rather than be constant across the entire microarray,
mean of the background noise may vary owing to vario
scanning effects. It can take different shapes: parabolic, p
tive slope, or negative slope. In this case a functiong(x,y) is
first generated~parabolic, positive slope, or negative slope! to
form a background surface and normal noise is added t
pixel wise. Thus, the background intensity is of the formI b

;N(mb ,sb
2) with mb5gg(x,y), where g;U(a,b) is the

targeted background noise level. Background deviation is
independently for each channel:sb1

5kb1
mb and sb2
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Fig. 1 Figure shows the steps involved in generating the microarray.
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mb . Figure 2 shows various noise backgrounds withkb1

5kb2
50.1. All images are shown in large size on a web

page.27

In many practical examples, the nonspecific hybridization
at the target location may be different from its peripheral re-
gion. Although one may have trouble pin-pointing this par-
ticular observation under normal conditions owing to signal
interference, it is sometimes unmistakable when locations as
sumed to be weakly expressed, or not expressed at all, car
some nonzero readouts, or the intensity in the center is stron
ger than the doughnut ring if the printed target is doughnu
shaped. We simulate this artifact under a gradient noise con
dition by allowing the background for the center holes to be a
ots
-
y
-

-

higher levels than the signal intensities. Hence, there is
option to use global background or local background inform
tion to set the noise parameter for the center hole. Figur
shows the effects of using local and global background
rameters. This effect may not appear everywhere in a si
lated image; however, it is often sufficient to require app
priate algorithm design in the image analysis program
lessen the penalty. The effects of weak targets will be furt
studied in later sections.

2.2 Spot Simulation
cDNA deposition routinely follows a rigid grid defined by th
robotic print pattern. The simulation algorithm produces sp
Fig. 2 Figure shows various background noises. The mean SNR is set
at 1.0 for the slides. The slides have following settings: (a) parabolic
back ground noise, (b) positive slope background, and (c) negative
slope background all with global noise parameter. The background
deviation factor is set at kb1

5kb2
510%.
Fig. 3 Example shows different noise settings for spots inner hole.
Where (a) uses global background parameter to fill the center hole, (b)
uses local background for filling the center hole. The background
noise is set to sloped type with SNR of 1.5.
Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3 509
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Fig. 4 cDNA microarray spot model.
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at preset grid locations that resemble the actual microarray. I
principle, print tips are manufactured uniformly; however,
their microscopic morphologies, and thus their deposition-
binding behaviors, are noticeably different. Each block corre
sponds to a specific print tip of the robot hand. To take tip
variability into account, within each block the spot variation is
governed by block parameters, which themselves are rando
variables. At the start of each new block, the spot parameter
are reset according to these random variables.

The key simulation of this study is devoted to the cDNA
targets, which nominally possess a circular shape. Owing t
many factors, the actual shape may be highly noncircular. Th
model takes various random perturbations into account:~1!
radius variation,~2! spot drifting locally,~3! center core varia-
tion, ~4! chord removal,~5! edge noise,~6! edge enhance-
ment, ~7! signal intensity, and~8! signal response transform.
Figure 4 shows a schematic drawing for the cDNA target
simulation. The variables in the figure are explained in the
following eight subsections.

2.2.1 Variation of Radius
Prior to distortion and noise, the cDNA deposition spot is
considered to be circular with random radiusS. The mean of
the radius is set according to the array density and its varianc
relates to the consistency of spot size.S is modeled by a
normal distribution having meanms and variancess

2, S
;N(ms ,ss), with the standard deviation being a predeter-
mined proportion,ks , of the mean, orS;N(ms ,ksms). The
radius mean is set for every block, and randomized over
small range within the array. The block randomness ofms is
modeled by a uniform distribution,ms;U(sa ,sb). Figure 5
shows parts of blocks with spot radii depending on the num
ber of spots in a block. For Figures 5~a!–5~c!, the block por-
tions are for block sizes~10,15!, ~25,45!, and~25,45!, respec-
tively, where ~col, row! denotes the number of spots in
columns and rows within the block, respectively. Occasion-
ally, a spot overlaps with it neighbors@Figure 5~c!# whenks is
set to a larger proportion. This situation simulates the condi
510 Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3
tion where too much cDNA solution is deposited and/or t
drying process may be slow in comparison to the liqu
spreading process.

Depending on the robot arm and printing ability of th
pins, the interspot distance,Gsp, may vary. Owing to the
physical mechanics of the robot arm, the block size~pixel
units! is fixed in most cases. The interspot distance can be
to accommodate spot size and random variation in spot ra
The effects are illustrated in Figure 6, where the number
rows and columns are fixed.

2.2.2 Spot Drift
During the fabrication stage, the deposition of cDNA targ
may not follow the predefined grid owing to print-tip rotatio
vibration, or other mechanical causes. Other drifts are att
uted to the slide’s coating properties and the drying rates
the cDNA. This displacement is modeled by possible rand
translations in the horizontal and vertical directions. Each s
has an equal probability,PD , of drifting. If a spot is selected
for drift, then the amounts of drift in both directions are ra
dom multiples of the current spot radius. The horizontal a
vertical multiples,dx and dy , called the ‘‘drift levels,’’ are
uniformly distributed:dx , dy , ;U(da ,db). The horizontal
and vertical drifts areDx5dxS and Dy5dyS, respectively.
Interspot distance can be set according to the drift to minim
the impact of overlapping spots.

