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Abstract. cDNA microarrays provide simultaneous expression mea-
surements for thousands of genes that are the result of processing
images to recover the average signal intensity from a spot composed
of pixels covering the area upon which the cDNA detector has been
put down. The accuracy of the signal measurement depends on using
an appropriate algorithm to process the images. This includes deter-
mining spot locations and processing the data in such a way as to take
into account spot geometry, background noise, and various kinds of
noise that degrade the signal. This paper presents a stochastic model

National Human Genome Research Institute for microarray images. There are over 20 model parameters, each
governed by a probability distribution, that control the signal intensity,
spot geometry, spot drift, background effects, and the many kinds of
noise that affect microarray images owing to the manner in which
they are formed. The model can be used to analyze the performance
of image algorithms designed to measure the true signal intensity be-
cause the ground truth (signal intensity) for each spot is known. The
levels of foreground noise, background noise, and spot distortion can
be set, and algorithms can be evaluated under varying conditions.
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1 Introduction tering and classification, raising concerns about their validity.
Since the inception of cDNA microarray technoldggs a Numerous remedies have been proposed, such as carefully
high throughput method to gain information about gene func- designed experiments in which duplications are used to mini-
tions and characteristics of biological samples, many applica- Mize the uncertaint'* However, given the scarcity of cer-
tions of the technology have been reportetf.with the im- tain biological samples, large duplications of experiments are
provement of the technology, including fabrication, often impractical. To improve detection and quantification of
fluorescent labeling, hybridization, and detection, many com- weak targets, it is important to understand the entire process
puter software packages for extracting signals arising from of microarray formation, from fabrication to the scanning mi-
tagged mRNA hybridized to arrayed cDNA locations have croscope. Use of the knowledge that the average intensity of
been designed and applied in various experimEntsAs re- the background fluorescence is normally distributed to help
ported in Ref. 11, a target detection procedure has been imple-design a background detection algorithm is one example of
mented that utilizes manually specified target arrays, extractsincorporating prior knowledge into detection methdgis.

the background via the image histogram, predicts target shape A complex electrical-optical-chemical process is involved
and then evaluates the intensities from each cDNA location j cDNA-microarray technology, from fabrication of the
and its corresponding ratio quantity. cDNA slide, to preparing the RNA, to hybridization, to the

~ While most software packages are satisfactory for routine captyre of images created from excitation of the attached flu-
image analysis and the extraction of information regarding s This complex process possesses multiple random factors.
phenomena with highly expressed genes, the desire t0 disya4es arising from it must be processed digitally to obtain
cover subtle effects via microarray experiments will ulti- e gane expression intensities and/or ratios that quantify rela-

{na:]elyl d;f;’ N .ﬂ? xlperlm?nf[; tOV\IIQa’:IdAS t27 limit —of tkTe tive expression levels. The efficacy of the analysis to be
echnology,” With fess starting m andjor moré weakly caried out on the ratios, be it clusterifiy

expressed genes. Weak signals and their interaction W'thclassificatiorﬁ'loprediction?o*ﬂor some other, depends on the
background fluorescent noise are most problematic. Problems

include the nonlinear trend in expression scatter plots, fishtail- ?abtlgt;n((); égisln; tae?]'tn% tzlﬁ;?t?? et?s ?ﬁ?i;giﬁlgzniﬁ E.iscg’g;n
ing at lower signal range, low measurement quality of expres- : ! Iy Tev POLS. AS 1 )

sion levels due to uneven local background, and small cDNA- mon in im"?‘ging app!ications, itis difficulor perhaps imposj
deposition areas. These artifacts, or sources of uncertainty,SiP!®) t0 utilize physical ground truth as a standard by which

creep into higher-level statistical data analyses, such as clus-© €valuate algorithm performance. Hence, it is common to

proceed by modeling the imaging process to simulate the vari-
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ous aspects of the real image proc&sé*Image processing  tion, printing, and scanning. Various features of the model

algorithms can be applied to the simulated process to evaluatesimulate these random perturbations.

their performance. One might also concurrently adjust the

model parameters to see how changing various random com- . . .

ponents of the formation process impacts upon the final im- 2 Simulation of cDNA Microarrays

ages, and therefore the ability to extract meaningful informa- The simulation of the cDNA microarray images is designed

tion. For instance, an algorithm might have biases at low for two-color fluorescent systems with a scanning confocal

signal intensities or high noise intensities that are not presentmicroscope. A block diagram of the overall simulation pro-

at higher signal intensities or lower noise intensities. Here it cess is given in Figure 1, which includes four main modules:

should be recognized that “ground truth” refers to the true fluorescent background simulation, simulation of cDNA target

signal intensity, not the actual quantity of mRNA in the Spot generation, postprocessing simulation and tagged image

sample corresponding to the DNA in the spot. file format(TIFF) image output. Each simulation module con-
Modeling anything but a very simple physical process is a tains many sequential stefsuch as spot formatigror alter-

very challenging task. A physical process is typically influ- native stepgsuch as different background fluorescendte

enced, directly or indirectly, by forces whose interrelation is Will discuss each step according to the order in Figure 1 in the

unknown. The resulting model will be a random process. Each following subsections.

realization of the model depends on random variables chosen

according to various model distributions. A good quantifiable o q Background Simulation

model must approximate the physical process and have real_The fluorescent background level is an important part of
istic variability to describe the randomness of the system. In : CKYIC . mp P .
expression-level estimation, since we routinely use the addi-

the present work, microarray image formation is modeled by a :
. . tive model to subtract the local background from the signal
series of random processes influenced by almost two dozen. - : ) .
intensity measurement. It is understood that when the signal is

Fha;igﬁ;irss.r\;\f d\(,)vrI! ?/Zfi;rg?:st?ﬁar:ggﬂ ;rrﬁnp(;o;eostssligéersrgz O(fasufficiently low, the interaction between the fluorescent back-
P ' P ground and signal affect the estimation process in most image

and intensity, as well as variables that affect the background,anallysis programs, resulting in lower measurement quality in

m_cIu_dmg hoise. Each random variable is associated with a he expression ratio. Many factors contribute to the observed
dlstrlbutl_on._ln SOME cases, one may §elect the parameters 0#Iuorescent background: autofluorescence from the glass sur-
the d,'St”bUt'On(SUCh as mean and \{a.mance.for anormal dis- 506 or the surface of the detection instrument, nonspecific
tribution) to reflect the image qualities of interest, such as yqing of fluorescent residues after hybridization, local con-

brightness, spot size, noise intensity, etc. In other cases, themination from posthybridization slide handling, etc. A per-
distribution of a random variable is dependent on the outcome ¢q system would yield a flat background possessing a nor-

of some other variable, and it is possible that the parametersyg| gistribution, while a microscope without an autofocus
governing the distribution of a random variable may them- echanism may produce a slanted background level if the
selves be random variables. o slides are loaded unevenly. Some other extreme hybridization

