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Abstract. Accurate data on in vivo tissue optical properties in the
ultraviolet A (UVA) to visible (VIS) range are needed to elucidate light
propagation effects and to aid in identifying safe exposure limits for
biomedical optical spectroscopy. We have performed a preliminary
study toward the development of a diffuse reflectance system with
maximum fiber separation distance of less than 2.5 mm. The ultimate
objective is to perform endoscopic measurement of optical properties
in the UVA to VIS. Optical property sets with uniformly and randomly
distributed values were developed within the range of interest: ab-
sorption coefficients from 1 to 25 cm™ and reduced scattering coef-
ficients from 5 to 25 cm™'. Reflectance datasets were generated by
direct measurement of Intralipid-dye tissue phantoms at A=675 nm
and Monte Carlo simulation of light propagation. Multivariate calibra-
tion models were generated using feed-forward artificial neural net-
work or partial least squares algorithms. Models were calibrated and
evaluated using simulated or measured reflectance datasets. The most
accurate models developed—those based on a neural network and
uniform optical property intervals—were able to determine absorption

and reduced scattering coefficients with root mean square errors of
+2 and =3 cm™', respectively. Measurements of ex vivo bovine liver
at 543 and 633 nm were within 5 to 30% of values reported in the
literature. While our technique for determination of optical properties
appears feasible and moderately accurate, enhanced accuracy may be
achieved through modification of the experimental system and pro-

Cessing algorithms. © 2003 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction optical properties of human tissue, particularly for organs

Extensive efforts are being made to develop minimally inva- SUch @s the lungs and colon that are accessible by modemn
sive optical diagnostic devices that improve patient care. To endoscop|_c Instruments. _ _ _ _
maximize the impact of novel techniques, such as Determination of tissue optical properties using diffuse re-
fluorescence-based detection of neoplastic lesions, it is necesflectance is well established, however, approaches for signal
sary to consider the effects of tissue optics phenomena. Accu-detection and data processing have varied witiélgommon
rate measurements @i situ tissue optical properties in the approach that has been shown to be highly successful in esti-
ultraviolet A (UVA, 320 to 400 nm and visible(VIS, 400 to mating optical properties involves development of a predic-
750 nm ranges are necessary to enable characterization oftive empirical model through three essential steps: 1. genera-
light propagation effects in tissue during fluorescence spec-tion of steady-state spatially resolved reflectance data for
troscopy. This information is also essential to quantify fluence model calibration through modeling or experimental ap-
and energy deposition distributions in tissue—information proaches, 2. development of an inverse model by multivariate
that can be used to elucidate the mechanisms of optical de-calibration, and 3. application of the trained model to un-
vices and identify safe exposure levels for internal tissues. known samples to predict the optical properties. Popular nu-
The three properties that are most important for describing merical methods for simulating reflectance profiles for model
the propagation of light in tissue are the absorptiqr,), calculations include the diffusion approximation to the trans-
scattering(us), and anisotropy(g) coefficients, although to  port equatior?, and the Monte Carlo methdd.Alternatively,
reduce complexity, the latter two parameters are often lumpedreflectance can be measured in well-characterized tissue phan-

into a reduced scattering coefficiefji = us(1—g)}. This toms over a range of optical propertfeReflectance measure-
equation is useful for calculating optically equivalent pairs of ments are typically performed with multiple-channel fiber op-
s andg and is valid for many biological tissuésAlthough tic bundles, which deliver light to the tissue surface and
the literature contains a wealth of data @x vivotissue opti-

cal properties, there is a lack of information regardimgitu 1083-3668/2003/$15.00 © 2003 SPIE
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collect reflectance at two or more well-defined distances from combinations. Two lists, each containing 30 optical property
the source fiber. The source-collection separation distancespairs, were developed: a “uniform” list including, values
used in prior studies range from several millimeters to of 1, 5, 10, 15, 20, and 26m™* and u values of 5, 10, 15,
centimeter$® Empirical modeling has been performed using 20, and 25cm™%; as well as a “random” list generated using

a variety of multivariate calibration techniques including neu- a uniform random distribution over a, range of 1 to 25

ral networks (NN),>**° fuzzy logic; and regressioh.The cm tand au/ range of 5 to 2&m 1. One simulated and one
method of partial least squaréBLS) has seen widespread experimentally determined radial distribution were generated
application to tissue for quantification of tissue for each optical property pair. The resulting 120 distributions
constituents—** and was recently shown to be effective in were divided into four datasets labeled by how the optical
determining tissue optical properties from frequency-domain property pair and the radial distribution were developed

measurementS.Thus, PLS may provide an alternative means (simulated uniform, simulated random, measured uniform, or
for estimating optical properties from steady-state, spatially measured random

resolved reflectance that is as accurate as neural networks, and
has the additional benefit of generating loading vectors, which 9 2 simulation of Reflectance Data
provide quantitative insight into a model.