Some microarray scanners capture two fluorescent sig
in two passes of scanning. Due to the mechanical hom
error, the two fluorescent channels may not align exactly

Fig. 5 Figure shows the variability in spot size and spread from its
size. The spot radius distribution is automatically set depending on the
number of spots in a block (width, height). In the earlier example has
(a) (10,15), ms;U@23.3 24.3#, (b) (20,25), ms;U@12.6 13.6# and (c)
(25,45), ms;U@5.45 6.45#, with standard deviation ks51%, 7%,
20% of radius, respectively.

Fig. 6 Figure shows interspot grid spacing, (a) Gsp53 pixels, ms
;U@9.5 10.5#, (b) Gsp56 pixels, ms;U@8 9#, (c) Gsp510 pixels, ms
;U@6.5 7.5#. The example has (35,20) rows, columns respectively
with ks50.05.
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Fig. 7 Figure shows the effect of radius drift (Pd ,da ,db). (a)
(0.05,5,100), (b) (0.25,15,100), (c) (0.5,50,100). As the activation
probability with drift range is set higher, the spots drift away from its
center.
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these settings, some small offset between the two channe
can be observed. This offset may occur at subpixel resolution
To simulate this offset, the model offers a random offset
between the centers of the two channels. It is achieved b
randomly offsetting the spot center of the second channe
by one pixel in either of the horizontal and vertical directions.
These offsets are applied following application of the
spot drifts. Figure 7 illustrates the spot drift.

It is essential for the image analysis algorithm to determine
the exact location of the target spot so that an accurate me
surement can be carried out without the interference of th
dusty noise around the targets. Some algorithms rely on th
assumption that the printing grid is rigid with the cDNA target
in the center; others assume an imperfect printing proces
such that a deformable grid is necessary. The former metho
is faster and noise insensitive, but may be inaccurate if th
slides are fabricated with many displacements; the latter i
robust in target position detection, but can be rather slow an
noise sensitive. In either case, the simulation outcome wil
provide a set of evaluation images to assess the tolerance
both algorithmic designs. The slightly misaligned channels
also pose a challenge to signal intensity extraction.

2.2.3 Doughnut Hole
Owing to the impact of the print tip on the glass surface, or
possibly due to the effect of surface tension during the drying
process, a significantly lesser amount of cDNA can be depos
ited in, or attached to, the center of the targets. Consequentl
the center of the target emits less fluorescent photons, thereb
giving a target the doughnut shape. It is critical for signal
intensity extraction whether or not the center hole is assumed
particularly when the signal is weak and there is a large cente
hole. The simulation allows one hole in the center with vary-
ing size, along with a possible off-center displacement. It is
not necessary to simulate more than one hole, since the mat
ematical properties for signal and noise estimation are pre
served with this simple condition.

An elliptical shape models the inner core with random
horizontal and vertical axes,H andV. The axes are modeled
by a normal distribution whose parameters are randomized fo
each block within a given array:H;N(mH ,sH) and V
;N(mV ,sV). Interarray variability in these radius distribu-
tions is modeled by uniformly distributed means:mH

;U(aH ,bH), sH5a1mH andmV;U(aV ,bV), sV5a2mV ,
s
.
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where the controlling ratios vary over a range,a1 ,a2
;U(Pa ,Pb). The choice of the parameters governs the h
shapes. The center position of a hole is allowed to drift ove
range. The shape is unaffected by the drift because the
chanical print tip to surface contact is unaffected. The amo
of drift in the horizontal and vertical directions is modele
similarly to spot drift. Drift levels are set at every block
(dcxR ,dcyR) and (dcxG ,dcyG), for both channels. The
amount of drift is first selected from a uniform range,dc
;U@ i , j #. Channel and interchannel drifts are modeled by
uniform variate and set for each block:dcxG5dcU@21,1#,
dcyG5dcU@21,1#, dcxR5dcxG1U@21,1#, and dcyR

5dcyG1U@21,1#.

2.2.4 Chord Removal
Since parts of a spot can be washed off due to various ph
cal effects during the hybridization and washing stages, pie
of a spot may be missing. We would like to simulate th
condition for the same reasons that the center hole is si
lated. This irregularity is modeled by randomly cutting chor
from the circular spots. The number of chords to be remov
Nc , for a spot is selected from a discrete distribution,$0, 1, 2,
3, 4%, where the elements of the distribution occur with pro
abilities p0 , p1 , p2 , p3 , and p4 , respectively. For images
with very few pieces cut off, the zero-chord probabilityp0 is
very high, and the three- and four-chord probabilities a
close to 0~possibly equal to 0!. To model interarray variabil-
ity, the probabilities can be treated randomly.

Once the number of chords for a spot is determined,
distance,L, of each chord center to the edge is selected fr
a beta distribution:L;B(aL ,bL). Interblock variability is
modeled by allowingaL andbL to be randomly selected from
uniform distributions:aL;U(aa ,ba), and bL;U(ab ,bb).
Owing to the large family of shapes generated by beta dis
butions, this provides a wide range of distributions forL. Fi-
nally, the chord locations are chosen uniformly randomly
cording to an angleu;U(0,2p). Figure 8 illustrates the
effect of selecting increased chord rates:~a! p050.70, p1
50.30; ~b! p050.20, p150.40, p250.25, p350.15; ~c! p0
50, p150.10,p250.40,p350.30,p450.20.