Although we postulate various distributions to govern the congition may cause higher nonspecific hybridization to the
variables in the model, one may wish to use other distribu- edge of the hybridization chamber, which effectively creates a
tions to characterize the signal and noise distributions. More- parabolic surface of background noise. We leave the local
over, the experimenter is free to choose the parameters of thecgntamination to the processing module in Sec. 2.3.
distributions. Microarray technology is evolving rapidly, and ~ The background derived from surface fluorescence upon
there are already many variations of the technology in use. |aser excitation is usually governed by the Poisson process,
Hence, model flexibility is mandatory. For instance, for a mi- which can be approximated by a normal distribution when the
croarray system that does not produce doughnut holes in thearrival rate, or the accumulation of photons, is large endfigh.
spots, the variables associated with the hole can be nullified. This property can be readily assessed by the histogram of any
In the case of a stable system in use without change for abackground region of the microarray images. Therefore, back-
sufficiently long period to produce a large number of images, ground noise is simulated by a normal distribution whose pa-
one can apply statistical estimation to determine some modelrameters are randomly chosen to describe the prodgss:
parameters, such as those for spot radius. Clearly, these esti~N(u,,02). If multiple arrays are desired, the inter-array
mates will only be of value to the specific system from which difference is modeled by a uniform distributionu,
they have been derived. Hence, they remain outside the simu-~U(a,b). o, is given as a multiple oft,: op,=Kkpup, . Typi-
lation package per se. cally, ky, is about 10% of the mean background level.

The simulation algorithm produces spots at a preset grid of ~ Rather than be constant across the entire microarray, the
locations that resemble the actual microarray. Each block cor-mean of the background noise may vary owing to various
responds to a specific pin of the robot hand, and the interblock scanning effects. It can take different shapes: parabolic, posi-
variation is modeled in the simulation by allowing various tive slope, or negative slope. In this case a functi¢r,y) is
model parameters to be randomized by block. At the start of first generatedparabolic, positive slope, or negative slppe
each new block, the parameters of the spots are reset. Thdorm a background surface and normal noise is added to it
intention of the printing process is that spots possess regularpixel wise. Thus, the background intensity is of the foirgn
circular shapes. Due to mechanical fatigue, the adhesion pro-~N(uy, ,aﬁ) with up=7vyg9(Xx,y), where y~U(a,b) is the
cess for the DNA solution concentration, and biochemical in- targeted background noise level. Background deviation is set
teractions, various perturbations are possible in array prepara-independently for each channelcrbl= kbl,ub and Op,
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Fig. 1 Figure shows the steps involved in generating the microarray.

=Ko, up . Figure 2 shows various noise backgrounds wkith
=kp,=0.1. All images are shown in large size on a web
page?’

In many practical examples, the nonspecific hybridization
at the target location may be different from its peripheral re-
gion. Although one may have trouble pin-pointing this par-
ticular observation under normal conditions owing to signal

higher levels than the signal intensities. Hence, there is an
option to use global background or local background informa-
tion to set the noise parameter for the center hole. Figure 3
shows the effects of using local and global background pa-
rameters. This effect may not appear everywhere in a simu-
lated image; however, it is often sufficient to require appro-
priate algorithm design in the image analysis program to

interference, it is sometimes unmistakable when locations as-lessen the penalty. The effects of weak targets will be further
sumed to be weakly expressed, or not expressed at all, carrystudied in later sections.

some nonzero readouts, or the intensity in the center is stron-

ger than the doughnut ring if the printed target is doughnut 9 o Spot Simulation

shaped. We simulate this artifact under a gradient noise con-
dition by allowing the background for the center holes to be at

@ (b) ©

Fig. 2 Figure shows various background noises. The mean SNR is set
at 1.0 for the slides. The slides have following settings: (a) parabolic
back ground noise, (b) positive slope background, and (c) negative
slope background all with global noise parameter. The background
deviation factor is set at k, =k,,=10%.

cDNA deposition routinely follows a rigid grid defined by the
robotic print pattern. The simulation algorithm produces spots

(@) ' )

Fig. 3 Example shows different noise settings for spots inner hole.
Where (a) uses global background parameter to fill the center hole, (b)
uses local background for filling the center hole. The background
noise is set to sloped type with SNR of 1.5.
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Fig. 4 cDNA microarray spot model.

Fig. 5 Figure shows the variability in spot size and spread from its
size. The spot radius distribution is automatically set depending on the
number of spots in a block (width, height). In the earlier example has
@ (10,15), po~U[23.3 24.3], (b) (20,25), e~ U[12.6 13.6] and (c)
(25,45), p,~U[5.456.45], with standard deviation k=1%, 7%,
20% of radius, respectively.

tion where too much cDNA solution is deposited and/or the
drying process may be slow in comparison to the liquid
spreading process.

Depending on the robot arm and printing ability of the
pins, the interspot distanc&g,, may vary. Owing to the

at preset grid locations that resemble the actual microarray. Inphysical mechanics of the robot arm, the block sipiel

principle, print tips are manufactured uniformly; however,

units) is fixed in most cases. The interspot distance can be set

their microscopic morphologies, and thus their deposition- to accommodate spot size and random variation in spot radii.
binding behaviors, are noticeably different. Each block corre- The effects are illustrated in Figure 6, where the number of
sponds to a specific print tip of the robot hand. To take tip rows and columns are fixed.

variability into account, within each block the spot variation is

governed by block parameters, which themselves are random2.2.2  Spot Drift
variables. At the start of each new block, the spot parameterspuring the fabrication stage, the deposition of cDNA targets

are reset according to these random variables.

may not follow the predefined grid owing to print-tip rotation,

The key simulation of this study is devoted to the cDNA vibration, or other mechanical causes. Other drifts are attrib-
targets, which nominally possess a circular shape. Owing to uted to the slide’s coating properties and the drying rates of
many factors, the actual shape may be highly noncircular. The the cDNA. This displacement is modeled by possible random

model takes various random perturbations into acco(nt:
radius variation(2) spot drifting locally,(3) center core varia-
tion, (4) chord removal,(5) edge noise(6) edge enhance-
ment, (7) signal intensity, and8) signal response transform.
Figure 4 shows a schematic drawing for the cDNA target
simulation. The variables in the figure are explained in the

following eight subsections.