The present investigation is distinguished from prior stud-
ies in its combined use of an optical property range relevant to
light-tissue interaction in the UVA to VIS and an illumination/

collection geometry involving small fiber separation dis- . ) . 22 Thi .
tances. Limited data in the literature indicate that for gas- detailed coverage is available elsew - This technique

trointestinal mucosal tissues in the UVA to VIS, ranges involves the repeated generation of random numbers and cal-
from 0.3 to 25cm-1 and u/ ranges from 5 to o@m L 16-19 culation of stochastic relations to simulate the random walk of
. : .

These values, especially for,, are significantly higher than ah Iargﬁ pumbe[rhof |nd|\|/|d.ual photonsdas thely lpropagate

the optical properties studied in many previous fiber-basedt rough tissue. These relations are used to calculate param-
optical property studies, which were geared toward photon eFers such as the angle and location of photon launch, the ;tep
migration or other applications that involve wavelengths in size b(_etween scattering events, the angl_e Of. scatter, refraction/
the upper visible to near-infrared range. Given the high level reflection at surfaces, and photon termination. Photons were

of attenuation in the wavelength range most relevant to fluo- Ia_lunched na _unlform _dlstr|but|on over all Ppositions on a
rescence spectroscopy, the large source-detector separatioﬁ'.rde. representing the flber_fa_ce, as well as in a _unlform dis-
distances used in previous studies are not very practical. An- rlbut[on over all angles within _the cone sp_ecmed_ BIA
other constraint is the size of the instrument channel through _, nisine, yvhere NA IS the nume.ncal apertung, Is the index
which an endoscopic probe is delivered. Gastroscope instru-Of refraction of the tissue, and s the exit angleameasured

ment channel diameters are typically 2.0 to 2.8 f@ym- from the normal to the tissue surfac@o replicate the condi-
pus, Karl Storz, which complicates the. implehentation of tions of the tissue phantom measurements, simulations incor-

) . . ted a fiber NA of 0.22 and a fiber index of refraction of
large fiber separation distances. pora . .
The goal of the study presented here is to examine the 1.45. It should also be noted that the index of refraction of

performance of two multivariate calibration techniques, par- water (n;=1.37) was .used b.Oth because of ‘h‘? high waFer
tial least squareéPLS) and the more well-established neural content of thg Intrallpld splutlons and to. apprquate the in-
network(NN) approach for predicting optical properties. This dex of refra.ctlon of liver tissué For all simulations, theug

is carried out using an endoscope-compatible geometry overValue used in Monte Carlo algorithms was calculated fgoin

an optical property range that is consistent viitivivo tissue ~ @nd ag of 0.9. This value ofg is within the range that is

in the UVA to VIS. This process involves performing Monte relevant for tissue. Phot_ons exiting the psisue aF the surface
Carlo simulations, creating data processing algorithms based"/¢"® subjected_ toa S|“m|Iar ang:JIar restriction prior to det(_ec-
on the NN and PLS techniques, and measuring reflectance intion- The location of “detected” photons were recorded in
tissue phantoms and biological tissue. Experimental and com-adial bins 0.025 mm in width.

putational results are analyzed and discussed in regards to the

accuracy of specific models and the optimization of our ap- 2:3  Tissue Phantoms Measurements

A weighted photon Monte Carlo model of light transport was
developed to calculate radial reflectance distributions for
given optical property pairéu,,ul).>* A brief overview of

the Monte Carlo method is provided here, while excellent

proach to optical property determination. Diagrams of the experimental setup and fiber optic probe used
to perform diffuse reflectance measurements are presented in
2 Methods Fig. 1. For all tissue phantom measurements, the source was a

temperature-controlled, 675-nm laser didd&gimund Indus-
trial Optics, Barrington, New Jersgwith a power level of 5
mW. This source was used due to its low cost, stability, and
ease of comparison with prior studies. For the phantom mea-
surements, actual wavelength is much less important than the
optical property range, which was made to correspond to bio-
logical tissues in the UVA to VIS range. The input power was
adjusted with neutral density filters. A custom-designed fiber

This investigation followed the three general steps mentioned
in Sec. 1: generation of calibration data, development of in-

verse models, and estimation of optical properties from reflec-
tance data. We studied all permutations of four sets of cali-

bration data, two processing approaches, and four evaluation
datasetgidentical to the calibration datasgts