Fig. 8 Figure shows different chord rate settings for each of the slide.
The probability weights for (0,1,2,3,4) chord rates were set at follow-
ing levels. (a) (0.7,0.3,0.0,0,0), (b) (0.2,0.4,0.25,0.15,0), (c)
(0.0,0.1,0.4,0.3,0.2), respectively. Chord rate is reset at the beginning
of a block.
Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3 511
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Fig. 9 Figure shows the edge noise on the spots. Noise controlling
parameter (d) can be set from [0,1.0]. The example shows an in-
creased edge noise effect, where (a) d50.25, (b) d50.1, (c) d50.03,
where d is the proportion of maximum intensity.
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2.2.5 Edge Noise
Owing to the manner in which liquid dries, the spots usually
do not have smooth edges. To provide a realistic visual effec
as well as to pose a challenge if edge detection algorithms a
under consideration, we simulate this irregular edge effect via
parameterized noise using a binary edge-noise algorithm em
ployed in digital document processing.25 After determining
the target shape by cutting the center hole, removing possib
chords, and possibly creating drift, and prior to simulating the
signal intensity, the spot is still in its binary format, and thus
the binary edge-noise algorithm can be applied directly. Edg
noise is applied to both the outer perimeter of the spot and th
inner perimeter containing the hole.

The algorithm begins by first generating a white noise
~mask! image having range@0, max intensity#. A 333 aver-
aging filter is applied to the white-noise image to arrive at a
noise imageN that possesses a degree of correlation resem
bling the noise characteristics of various physical processe
including printing processes. The edge of a binary image ca
be considered to consist of two parts, inner and outer border
In our case, the spot radius is known and so are these borde
The inner border is formed by morphologically eroding the
image by a333 structuring element and then subtracting the
erosion from the original image. The outer border is formed
by morphologically dilating the image by a333 structuring
element and then subtracting the original image from the di
lation. To apply noise to the inner border, a threshold,mid
1d, just above midpoint is applied toN, this binary image is
ANDed with the inner border of the original binary spotS,
and the result is XORed withS. Noise is applied to the outer
border by thresholdingN just below the midpoint(mid2d),
complementing, and then ANDing with the outer border ofS.
This noisy outer border is then ORed with the image possess
ing inner border noise to yield the edge-degraded binary spo
S8. The process is mathematically described by

S85@~Nmid1dùSin!DS#ø@~Nmid2d!cùSout#, ~1!

whered controls the threshold and hence the edge noise, an
D denotes the symmetric difference.d is used as controlling
parameter.S8 is a binary mask giving the spatial domain of
the spot. Figure 9 shows edge noise for variousd thresholds.

2.2.6 Signal Intensity
Simulation of signal intensity is divided into three steps. First,
it is assumed that the fluor-tagged mRNAs cohybridized to a
512 Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3
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single slide are from the same cell type, and therefore
signals from the two fluorescent channels are supposed t
identical, with some variation. Second, some percentage
genes may be selected as significantly over- or unde
pressed. Third, foreground noise is added to the entire arra
simulate the normal scanning integration process.

It is well known that the distribution of gene expressio
levels within a cell closely follows an exponentia
distribution.26 Given a microarray containingN genes, the in-
tensity levelsI k , for k51, . . . ,N, assumed to be related t
the expression levels ofN genes, are simulated by an exp
nential distribution. This intensity levelI k is considered to be
the ground-truth signal that is not directly measurable fro
the microarray, since from either biological or bio-chemic
processes, from mRNA extraction up to the hybridization p
cess, some variation will be introduced into measuremen
final fluorescent signal strength. For each microarray, a p
ticular exponential distribution with meanb is first chosen
~for a detection system with gray-level up to 65 535,b is
usually selected around 3000!. Then at each spot location
which we assume to represent one unique gene, one gro
truth signal levelI k is generated from the exponential distr
bution. For two observable measurements(Rk ,Gk) from two
fluorescent channels, two numbers are generated from a
mal distribution with mean ofI k and standard deviation o
aI k , where a is a predetermined coefficient of variation
which is usually about 5%–30% depending on the assum
biological relation between the two channels.

To include outlier expression levels that reflect certain
alistic conditions,3–10,14one may select 5%–10% of the spo
to be either over- or underexpressed. This condition
achieved by selecting the genes from the entire microar
based on a probability,poutlier ~e.g.,poutlier50.05 for 5% out-
liers!, and then selecting the targeted expression ratio for
kth gene

tk5106bk, ~2!

where bk satisfies a beta distribution,bk;B(1.7,4.8), and
where the1/2 sign is selected with equal probability. Upo
obtaining a targeted expression ratio, the algorithm conv
the expression intensities from the two fluorescence chan
by

Rk85RkAtk,
~3!

Gk85
Gk

Atk

,

whereRk8 and Gk8 denote the signal values after the conve
sion.

Upon obtaining the signal intensities for each sp
(Rk8 ,Gk8), each pixel within the spot binary mask derive
from steps 2.2.1 to 2.2.5 is filled with the signal intensi
Normally distributed foreground noise is then added pix
wise. This yields, at each pixel, the intensitiesSR5Rk1I f 1

and SG5Gk1I f 2 , where I f 1;N(mRk
,sRk

2 ), I f 2

;N(mGk
,sGk

2 ) and mRk
;Rk8U@ f a1

, f b1
#, sRk

;mRk
U@ f c1

, f d1
#, mGk

;Gk8U@ f a2
, f b2

#, and sGk
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Fig. 10 Fluorescent detection response characteristic functions. In all figures, middle (blue) curve is the reference function with parameters of
(a0 ,a1 ,a2 ,a3)5(0,100,21,1). Also, in all figures, the x axis is the input signal intensity, and y axis is the observed signal intensity, and both are
in log10 scale. (a) Delayed response at various levels, with fixed a050 and a351. (b) Different amplification levels, with fixed a050 and a25
21. (c) Different response curvature, with fixed a050 and a351. (d) Some other parameter settings, with fixed a351.