2.2.1 \Variation of Radius

Prior to distortion and noise, the cDNA deposition spot is
considered to be circular with random radBisThe mean of

translations in the horizontal and vertical directions. Each spot
has an equal probability? , of drifting. If a spot is selected
for drift, then the amounts of drift in both directions are ran-
dom multiples of the current spot radius. The horizontal and
vertical multiples,d, and 8,, called the “drift levels,” are
uniformly distributed: 8y, é,, ~U(d4,dp). The horizontal
and vertical drifts areD,= 6,S and D,=6,S, respectively.
Interspot distance can be set according to the drift to minimize
the impact of overlapping spots.

Some microarray scanners capture two fluorescent signals
in two passes of scanning. Due to the mechanical homing
error, the two fluorescent channels may not align exactly. In

the radius is set according to the array density and its variance

relates to the consistency of spot si&is modeled by a
normal distribution having meams and variancecrg, S
~N(us,0s), with the standard deviation being a predeter-
mined proportionks, of the mean, 0iS~N(us,Ksus). The
radius mean is set for every block, and randomized over a
small range within the array. The block randomnesg.gfis
modeled by a uniform distributiongs~U(s,,S,). Figure 5
shows parts of blocks with spot radii depending on the num-
ber of spots in a block. For Figure$ab—5(c), the block por-
tions are for block size€l0,19, (25,49, and(25,45, respec-
tively, where (col, row) denotes the number of spots in
columns and rows within the block, respectively. Occasion-
ally, a spot overlaps with it neighbofBigure 5c)] whenk; is

set to a larger proportion. This situation simulates the condi-
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Fig. 6 Figure shows interspot grid spacing, (a) Gg=3 pixels, u,
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with k,=0.05.
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Fig. 7 Figure shows the effect of radius drift (Py,d,, dy). (a
(0.05,5,100), (b) (0.25,15,100), (c) (0.5,50,100). As the activation
probability with drift range is set higher, the spots drift away from its
center.

Fig. 8 Figure shows different chord rate settings for each of the slide.
The probability weights for (0,1,2,3,4) chord rates were set at follow-

h . I off b h h | ing levels. (a) (0.7,0.3,0.0,0,0), (b) (0.2,0.4,0.25,0.15,0), (c
these settings, some small offset between the two channe $0.0,0.1,0.4,0.3,0.2), respectively. Chord rate is reset at the beginning

can be observed. This offset may occur at subpixel resolution. of 4 block.

To simulate this offset, the model offers a random offset

between the centers of the two channels. It is achieved by

randomly offsetting the spot center of the second channel where the controlling ratios vary over a rangey,a,

by one pixel in either of the horizontal and vertical directions. ~U(P,,P,). The choice of the parameters governs the hole

These offsets are applied following application of the shapes. The center position of a hole is allowed to drift over a

spot drifts. Figure 7 illustrates the spot drift. range. The shape is unaffected by the drift because the me-
It is essential for the image analysis algorithm to determine chanical print tip to surface contact is unaffected. The amount

the exact location of the target spot so that an accurate mea-of drift in the horizontal and vertical directions is modeled

surement can be carried out without the interference of the similarly to spot drift. Drift levels are set at every block,

dusty noise around the targets. Some algorithms rely on the(dc,g,dcyr) and (dc,g,6Cyg), for both channels. The

assumption that the printing grid is rigid with the cDNA target amount of drift is first selected from a uniform rangsg

in the center; others assume an imperfect printing process~U[i,j]. Channel and interchannel drifts are modeled by a

such that a deformable grid is necessary. The former methoduniform variate and set for each blocgc,s= scU[ —1,1],

is faster and noise insensitive, but may be inaccurate if the 6c,g=6cU[—1,1], &cg=0Cc+U[—1,1], and &cyr

slides are fabricated with many displacements; the latter is = éc, g+ U[ —1,1].

robust in target position detection, but can be rather slow and

noise sensitive. In either case, the simulation outcome will

provide a set of evaluation images to assess the tolerance o2.2.4 Chord Removal

both algorithmic designs. The slightly misaligned channels Sjnce parts of a spot can be washed off due to various physi-
also pose a challenge to signal intensity extraction. cal effects during the hybridization and washing stages, pieces
of a spot may be missing. We would like to simulate this
condition for the same reasons that the center hole is simu-
2.2.3  Doughnut Hole lated. This irregularity is modeled by randomly cutting chords
Owing to the impact of the print tip on the glass surface, or from the circular spots. The number of chords to be removed,
possibly due to the effect of surface tension during the drying N, for a spot is selected from a discrete distributifih, 1, 2,
process, a significantly lesser amount of cDNA can be depos-3, 4}, where the elements of the distribution occur with prob-
ited in, or attached to, the center of the targets. Consequently,abilities pg, p1, P>, P3, and p,, respectively. For images
the center of the target emits less fluorescent photons, therebywith very few pieces cut off, the zero-chord probabilgy is
giving a target the doughnut shape. It is critical for signal very high, and the three- and four-chord probabilities are
intensity extraction whether or not the center hole is assumed,close to O(possibly equal to 0 To model interarray variabil-
particularly when the signal is weak and there is a large centerity, the probabilities can be treated randomly.
hole. The simulation allows one hole in the center with vary- Once the number of chords for a spot is determined, the
ing size, along with a possible off-center displacement. It is distancel, of each chord center to the edge is selected from
not necessary to simulate more than one hole, since the matha beta distributionL ~B(« ,8.). Interblock variability is
ematical properties for signal and noise estimation are pre- modeled by allowingy, andg, to be randomly selected from
served with this simple condition. uniform distributions:e ~U(a,,b,), and . ~U(az,bp).
An elliptical shape models the inner core with random Owing to the large family of shapes generated by beta distri-
horizontal and vertical axe$] andV. The axes are modeled butions, this provides a wide range of distributions lfor~i-
by a normal distribution whose parameters are randomized for nally, the chord locations are chosen uniformly randomly ac-
each block within a given arrayd~N(uy,on) and V cording to an angled~U(0,27). Figure 8 illustrates the
~N(uy,oy). Interarray variability in these radius distribu- effect of selecting increased chord ratéal p,=0.70, p;
tions is modeled by uniformly distributed meang:y =0.30; (b) pg=0.20,p;=0.40, p,=0.25,p3=0.15; (c) po
-~ U (aH ,bH), o= a1 Uy and My~ U (a\/ ,bv), Oy= a1y, = 0, p1: 010, p2: 040, p3: 030, p4: 020
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single slide are from the same cell type, and therefore the
signals from the two fluorescent channels are supposed to be
identical, with some variation. Second, some percentage of
genes may be selected as significantly over- or underex-
pressed. Third, foreground noise is added to the entire array to
simulate the normal scanning integration process.

It is well known that the distribution of gene expression
levels within a cell closely follows an exponential
distribution?® Given a microarray containinly genes, the in-

i i . he od ) X Noi i tensity levelsl,, for k=1, ... N, assumed to be related to
ig. 9 Figure shows the edge noise on the spots. Noise contro ing the expression levels dfl genes, are simulated by an expo-
parameter (&) can be set from [0,1.0]. The example shows an in- . VI o . . .

creased edge noise effect, where (a) 5=0.25, (b) 5=0.1, () 5=0.03, nential distribution. This intensity leve], is considered to be
where & is the proportion of maximum intensity. the ground-truth signal that is not directly measurable from

the microarray, since from either biological or bio-chemical
processes, from mRNA extraction up to the hybridization pro-
2.2.5 Edge Noise cess, some variation will be introduced into measurement of

Owing to the manner in which liquid dries, the spots usually final fluorescent signal strength. For each microarray, a par-

do not have smooth edges. To provide a realistic visual effect, ficular exponential distribution with mea# is first chosen

as well as to pose a challenge if edge detection algorithms are!for @ detection system with gray-level up to 65535]is
under consideration, we simulate this irregular edge effect via USually selected around 3000Then at each spot location,
parameterized noise using a binary edge-noise algorithm em-Which we assume to represent one unique gene, one ground-
ployed in digital document processiffyAfter determining truth signal levell, is generated from the exponential distri-

the target shape by cutting the center hole, removing possiblePution. For two observable measuremefitg, G) from two
chords, and possibly creating drift, and prior to simulating the fluorescent channels, two numbers are generated from a nor-

signal intensity, the spot is still in its binary format, and thus Mal distribution with mean of, and standard deviation of
the binary edge-noise algorithm can be applied directly. Edge ¢!k, Where « is a predetermined coefficient of variation,
noise is applied to both the outer perimeter of the spot and the Which is usually about 5%-30% depending on the assumed
inner perimeter containing the hole. blologl_cal relatlon_between the two channels. _

The algorithm begins by first generating a white noise _T_o mcluo_le_ outlier expression levels that reflect certain re-
(mask image having rangg0, max intensity. A 3x 3 aver- alistic copdltlon§‘l°’14one may select 5%-10% of the spots
aging filter is applied to the white-noise image to arrive at a © Pe either over- or underexpressed. This condition is
noise imageN that possesses a degree of correlation resem-2achieved by selecting the genes from the entire microarray
bling the noise characteristics of various physical processes,?@s€d on a probability,yier (€.9-, Poutier=0-05for 5% out-
including printing processes. The edge of a binary image can liers), and then selecting the targeted expression ratio for the
be considered to consist of two parts, inner and outer borders kth gene
In our case, the spot radius is known and so are these borders.

The inner border is formed by morphologically eroding the tk=101'bk, (2
image by a3X 3 structuring element and then subtracting the o o

erosion from the original image. The outer border is formed Where by satisfies a beta distributior,~B(1.7,4.9, and

by morphologically dilating the image by 2x 3 structuring Wher.e.the+/— sign is selecte'd W|th.equal probqblllty. Upon
element and then subtracting the original image from the di- Obtaining a targeted expression ratio, the algorithm converts
lation. To apply noise to the inner border, a threshotdd the expression intensities from the two fluorescence channels
+ 6, just above midpoint is applied td, this binary image is by

ANDed with the inner border of the original binary sp8t

and the result is XORed witB. Noise is applied to the outer Re= Rk\/t—,

border by thresholding\ just below the midpoin{mid— 6), 3)
complementing, and then ANDing with the outer bordeSof

This noisy outer border is then ORed with the image possess- Gﬁ:&

ing inner border noise to yield the edge-degraded binary spot \/ﬁ
S'. The process is mathematically described by
whereR; and Gy denote the signal values after the conver-
S =[(Nmig+ 5N Sin) ASJU[ (Nmig— )N Soud ) sion.

Upon obtaining the signal intensities for each spot,
(R ,Gy), each pixel within the spot binary mask derived
from steps 2.2.1 to 2.2.5 is filled with the signal intensity.
Normally distributed foreground noise is then added pixel-
wise. This yields, at each pixel, the intensit®@&®= R, + ¢,
2.2.6 Signal Intensity and  SG=Gy+lrz, where 11n~N(ug,0%), lr

2 ’
Simulation of signal intensity is divided into three steps. First, ~N(&6,,0G,) and  wr ~RU[fa Ty ], OR,
it is assumed that the fluor-tagged mRNAs cohybridized to a ~MRkU[fcl,fdl], MG;G;U[faz,sz], and oG,

where 6 controls the threshold and hence the edge noise, and
A denotes the symmetric differencéis used as controlling
parameterS’ is a binary mask giving the spatial domain of
the spot. Figure 9 shows edge noise for varioukresholds.
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Fig. 10 Fluorescent detection response characteristic functions. In all figures, middle (blue) curve is the reference function with parameters of
(ag,a;,a,,a3)=(0,100,—1,1). Also, in all figures, the x axis is the input signal intensity, and y axis is the observed signal intensity, and both are
in log;, scale. (a) Delayed response at various levels, with fixed ag=0 and a;=1. (b) Different amplification levels, with fixed a,=0 and a,=
—1. (c) Different response curvature, with fixed a;=0 and a;=1. (d) Some other parameter settings, with fixed a;=1.