Fig. 19 (a) Part of actual hybridized image with spots larger than average; (b) simulated microarray with larger spots and spots overlapping with
their neighbors; (c) original background intensity extraction program produces undetected spot (target in the middle without outer boundary); (d)
improved background extraction program more accurately measures the local background intensity and effectively allows detection of weak
targets.
Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3 513



Balagurunathan et al.
Fig. 11 Possible scatter plot due to various response conversions for different fluorescent channels. 10 000 data points (gene expression levels) were
generated by the exponential distribution with mean of 3000. After passing, through two fluorescent channels [with some response characteristic
functions as shown in parts (a)–(c)], data variations were added by passing each data point through a normal distribution with the standard
deviation to be 15% of mean expression signal. (a) Without any alteration [or equivalently, set parameters for the response function to be
(a0 ,a1 ,a2 ,a3)5(0,1,21,1)], and assume the signal intensities from red channel and green channel are equivalent (a simulated self–self experi-
ment). (b) Banana shape. Intensity in green channel pass a response function with parameters (a0 ,a1 ,a2 ,a3)5(0,500,21,1), where red channel
takes the parameters (0,10,−1,1). (c) Sinusoid-shape. The red channel’s response function with parameters (0,1001/0.7,20.7,1), and the green
channel with (0,1001/0.9,20.9,1).
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U@fc2

,fd2
#. In the remainder of the paper,a’s are used to

denote the uniform variablesam1
;U@ f a1

, f b1
#, am2

;U@ f a2
, f b2

#, as1
;U@ f c1

, f d1
#, andas2

;U@ f c2
, f d2

#.

2.2.7 Channel Conditioning
Owing to various reasons, such as imprecise quantities o
starting mRNA for the two channels, different labeling effi-
ciencies, or uneven laser powers at the scanning stage,
actual microarray experiments there may not be equal inten
sities even if two channels use exactly the same labele
mRNA. Moreover, one may not be able to assume that th
fluorescent intensity is linearly related to the expression level
In fact, it is very difficult to determine the exact form of the
response function from expression level to intensity due to th
complex combination of bio-chemistry to photon electronics.
We choose a family of functions that covers most of the un-
derstandable conditions, shown in Figure 10, such as delaye
response, saturation~which is an embedded feature in the
digital system since no gray level can pass 16-bit binary digits
in a typical microarray system!, and unbalanced channel in-
tensity. This simulation is intended to facilitate understanding
as to what is the best way for expression ratio normalization
whether linear based methods will be sufficient or nonlinea
based methods will be necessary. The function family is char
acterized by four parameters,(a0 ,a1 ,a2 ,a3), and the func-
tion form is given by

f ~x!5a3@a01x~12e2x/a1!a2#; a3.1. ~4!

Having chosen a function from the family, the expression lev-
els, R8 and G8, from each fluorescent detection channel are
then transformed by the detection system response characte
istic function defined byf R(x) or f G(x) to obtain the realistic
fluorescent intensity observed. The observed fluorescent in
tensities are
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Rk95 f R~Rk8!,

~5!

Gk95 f G~Gk8!,

where f R or f G may take different parameters for each fluo
tagging system. The simulation performs the following ste
for signal placement to emulate the real process affecting
signal spots.

1. Generate ground truth expression signalI k (k
51, . . . ,N) for every gene by exponential distributio
~see Sec. 2.2.6!.

2. Let Rk;N(I k,}I k) and Gk;(I k,}I K). If a self–self
experiment needs to be simulated, skip steps 3 and

3. If we simulate an experiment with two differen
samples, some outlier genes are selected and then
intensities are altered. We obtain(R8,G8) from ~R,G!
for all genes@see Sec. 2.2.6, and Eqs.~2! and ~3!#.

4. If we simulate a fluorescent system with imperfect
sponse characteristics, the intensities are further c
verted by R95 f R(R8) and G95 f G(G8) ~see Sec.
2.2.7!.

5. The actual simulated fluorescent intensities for b
channels are obtained by applying additional variati
via a normal distribution function SR5R9
1N(mR ,sR

2), where mR5am1R9, sR5as1mR , and
similarly for signalG ~see Sec. 2.2.6!.

The scatter plots in Figure 11 show the effects of the ch
nel normalization. By choosing different parameter sets, o
can simulate many of the situations observed in real micro
ray images.
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Fig. 12 Figure shows increased spike noise levels Lspi . (a) Level of
0.1%, (b) level of 5%, (c) level of 10%, exponential rate range is
maintained.
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2.2.8 Edge Enhancement
Under some fabrication conditions, such as incorrect humidity
control, where the cDNA solution tends to accumulate to-
wards the outer edge during the drying process, the spot edg
may appear brighter than the rest of the spot. This phenom
enon is modeled by randomly enhancing the edge. The num
ber,Ne , of pixels from the edge to be enhanced is fixed. The
enhancement,Wed, is added to the original intensity.Wed sat-
isfies a normal distribution,Wed;N(me,1). Randomness be-
tween blocks is modeled by makingme uniformly distributed,
me;U( l a ,l b).

2.3 Postprocessing Simulation
Most postprocessing steps simulate handling and scannin

artifacts: scratch noise resulting from improper handling of
microarray slides, spike noise arising from the impurity of
mRNA extraction steps or perhaps insufficient washing con
ditions, snake noise due to the accumulation of dust if the
slides have sat in open space too long, and last, but not leas
smoothing resulting from many scanners’ averaging effects o
integration processes. For the most part, these steps model t
interaction between signal and noise in the spatial domain
which causes pixel-wise nonlinear degradation. It is expecte
that the microarray image analysis software shall be able t
handle most of the noise conditions outlined here in order to
measure the signal precisely.

2.3.1 Spike Noise
In a practical biology laboratory, it is not necessary to main-
tain a dust-free environment. Hence, fine microscopic dus
particles are nearly impossible to avoid. On laser excitation
these particles fluoresce to give high intensity spikes. More
over, in some cases, bad mixtures of cDNA solutions result in
precipitation, and these particles fluoresce with a very high
intensity. These effects are simulated by adding spike noise a
a preset rate. Such intensity spikes are added randomly acro
the entire slide area, the number of such noise pixels bein
preset in terms of the total number of pixels in the array. The
amount of spike noise in an array is set with reference to th
percentage,Lspi, of the total number of pixels in the array.
Typical low to high noise levels are to be set by selecting
0.1%–10%. Once a pixel is selected for spike noise, the ad
jacent pixels have a higher probability of being affected.
Thus, a random number,Wspi, of pixels are chosen in an
arbitrary direction to be influenced by this noise. The inten-
sity, NS , of the spike noise is governed by an exponential
distribution with meanmspi. In Figure 12, the exponential
e
-
-

g

t,

e
,

t
s

-

mean is fixed but the spike level is increased through the p
of the figure.

2.3.2 Scratch Noise
Physical handling of the array slides can result in surfa
scratches. These typically result in low intensity leve
Scratch-noise intensity is parameterized as a ratio,ksc, giving
the background-to-scratch-noise intensity level. Other par
eters are the number of strips, strip thicknessWsc, and a
random strip length,Lsc, given as a multiple of the spot size
The latter is modeled as a uniform distribution:Lsc
;U@Lsc1,Lsc2#. Strips are placed at random positions on t
array, and are inclined according to a~discrete! uniformly
random angle, uscP$0°,45°,90°,135°,180°%. Figure 13
shows the noise for incremental parameter settings:~a! Lsc
;U@2,7#, ksc52.0, Wsc5four pixels; ~b! Lsc;U@5,10#,
ksc53.0, Wsc5seven pixels; ~c! Lsc;U@7,15#, ksc54.0,
Wsc5ten pixels.The number of strips is fixed at 7.

2.3.3 Snake Noise
Fine fabric dust particles on the slides can create snake-ta
strips on laser excitation. These strips are normally hig
intensity than the signal level. To simulate this noise, an eq
probable multidirectional snake noise has been generated

Fig. 14 Example shows different parameter setting for snake noise. In
this example (a) Nseg55, Lsp;U@5 10#, ksn50.5, Wsp52 pixels, (b)
Nseg510, Lsp;U@5 30#, ksn50.33, Wsp53 pixels, (c) Nseg515, Lsp
;U@5 80#, ksn50.25, Wsp55 pixels, respectively. Direction of the
tail was randomly chosen with equal probability for each.

Fig. 13 Figure shows scratch noise with its parameter settings. Num-
ber of scratches is maintained to 7 in the earlier examples. Following
are the parameter (a) Lsc;U@2 7#, ksc51.5, Wsc53 pixels, (b) Lsc
;U@5 15#, ksc52.5, Wsc57 pixels, (c) Lsc;U@8 45#, ksc54.0, Wsc
515 pixels. The noise factor ksc50.1.
Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3 515
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Fig. 15 Example shows the 333 convolution kernel for (a) flat func-
tion and (b) pyramidal function.
ding

ns,
rma-

h,
on
ray
on-
sisting of some number,Nseg, of segments. Analogously to
scratch noise, the intensity is parameterized as a ratio,ksn,
giving the average-signal-to-snake-noise intensity level, the
number of snakes, snake thicknessWsn, and a random length,
Lsn, given as a multiple of the spot size. The latter is modeled
as a uniform distribution:Lsn;U@Lsn1,Lsn2#. Figure 14
shows the noise for incremental parameter settings:~a! Nseg
55, Lsn;U@5,10#, ksn50.50, Wsn5two pixels; ~b! Nseg
510, Lsn;U@5,30#, ksn50.33, Wsn5three pixels;~c! Nseg
515, Lsn;U@15,80#, ksn50.25,Wsn5five pixels.
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2.3.4 Smoothing Function
Addition of various noise types makes the microarray high
peaked with high pixel differences. This stark irregularity c
be mitigated by smoothing the image with either a flat
pyramidal convolution kernel. The kernels are shown in F
ure 15. The effect of smoothing is illustrated in Figure 1
where the three-dimensional~3D! profile of an originally
noised image is shown, along with versions smoothed by
and pyramidal kernels. Either smoothing kernel can be c
sen.

2.4 Image Generation and Parameter I/O
Parameters governing the effects described in the prece
sections form the input~through a file! to the synthetic array
software. These include parameters for array dimensio
shape parameters, and noise processes. All relevant info
tion, such as spot size, position, various drifts~center hole,
spot!, noise processes,~foreground, spike, snake, scratc
etc.!, and chord rate, are recorded for every spot printed
the synthetic array. Block controlling parameters and the ar
information are also recorded. The recorded information c
Fig. 16 Example shows the 3D profile before and after smoothing. Where (a) noised, (b) flat function, (c) pyramid function.
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Table 1 Parameter settings for the cDNA microarray simulation.