(a) (b)

(d)

Fig. 19 (a) Part of actual hybridized image with spots larger than average; (b) simulated microarray with larger spots and spots overlapping with
their neighbors; (c) original background intensity extraction program produces undetected spot (target in the middle without outer boundary); (d)
improved background extraction program more accurately measures the local background intensity and effectively allows detection of weak

targets.
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Fig. 11 Possible scatter plot due to various response conversions for different fluorescent channels. 10 000 data points (gene expression levels) were
generated by the exponential distribution with mean of 3000. After passing, through two fluorescent channels [with some response characteristic
functions as shown in parts (a)-(c)], data variations were added by passing each data point through a normal distribution with the standard
deviation to be 15% of mean expression signal. (a) Without any alteration [or equivalently, set parameters for the response function to be
(ag,a;,a,,a3)=(0,1,—1,1)], and assume the signal intensities from red channel and green channel are equivalent (a simulated self-self experi-
ment). (b) Banana shape. Intensity in green channel pass a response function with parameters (aq,a;,a,,a;)=(0,500,—1,1), where red channel
takes the parameters (0,10,—1,1). (c) Sinusoid-shape. The red channel’s response function with parameters (0,100"°7,-0.7,1), and the green
channel with (0,100"%?,-0.9,1).

~,quU[fC2,fd2]. In the remainder of the papets are used to r=fr(RL),
denote the uniform variabIeSaml~U[fal,fbl], @, (5)
~U[fa,.fp,], as~Ulf fq ] andes,~U[fc,fq,].

G ="fa(Gy),
2.2.7 Channel Conditioning

Owing to various reasons, such as imprecise quantities of .
g P d wherefg or fg may take different parameters for each fluor-

starting mRNA for the two channels, different labeling effi- 200 " The simulat ; the followi ;
ciencies, or uneven laser powers at the scanning stage, in agging system. he simulation performs the following Steps

actual microarray experiments there may not be equal inten-f(_)r signal placement to emulate the real process affecting the
sities even if two channels use exactly the same Iabeleds"gnaI spots.

mRNA. Moreover, one may not be able to assume that the 1. Generate ground truth expression signgl (k
fluorescent intensity is linearly related to the expression level. —1,... N) for every gene by exponential distribution
In fact, it is very difficult to determine the exact form of the (seé Se(':. 2.2)6

response function from expression level to intensity due to the

complex combination of bio-chemistry to photon electronics. 2+ L€t R~N(l i, >1y) and Gy~ (I, k). If a self-self

We choose a family of functions that covers most of the un- experiment needs to be simulated, skip steps 3 and 4.
derstandable conditions, shown in Figure 10, such as delayed 3. If we simulate an experiment with two different
response, saturatiofwhich is an embedded feature in the samples, some outlier genes are selected and then their
digital system since no gray level can pass 16-bit binary digits intensities are altered. We obta{R’,G") from (R,G

in a typical microarray systemand unbalanced channel in- for all genegsee Sec. 2.2.6, and Eq®) and(3)].

tensity. This simulation is intended to facilitate understanding 4. |f we simulate a fluorescent system with imperfect re-
as to what is the best way for expression ratio normalization, sponse characteristics, the intensities are further con-
whether linear based methods will be sufficient or nonlinear verted by R"=fg(R’) and G"=f(G’) (see Sec.
based methods will be necessary. The function family is char- 2.2.7.

acterized by four parameter&y,a;,a,,a3), and the func-

. NG 5. The actual simulated fluorescent intensities for both
tion form is given by

channels are obtained by applying additional variation
4) via  a normal distribution function SR=R"
+N(,u,R,a'§), where ug=amR’, or=agur, and
Having chosen a function from the family, the expression lev- similarly for signalG (see Sec. 2.2)6
els,R’ andG’, from each fluorescent detection channel are
then transformed by the detection system response character- The scatter plots in Figure 11 show the effects of the chan-
istic function defined by r(x) or f5(x) to obtain the realistic ~ nel normalization. By choosing different parameter sets, one
fluorescent intensity observed. The observed fluorescent in-can simulate many of the situations observed in real microar-
tensities are ray images.

f(x)=ag[ap+x(1—e ¥a1)32]; a;>1.
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Fig. 12 Figure shows increased spike noise levels L. (a) Level of
0.1%, (b) level of 5%, (c) level of 10%, exponential rate range is
maintained.

Fig. 13 Figure shows scratch noise with its parameter settings. Num-
ber of scratches is maintained to 7 in the earlier examples. Following

2.2.8 Edge Enhancement are the parameter (a) Ly ~U[27], k=1.5, W, =3 pixels, (b) L.

Under some fabrication conditions, such as incorrect humidity ;%[5 |1(5e]|5 T ioﬁsev}gccz): Ifi)f:)s’1(C) L~ ULB 45], o= 4.0, Wee
control, where the cDNA solution tends to accumulate to- pxes. o

wards the outer edge during the drying process, the spot edge

may appear brighter than the rest of the spot. This phenom- e is fixed but the spike level is increased through the parts
enon is modeled by randomly enhancing the edge. The num- ¢ o figure.

ber, N, of pixels from the edge to be enhanced is fixed. The

enhancementlVq, is added to the original intensityW,q sat- .

isfies a normal distributionWeq~N(ue,1). Randomness be- 2.3.2 Scratch Noise

tween blocks is modeled by making, uniformly distributed, Physical handling of the array slides can result in surface
pe~U(l, 1), scratches. These typically result in low intensity levels.