Level Simulation Parameter descriptions Distribution

SPOT Spot size S: Spot radius with (ms ,ss
2) S;N(ms ,ss

2)

Spot drift dx ,dy : Drifting level dx ,dy;U(da ,db)

da ,db : percentage of spot radius

PD : Drift activation probability Dx5dxSU@21,1#

Dx ,Dy : Relative drifting Dy5dySU@21,1#

(X18 ,Y18 ): Drifted center coordinates HX185X1Dx

Y185Y1Dy
H X285X181U@21,1#

Y285Y281U@21,1#
(X28 ,Y28 ): Second channel,

where (X,Y) is predefined spot
center coordinates

Inner hole
size

H,V: Horizontal and vertical axis
of the inner elliptical hole

H;N(mH ,sH)
V;N(mV ,sV)

Inner hole
drift

XC ,YC : Ideal spot center XR5XC1dcxR

XR ,YR : First channel coordinates YR5YC1dcyR

XG ,YG : Second channel coordinates
where

XG5XC1dcxG

dcxG ,dcyG ,dcxR ,dcyR : drift level set at
the block level

YG5YC1dcyG

Chord
removal

PNc
: Chord removal probability

(pk : probability of k chords to
be removed from a target spot)

PNc
5$p0 ,p1 ,p2 ,p3 ,p4%, where

p01p11p21p31p451
Nc;$0,1,2,3,4%

L: Chord length L;B(a L ,b L)

u: Chord position u;U(0,2p)

Spot
intensity

b: Mean intensity for the assumed
cell system

Ik;Exp(b)

Rk ,Gk : kth spot (fixed) signal
intensities for both channels

Rk;N(Ik ,s I)
Gk;N(Ik ,s I)

a: Coefficient of variation of signal
intensity in the system

s I5a Ik

Outlier’s
intensity

poutlier : Outlier activation probability

bk : Outlier control level bk;Beta(1.7,4.8)

tk : Targeted outlier expression ratio,
with equal-probability for +/− sign

tk5106bk

Rk8 ,Gk8 : kth outlier signal intensities
for both channels

Rk85RkAtk
Gk85Gk /Atk

Channel
conditioning

Rk9 ,Gk9 : Prenormalized signal
intensity of the spots on
red, green channels

Rk95f1(Rk8)
Gk95f2(Gk8)

a0 , a1 , a2 , and a3 , parameters for
response characteristic function.

f(x)5@a01x(12e2x/a1)a2#a3 ;
where a3.1
Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3 517
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Table 1 (Continued.)

Spot signal
variation—foreground
noise

SRk ,SGk : Pixel-wise (x,y) signal
intensity

SRk(x,y);Rk91N(mRk9
,sR

2)
SGk(x,y);Gk91N(mGk9

,sG
2 )

as : Within spot signal coefficient of
variation H mRk9

5Rk9am1
;am1

;U@fa1
,fb1

#

mGk9
5Gk9am2

;am2
;U@fa2

,fb2
#

HsR5as1
mRk9

;as1;U@fc1
,fd1

#

sG5as2
mGk9

;as2
;U@fc2

,fd2
#

Edge
enhancement

Wed : Level of enhancement,
parameter (me) set for the block

Wed;N(me,1)

Ne : Number of pixels enhanced

Edge noise Apply edge noise at the set level (ded)

BLOCK Radius
parameters

ms ,ks : mean and radius deviation
factor

ms;U(sa ,sb)
ss;ksms

sa ,sb : bounds of radius, set by block
size and inter spot gap

Chord
parameters

Nc : Chord rate picked with equal
probability

NcPU$0,1,2,3,4% having weights
$p0 ,p1 ,p2,p3 ,p4%

a L , b L : Chord distributional
parameters

a L;U(aa ,ba), b L;U(ab ,bb),

Inner hole
parameters

mH ,mV ,sH ,sV : Parameters for inner
elliptical hole

mH;U(La ,Lb)ms ,
mV;U(La ,Lb)ms

ms : Mean spot radius in the block sH5a1ms , sV5a2ms

a1;U(Pa ,Pb), a2;U(Pc ,Pd)

Drift
parameters

dcxG ,dcyG ,dcxR ,dcyR : drift level dc;U@ i,j#

i, j: Percentage of the spot radius dcxG5dcU@21,1#, dcyG5dcU@21,1#

dcxR5dcxG1U@21,1#, dcyR5dcyG1U@21,1#

Enhancement la , lb : Range of intensity ratio. Set
mean level of enhancement for a block

me;U(la ,lb)

ARRAY Physical
dimensions

Bw , Bh : Block size—width, height
(distance between first spot
centers of any two block)

Typical Setting for a 8 blocks, 2 row
array (in pixels):

Ml ,Mr ,Mt ,Mb : Margin settings
(left, right, top, bottom)

Bh ,Bw5900
Ml ,Mr ,Mt ,Mb5100

Npin ,N row : Number of pins in an
array, printed equally across
N row number of rows

NSw ,NSh : Number of spots along
the width (NSw) and height
(NSh) of the block
518 Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3
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Table 1 (Continued.)