Scratch-noise intensity is parameterized as a ratig, giving
2.3 Postprocessing Simulation the background-to-scratch-noise intensity level. Other param-

Most postprocessing steps simulate handling and scanning®t€rs are the number of strips, strip thickne§s;, and a
artifacts: scratch noise resulting from improper handling of random strip lengthl..., given as a multiple of the spot size.
microarray slides, spike noise arising from the impurity of The latter is modeled as a uniform distributior:s
mRNA extraction steps or perhaps insufficient washing con- ~UlLsc1,Lsczl- Strips are placed at random positions on the
ditions, snake noise due to the accumulation of dust if the &rray, and are inclined according to (discretg uniformly
slides have sat in open space too long, and last, but not leastfahdom angle, fs,{0°,45°,90°,135°,18Q" Figure 13
smoothing resulting from many scanners’ averaging effects or Shows the noise for incremental parameter settirgsi s
integration processes. For the most part, these steps model the”U[2,7], «sc=2.0, Ws=four pixels; (b) Ls~U[5,10],
interaction between signal and noise in the spatial domain, Ksc= 3.0, Wsc=seven pixels; (c) Ls~U[7,15], «s=4.0,
which causes pixel-wise nonlinear degradation. It is expected Wsc=ten pixels.The number of strips is fixed at 7.
that the microarray image analysis software shall be able to
handle most of the noise conditions outlined here in order to 2.3.3  Snake Noise

measure the signal precisely. Fine fabric dust particles on the slides can create snake-tailed
) ) strips on laser excitation. These strips are normally higher
2.3.1 Spike Noise intensity than the signal level. To simulate this noise, an equi-

In a practical biology laboratory, it is not necessary to main- probable multidirectional snake noise has been generated con-
tain a dust-free environment. Hence, fine microscopic dust
particles are nearly impossible to avoid. On laser excitation,
these particles fluoresce to give high intensity spikes. More-
over, in some cases, bad mixtures of cDNA solutions result in
precipitation, and these particles fluoresce with a very high
intensity. These effects are simulated by adding spike noise at
a preset rate. Such intensity spikes are added randomly across
the entire slide area, the number of such noise pixels being
preset in terms of the total number of pixels in the array. The
amount of spike noise in an array is set with reference to the
percentagel g, of the total number of pixels in the array.
Typical low to high noise levels are to be set by selecting :
0.1%-10%. Once a pixel is selected for spike noise, the ad- (@) (b) ()
jacent pixels have a higher probability of being affected. . ) ) )
Thus, a random numbeWspi. of pixels are chosen in an F|g. 14 Example shovis different parameter s_ettmg for siake noise. In
. . . . . . . this example (@) Ny, =5, Ly,~U[5 10], k,=0.5, W, =2 pixels, (b)
arbitrary direction to be influenced by this noise. The inten- Neeg=10, Ly~ U[5 30], kyy=0.33, Wy,=3 pixels, () Noy=15, Ly,
sity, Ns, of the spike noise is governed by an exponential ~U[5 80], k4, =0.25, W,=5 pixels, respectively. Direction of the
distribution with meanus,. In Figure 12, the exponential  tail was randomly chosen with equal probability for each.
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1|1 |1 0.5/1 |05 2.3.4 Smoothing Function

Addition of various noise types makes the microarray highly
1 |1 |1 1 |2 |1 peaked with high pixel differences. This stark irregularity can

1 11 N 0511 los be mitigated by smoothing the image with either a flat or
. : pyramidal convolution kernel. The kernels are shown in Fig-
(a) (b) ure 15. The effect of smoothing is illustrated in Figure 16,
where the three-dimensiondBD) profile of an originally
Fig. 15 Example shows the 3X 3 convolution kernel for (a) flat func- noised image is shown, along with versions smoothed by flat
tion and (b) pyramidal function. and pyramidal kernels. Either smoothing kernel can be cho-
sen.

sisting of some numbefls.,, of segments. Analogously to 2.4 Image Generation and Parameter I//O

scratch noise, the intensity is parameterized as a ratig, Parameters governing the effects described in the preceding
giving the average-signal-to-snake-noise intensity level, the sections form the inpufthrough a fil¢ to the synthetic array
number of snakes, snake thickn&¥s,, and a random length,  software. These include parameters for array dimensions,
Lsn, given as a multiple of the spot size. The latter is modeled shape parameters, and noise processes. All relevant informa-
as a uniform distribution:Lg,~U[Lgnq,Lsno]. Figure 14 tion, such as spot size, position, various driftenter hole,
shows the noise for incremental parameter settit@sNsgeq spob, noise processegforeground, spike, snake, scratch,
=5, Lgy~U[5,10], «k=0.50, Wg=two pixels; (b) Ngeq etc), and chord rate, are recorded for every spot printed on
=10, Lsy~U[5,30], ks=0.33, Wg,=three pixels;(c) Ngeq the synthetic array. Block controlling parameters and the array
=15, Ly~ U[15,80, «s=0.25,Wy,=five pixels. information are also recorded. The recorded information con-

(a) Noised (b) Flat Function
x10° x10*
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Fig. 16 Example shows the 3D profile before and after smoothing. Where (a) noised, (b) flat function, (c) pyramid function.
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Table 1 Parameter settings for the cDNA microarray simulation.

Level Simulation Parameter descriptions Distribution
SPOT  Spot size S: Spot radius with (s, ,0?) S~N(us,0?)
Spot drift 84,6y Drifting level 8. 8,~U(dq,dy)
d,,d}: percentage of spot radius
Py : Drift activation probability D,=6,SU—1,1]
D,,D,: Relative drifting D,=6,5U[-1,1]
(X} ,Y1): Drifted center coordinates Xi=X+D, [ Xp=X;+U-1,1]
{Y§=Y+Dy [Y§=Y§+U[— 1,1]
(X5 ,Y5): Second channel,
where (X,Y) is predefined spot
center coordinates
Inner hole H,V: Horizontal and vertical axis H~N(py,0oH)
size of the inner elliptical hole V~N(uny,ovy)
Inner hole Xc,Yc: Ideal spot center Xp=Xc+ dcp
drift
Xz, Yg: First channel coordinates Yp=Yc+ e,z
Xs,Ys: Second channel coordinates Xe=Xc+ e,
where
8¢y, 0CyG, 6Cug, BCyp: drift level set at Yo=Y+ dc,6
the block level
Chord Py, Chord removal probability Pn.={pPo.P1.P2.p3.p4}, where
removal (pk: probability of k chords to potpitp2tpstps=]
be removed from a target spot) N.~{0,1,2,3,4}
L: Chord length L~B(a;,B))
6: Chord position 0~ U|(0,27)
Spot B: Mean intensity for the assumed I, ~Exp(B)
intensity cell system
Rk, Gy kth spot (fixed) signal Ri~N(l¢, o)
intensities for both channels G ~N(l, o)
a: Coefficient of variation of signal o=aly
inftensity in the system
Outlier’s Poutier : Outlier activation probability
intensity
by : Outlier control level b,~Beta(1.7,4.8)
t, : Targeted outlier expression ratio, =10«
with equal-probability for +/- sign
Ri .Gy : kth outlier signal intensities Ri=Rt
for both channels G,=G, /i
Channel R} , G} : Prenormalized signal 1=F1(R})
conditioning intensity of the spots on =5(G})

red, green channels

ag, ay, az, and a3, parameters for
response characteristic function.

fix)=Lao+x(1—e /) %2]as;
where a;>1
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Table 1 (Continued.)

Spot signal

variation—foreground

SRy, SGy: Pixelwise (x,y) signal
intensity

SRelx,y)~ R+ N{ugy, oF)
SGilx,y)~Gi+Nlugy o)

noise
ay: Wiﬂwin spot signal coefficient of Mk’k’:R'éam]iam]'“U[fa]sz]]
variation "
1= Gl am,~ Uy, fy,]
or=ax gy sas ~Uf )]
o6=ag,uayas,~ U, f4)]
Edge W,q: Level of enhancement, Wea~Nlge, 1)
enhancement parameter (u.,) set for the block
N, : Number of pixels enhanced
Edge noise Apply edge noise at the set level (8.q)
BLOCK Radius s ks : mean and radius deviation ps~U(sq,sp)
parameters factor o~k
Sq,Sp: bounds of radius, set by block
size and infer spot gap
Chord N : Chord rate picked with equal N.e U{0,1,2,3,4} having weights
parameters probability {pPo.P1.P2,:P3.,P4}
a;, B;: Chord distributional a;~Ula,,b,), Bi~Ulag, by,
parameters
Inner hole MK, My, 0,0y Parameters for inner pmr~U(Lg, L) ps,
parameters elliptical hole py~U(Lqg, Lp) s
s : Mean spot radius in the block OH=a iy, Oy=agu,
a1~ U(Py,Py), as~U(P.,Py)
Drift 8¢y, 0¢,G,6Cxk , OCyg: drift level dc~Uli,|]
parameters
i, |- Percentage of the spot radius dcyg=0cU[—1,1], dc,g=6cU[—1,1]
dcg=0c,ctU[—1,1], dcyp=3dc,c+U[—1,1]
Enhancement lq, Ip: Range of intensity ratio. Set ne~U(lg, 1)
mean level of enhancement for a block
ARRAY Physical B,,, By : Block size—width, height Typical Setting for a 8 blocks, 2 row
dimensions (distance between first spot array (in pixels):

centers of any two block)

M| M, ,M;,My: Margin settings

(left, right, top, bottom)
Npin s Niow : Number of pins in an
array, printed equally across
N, o number of rows

NS,, NS, : Number of spots along
the width (N'S,,) and height
(NS4) of the block

B, ,B, =900
M .M, My ,Mp=100
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Signal to SNR: Signal to noise level is set for
noise ratio an array
Interspot G, Interspot distance, set for
distance an array
Background Ib i+ b cn2: Background intensity, Iy ch1~N(/~Lb/0'12;1)
with parameters set for an Iy cho~ N ,o-iz)
array
v: Background level y~U[a,b]
Parameter settings:
—Flat fluorescent background b=,
—Functional background g(x,y): we=vg(x,y),
choice of parabolic, positive or with,
negative slant surface function op, = (kp,mp), ob,= kb, )
Spike noise Lyi: Level of spike noise (set in
terms of percentage of total pixels)
N, : Intensity of the spike noise N~ Exp(pgpi),
i Noise rate Mo~ Ul e, f]
W, Width of the noise cluster Wi~ Ulg, h]
Edge noise Seq: Set the controlling parameter Seq set as a percentage of maximum

infensity value

Snake noise

Nieq : Number of snake tails in an image
ls: Intensity of the noise tail

Ky, Average signalo-snake-noise
intensity level

L, : Length of the segment
expressed as multiples of
average spot size

W, : Width of the snake noise tail

Nseg 1 Ksn rLsn ’ Wsn
Isn~ N(:U“Sn /U-sn)/

:u“sn=(lk/Ksn)/ Osn= ksmu’sn

Lan U[ Lsn1 ’ Lan]

Scratch
noise

N,.: Number of scratch tails in an image

Is: Intensity of the scrafch noise

K, : Average background-o-
scrafch-noise infensity level

L. : Length of the segment in units
of average size of the spots

W, : Width of the scratch noise

#: Scratch noise inclination

NSC/KSC/WSC/G

Isc~ N(Iu’sc ’ Jsc)

Msc= (:u’b/Ksc)r Osc= ksc:“sc

LscN U[ Lsc] ’ Lsc2]

0e U{0°,45°,90°,135°,180°}

tains the true signal for the synthetic microarray. This can be (R, G as two block and interlaceR, G with dummyB) are
used subsequently to analyze various signal processing toolsgenerated. Standard freeware routifiesp://www.libtiff.org)

TIFF format is widely used due to platform independence are used to generate these formats. The image file is written in
and flexibility of data representation. The synthetic images are blocks, where the size of the bloéGommonly called “strip”

generated in TIFF with samplgixel) resolution of two bytes
for every color(R,G. Both monochrome and color images

is set equal to the image width. The image data is written in
the native ordetbig-endian, little-endianof the host CPU on
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(a)

(b)

Fig. 17 This example shows full size arrays simulation with different parameter settings: (a) good quality has SNR of 2.0, with normal background,

spike noise L ,;=0.3%, (b) noisy array with SNR of 1.1 with parabolic background noise, spike noise L ,=15%.