Signal to
noise ratio

SNR: Signal to noise level is set for
an array

Interspot
distance

Gsp : Interspot distance, set for
an array

Background Ib–ch1 , Ib–ch2 : Background intensity,
with parameters set for an
array

Ib–ch1;N(mb ,sb1

2 )

Ib–ch2;N(mb ,sb2

2 )

g: Background level
Parameter settings:

g;U@a,b#

—Flat fluorescent background mb5g,

—Functional background g(x,y):
choice of parabolic, positive or
negative slant surface function

mb5gg(x,y),
with,
sb1

5(kb1
mb), sb2

5(kb2
mb)

Spike noise Lspi : Level of spike noise (set in
terms of percentage of total pixels)

Ns : Intensity of the spike noise Ns;Exp(mspi),

mspi : Noise rate mspi;U@e,f#

Wspi : Width of the noise cluster Wspi;U@g,h#

Edge noise ded : Set the controlling parameter ded set as a percentage of maximum
intensity value

Snake noise Nseg : Number of snake tails in an image Nseg ,ksn ,Lsn ,Wsn

Isn : Intensity of the noise tail Isn;N(msn ,ssn),

ksn : Average signal-to-snake-noise
intensity level

msn5(Ik /ksn), ssn5ksnmsn

Lsn : Length of the segment
expressed as multiples of
average spot size

Lsn;U@Lsn1 ,Lsn2#

Wsn : Width of the snake noise tail

Scratch
noise

Nsc : Number of scratch tails in an image Nsc ,ksc ,Wsc ,u

Isc : Intensity of the scratch noise Isc;N(msc ,ssc)

ksc : Average background-to-
scratch-noise intensity level

msc5(mb /ksc), ssc5kscmsc

Lsc : Length of the segment in units
of average size of the spots

Lsc;U@Lsc1 ,Lsc2#

Wsc : Width of the scratch noise uPU$0°,45°,90°,135°,180°%

u: Scratch noise inclination
ls

e
n in

in
tains the true signal for the synthetic microarray. This can be
used subsequently to analyze various signal processing too

TIFF format is widely used due to platform independence
and flexibility of data representation. The synthetic images ar
generated in TIFF with sample~pixel! resolution of two bytes
for every color ~R,G!. Both monochrome and color images
.
~R, G as two block and interlacedR, G, with dummyB! are
generated. Standard freeware routines~http://www.libtiff.org!
are used to generate these formats. The image file is writte
blocks, where the size of the block~commonly called ‘‘strip’’!
is set equal to the image width. The image data is written
the native order~big-endian, little-endian! of the host CPU on
Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3 519
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Fig. 17 This example shows full size arrays simulation with different parameter settings: (a) good quality has SNR of 2.0, with normal background,
spike noise Lspi50.3%, (b) noisy array with SNR of 1.1 with parabolic background noise, spike noise Lspi515%.
520 Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3
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Simulation of cDNA Microarrays . . .
which the library is compiled. Image data quality is main-
tained by disabling compression and other special option
available in these routines and formats.

2.5 Summary of Model Parameters
The cDNA microarray printing process can be categorized
and grouped into independent events. Each event is probab
listically described by assigning a distribution, as previously
described. Due to the physical nature of the process, ther
exist variations between events. This variation is described b
randomization of the controlling parameters~second level
randomization!. The parameter randomization can be broadly
grouped as~i! randomization at spot level,~ii ! randomization
at block level, and~iii ! randomization at array level. The pa-
rameters are grouped and mathematically described in Tab
1.

Each noise type is categorized into one of the three group
and individually parameterized. Some are related to anothe
noise parameter; others are independent. Each noise para
eter is assigned a statistical distribution fitting its nature. Fo
instance, consider spot radius. Spot radius obeys a norm
distribution (ms ,ss

2), where the mean spot radius(ms) is
randomly picked over a small range(sa ,sb) at the block
level. This spot size range is set for an array depending on
user setting: the number of spots in a block(NSw ,NSh) at the
array level. If a noise type needs to be suppressed, then th
corresponding parameters can be set small to nullify its effec
For example, inner spot hole follows a normal distribution
along its vertical(mH ,sH) and horizontal(mV ,sV) axes. Its
parameters are randomly picked from a preset range(La ,Lb)
and related to the mean spot radius(ms) at the block level
@mH;U(La ,Lb)ms ,mV;U(La ,Lb)ms#. For small or negli-
gible doughnut holes, this preset range can be set small, o
even null for perfect spots. The table is perused from spo
level to the array level, tagging through the corresponding
parameters, as indicated in the earlier examples.

3 Examples of Simulated Microarrays and Image
Analysis
All of the described process and noise effects are controlle
by appropriate parameter selection. Depending on the param
eter setting, the arrays can be roughly classified as ideal, a
erage, or noisy. Given a good printing run~no mechanical
deposition problems!, a relative matured hybridization proto-
col, and good RNA samples, along with a scanner of minima
optical warping, focusing, and integration problems, we ex-
pect a high-quality~ideal! microarray image. The correspond-
ing simulated ideal image will have a flat mean background
with typical autofluorescence variation~,10% of mean back-
ground level, but no less than square root of the mean back
ground level!, minimum spike/scratch/snake noise, little edge
enhancement and no channel conditioning problems. For av
erage image quality, one would expect larger background
variation and possibly a slanted mean level. There will also be
more spike/scratch/snake noise interfering with signal spots
In a noisy setting, besides higher noise levels for various pos
sible interference, one would also expect uneven backgroun
level ~e.g., parabolic function!, heavy spot deformity~chord
i-

e
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e
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r
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-

-

-

.
-

cuts, edge enhancement, and large inner holes!, and different
channel conditioning@such as the banana shape in the inte
sity scatter plot shown in Figure 11~b!#.

Figure 17 shows two microarrays generated withNSw

535 rows andNSh525 columns, atBh5Bw5900pixels per
block. Array boundaries are set at(Mt ,Ml ,Mr ,Mb)
5(100,100,100,100). By choosing parameters, two differen
array qualities have been generated. Part~a! illustrates an
ideal microarray image with normal background and para
eters b53000, SNR52.0, a50.05, Gsp56, PD50.05,
(da ,db)5(2,15), (kb1

,kb2)5(10,10), Poutlier50.05, Lspi

50.3%, ded50.3:

~ f a1
, f b1

, f c1
, f d1

!5~2,8,2,6!,

~ f a2
, f b2

, f c2
, f d2

!5~2,8,2,8!,

~a0 ,a1 ,a2 ,a3!5~0,1,21,1!,

~b0 ,b1 ,b2 ,b3!5~0,1,21,1!,

~ l a ,l b ,Ne!5~1,3,3!,

~p0 ,p1 ,p2 ,p3,p4!5~0.97,0.03,0,0,0!,

~KSN,LSN1,LSN1,WSN,NSN!5~0.25,10,50,1,2!,

~KSC,LSC1,LSC2,WSC,NSC!5~3,5,35,3,1!.

Part~b! illustrates a noisy microarray image with parabo
background and parameters:b53000, SNR51.1, a50.25,
Gsp54, PD50.4, (da ,db)5(15,100), (kb1

,kb2)5(25,25),
Poutlier50.7, Lspi515%, ded50.03:

~ f a1
, f b1

, f c1
, f d1

!5~6,12,8,20!,

~ f a2
, f b2

, f c2
, f d2

!5~6,12,8,20!,

~a0 ,a1 ,a2 ,a3!5~0,500,21,1!,

~b0 ,b1 ,b2 ,b3!5~0,10,21,1!,

~ l a ,l b ,Ne!5~10,40,3!,

~p0 ,p1 ,p2 ,p3,p4!5~0.05,0.3,0.25,0.25,0.15!,

~KSN,LSN1,LSN1,WSN,NSN!5~0.25,60,110,2,10!,

~KSC,LSC1,LSC2,WSC,NSC!5~0.25,60,110,2,10!.

To illustrate how the simulation can be used to analy
microarray image software, we apply the ArraySuite11 soft-
ware to extract the image intensities and ratios from the im
and then compare these to the corresponding intensities
ratios used for simulation. We use the ideal case to illustr
the utility of the simulation. In Figure 18~a!, intensities from
one fluorescent channel have been extracted~y axis! and plot-
ted against the simulation signal intensities. The extracted
nal generally corresponds well to the simulated signal, w
Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3 521
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Fig. 18 Comparison between simulated signal (ideal setting) vs extracted signal from microarray image analysis program. (a) Signal extracted from
one fluorescent channel (y axis) comparing to the signal used for simulation in the same channel (x axis). (b) Ratios from microarray image analysis
program (y axis) comparing to the ratios generated by the simulation (x axis).
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some variation. After excluding intensities less than 300, the
mean and standard deviation of the difference between th
two log10-transformed intensities are 0.016~or 100.016

51.038! and 0.038~or 100.03851.09!, respectively. The ratio
comparison is given in Figure 18~b!. When signal intensity is
weak ~less than 300!, various noise components in the simu-
lation process affect the accuracy of the signal extraction pro
gram. Since the problem is unavoidable, a measurement qua
ity metric is necessary to provide confidence in downstream
data analysis. In this case, we see that if the signal intensity
less than 300, then the noise interaction is significant.

4 Conclusion
Modeling and simulation of microarray image formation is a
key to benchmarking various signal processing tools being
developed to estimate cDNA signal spots. Using a model to
describe the signal ground truth not only helps in evaluating
these tools, but also facilitates the understanding of variou
process interactions. To illustrate how the image-simulation
program presented in this paper can be used in the develo
ment of image-analysis software, we describe an actual cas

The simulation program has been used extensively in th
design of the microarray image-analysis program used at th
National Human Genome Research Institute. This has bee
done by testing the accuracy of the analysis program on simu
lated images exhibiting troublesome noise conditions and the
tuning the program to achieve better results. One such appl
cation concerns large and overlapping spots, as illustrated i
Figure 19~a!, which shows part of an actual hybridized image
in which some spots are substantially larger than intende
owing to randomness in the cDNA deposition procedure. This
defect causes various problems, one being poor backgroun
estimation. We illustrate this problem by simulating an image
with large spot size variation and drifting conditions@Figure
522 Journal of Biomedical Optics d July 2002 d Vol. 7 No. 3
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19~b!#. If the image analysis program extracts the local ba
ground by averaging the region around the bounding b
~which was used as a starting condition in an earlier vers
of the NHGRI program!, an elevated background average m
be obtained since the bounding box may overlap neighbo
targets that are large in size and strong in expression level
additional problem is that some weak targets may not be
tected@Figure 19~c!#. Based on these considerations, the p
gram has been modified to calculate the four average inte
ties from the four corners and the four average intensi
from the four sides of the bounding box, and then take
minimum among all of these as the initial estimation of t
local background. A histogram-based method is then invo
around the initial estimated background to further improve
estimation. The output from Figure 19~b! according to the
modified program is shown in Figure 19~d!: the weak target is
detected and there is improved local background estima
for all spots.
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