P pi
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which the library is compiled. Image data quality is main- cuts, edge enhancement, and large inner hotesl different
tained by disabling compression and other special options channel conditioningisuch as the banana shape in the inten-
available in these routines and formats. sity scatter plot shown in Figure ()].
Figure 17 shows two microarrays generated wWiig,
=35rows andN S,= 25 columns, aB,=B,,= 900 pixels per
2.5 Summary of Model Parameters block. Array boundaries are set atM;,M;,M,,M)

The cDNA microarray printing process can be categorized = (100,100,100,100 By choosing parameters, two different
and grouped into independent events. Each event is probabi-2fray qualities have been generated. Raytillustrates an
listically described by assigning a distribution, as previously ideal microarray image with normal background and param-
described. Due to the physical nature of the process, thereters f=3000, SNR=2.0, @=0.05, G¢=6, Pp=0.05,
exist variations between events. This variation is described by(da dp)=(2,19, (ko :ko2)=(10,10, Pousier=0.05, Ly

randomization of the controlling parametefsecond level =0.3%, 6,4=0.3:

randomization The parameter randomization can be broadly

grouped agi) randomization at spot levelii) randomization (fa, fo,.fc,.fa,)=(2,8,2,6,
at block level, andiii) randomization at array level. The pa-

rlameters are grouped and mathematically described in Table (fazrsz fCZ fd2)=(2,8,2,8,

Each noise type is categorized into one of the three groups
and individually parameterized. Some are related to another
noise parameter; others are independent. Each noise param-

(ao,al,ag,a3):(o,1,— 111),

eter is assigned a statistical distribution fitting its nature. For (bg,b1,b,b3)=(0,1,-1,1),
instance, consider spot radius. Spot radius obeys a normal

distribution (us,02), where the mean spot radiugs) is (la,lp,Ne)=(1,3,3),
randomly picked over a small range,,s,) at the block

level. This spot size range is set for an array depending on a (Po,P1:P2:P3,p4)=(0.97,0.03,0,0,0

user setting: the number of spots in a bl¢ekS, ,NS,) at the

array level. If a noise type needs to be suppressed, then the (KsnsLsnisLsni, Wsn,Ngy) =(0.25,10,50,1,2
corresponding parameters can be set small to nullify its effect.

For example, inner spot hole follows a normal distribution (Kse,Lsc1,LscaWse,Nso) =(3,5,35,3,1.
along its verticall uy ,o) and horizontal wy , o) axes. Its

parameters are randomly picked from a preset rqhgeL,) - o
and related to the mean spot radiys,) at the block level ~ Packground and parameter8:=3000, SNR-1.1, «=0.25,

[uu~U(Ly,Ly) s, y~U(L,,Ly) us]. For small or negli- Gyp=4, Pp=0.4, (da,dy)=(15,100, (kp,,ks2)=(25,29,
gible doughnut holes, this preset range can be set small, orPoutier= 0.7, Lspi=15%, deq=0.03:

even null for perfect spots. The table is perused from spot

level to the array level, tagging through the corresponding (fa . fo,.fc,.fa,)=(6,12,8,20,

parameters, as indicated in the earlier examples.

Part(b) illustrates a noisy microarray image with parabolic

(faz’sz’fcz’fdz) = (611218!201

3 Examples of Simulated Microarrays and Image (ag,a;,a,,33)= (0,500~ 1,1),
Analysis

All of the described process and noise effects are controlled (bg,bq,by,b3)=(0,10-1,1),

by appropriate parameter selection. Depending on the param-

eter setting, the arrays can be roughly classified as ideal, av- (1a,1p,Ne)=(10,40,3,

erage, or noisy. Given a good printing réino mechanical

deposition problems a relative matured hybridization proto- (Po,P1,P2,P3.P4)=(0.05,0.3,0.25,0.25,0.15
col, and good RNA samples, along with a scanner of minimal

optical warping, focusing, and integration problems, we ex- (Ko, Lot Lent, Wen: Nsy) = (0.25,60,110,2,10

pect a high-qualitfidea) microarray image. The correspond-
ing simulated ideal image will have a flat mean background
Wi%h typical autofluoresc?ance variati¢rr10% of mean bgck- (Kse:Lsca,Lscz:Wsc,Nso) = (0.25,60,110,2,10

ground level, but no less than square root of the mean back- To illustrate how the simulation can be used to analyze
ground level, minimum spike/scratch/snake noise, little edge microarray image software, we apply the ArrayStlitsoft-
enhancement and no channel conditioning problems. For av-ware to extract the image intensities and ratios from the image
erage image quality, one would expect larger background and then compare these to the corresponding intensities and
variation and possibly a slanted mean level. There will also be ratios used for simulation. We use the ideal case to illustrate
more spike/scratch/snake noise interfering with signal spots. the utility of the simulation. In Figure 18), intensities from

In a noisy setting, besides higher noise levels for various pos-one fluorescent channel have been extragfeakis) and plot-

sible interference, one would also expect uneven backgroundted against the simulation signal intensities. The extracted sig-
level (e.g., parabolic function heavy spot deformitychord nal generally corresponds well to the simulated signal, with
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Fig. 18 Comparison between simulated signal (ideal setting) vs extracted signal from microarray image analysis program. (a) Signal extracted from
one fluorescent channel (y axis) comparing to the signal used for simulation in the same channel (x axis). (b) Ratios from microarray image analysis
program (y axis) comparing to the ratios generated by the simulation (x axis).

some variation. After excluding intensities less than 300, the 19(b)]. If the image analysis program extracts the local back-

mean and standard deviation of the difference between theground by averaging the region around the bounding box
two log;,transformed intensities are 0.016or 10%016 (which was used as a starting condition in an earlier version
=1.038 and 0.038(or 10°%%8=1.09), respectively. The ratio  of the NHGRI program), an elevated background average may

comparison is given in Figure ®. When signal intensity is  be obtained since the bounding box may overlap neighboring
weak (less than 300 various noise components in the simu- targets that are large in size and strong in expression level. An
lation process affect the accuracy of the signal extraction pro- additional problem is that some weak targets may not be de-
gram. Since the problem is unavoidable, a measurement qualtected[Figure 19c)]. Based on these considerations, the pro-

ity metric is necessary to provide confidence in downstream gram has been modified to calculate the four average intensi-
data analysis. In this case, we see that if the signal intensity isties from the four corners and the four average intensities

less than 300, then the noise interaction is significant. from the four sides of the bounding box, and then take the
minimum among all of these as the initial estimation of the
4 Conclusion local background. A histogram-based method is then invoked

around the initial estimated background to further improve the
estimation. The output from Figure @ according to the
modified program is shown in Figure @: the weak target is
detected and there is improved local background estimation
for all spots.

Modeling and simulation of microarray image formation is a
key to benchmarking various signal processing tools being
developed to estimate cDNA signal spots. Using a model to
describe the signal ground truth not only helps in evaluating
these tools, but also facilitates the understanding of various
process interactions. To illustrate how the image-simulation
program presented in this paper can be used in the develop-
ment of image-analysis software, we describe an actual caseReferences
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