2.1 Optical Property Sets optic probe(FiberTech Optica, Ontario, Cangdaas used to
The first task in this study was to generate radial reflectance deliver light from the source to the sample and guide diffuse
distributions for a large number of optical propefty, ,©s) reflectance from the sample to the detector. All fibers had a
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. (9=0.9) indicated by Graff et al.for validity with the simi-
et 2o larity relation. In a prior study, Kienle et levaluated the

Diode validity of invoking the similarity relatioh for Liposyn
A=675nm [ — samples for which & of 0.8 was measured by performing
[_' Monte Carlo calculations using differemf values but the
Fiberoptic _ Computer with sameu . In this prior study, the maximum difference in re-
probe ‘magfofat:z“r::"'°" flectance between thg=0.8 case andy=0.95 cases was

found to be 8%. We performed results that indicated excellent

Sample agreement between reflectance distributions calculated for
0=0.9 and 0.72 over most of the optical property range and
(@) for all fibers. These results are consistent with a prior study
that analyzed distributions for values gffrom 0.7 to 0.99

2.4 Development of Inverse Models

Raw reflectance data from computational or experimental re-

- sults were preprocessed as follows:
Detection Fibers

053438 S,= —log(R,/Ry), &)

- |e

0.2 mm whereR, is the reflectance intensity collected by fiber number
n (from 1 to 6. This formulation was used to convert absolute
data to normalized profiles, reduce variation from several or-
ders of magnitude to less than one, and ensure that all values
were positive. Distributions of were used to calibrate mod-
Fig. 1 Diagram of (a) experimental setup and (b) fiber optic probe els for estimating optical parameters. PLS and NN approaches
face. Illumination and collection fibers on probe face are represented were used to develop these inverse solution models. Calcula-
by shaded and nonshaded circles, respectively. tions were performed using the MATLAB® software package
(The MathWorks, Incorporated, Natick, Massachusaeitish
Neural Networks and Chemometrics toolbox routines.

core diameter of 0.2 mm and an NA of 0.22. The source leg of ~ The method of PLS has been reviewed previotistyThis
the probe consisted of a single fiber, while the detection leg aPproach involves the determination of a calibration magrix
consisted of six fibers spaced at center-to-center distances ofY regression between the two matricésand Y that repre-
0.23, 0.67, 1.12, 1.57, 2.01, and 2.46 mm from the source Sent the reflectance and corresponding optical property matri-
fiber (labeledn=1 to n=6). The remaining area of the probe C€S, respectively. The matriX containsm=5 columns of
face was blackened to minimize reflections. The probe was reflectance datéepresenting five fiber locationsThe matrix
submersed in liquid phantom material contained in a cuvette Y containsp=2 columns (the two optical properties that
that was large enough to provide a semi-infinite medium—no characterize each sampl@he PLS algorithm employs a sin-
change in reflectance was produced when larger cuvette sizegular value decomposition function to iteratively decompose
were used. The detection leg terminated at an inverted micro-the optical property and reflectance data and form a model
scope(Diavert, Leitz, Germanywith the output imaged onto ~ matrix B:
a CCD camerdModel CH250, Photometrics, Tuscon, Ari-
zona. Images were acquired and stored on a personal com- Y=X B, 2
puter. The linearity of the CCD images was verified using a nxp  nxmmxp
power metefLabmaster, Coherent, Incorporated, Santa Clara, such that then rows of X andY contain information about
California). samples. The elements & describe the linear PLS model
Tissue phantoms were generated for each of the 60 opticalrelating the distribution of to absorption and scattering co-
property pairs on the uniform and random lists. These phan- efficients. The steps used to calculeBe are detailed by
toms were created by combining varying concentrations of a Malinowski2® Cross-validation of the algorithm was then per-
scatterer(Intralipid®, Baxter Healthcare Corporation, Deer- formed to evaluate its performance and select the appropriate
field, lllinois), an absorbe(N-4754, Water Soluble Nigrosin,  number of factors for the model. In all cases, either three or
Sigma Chemical Company, Saint Louis, Misspuend dis-  four factors were identified and subsequently used in the
tilled water. Absorption coefficients were determined based on model. The use of additional factors did not significantly im-
a u, of 34 cm™ for a stock nigrosin solution at 675 nm, as  prove prediction accuracy.
determined from transmission measurements. Scattering coef- The NN algorithm involved a feed-forward backpropaga-
ficients were determined through linear scaling givem_ eof tion network based on a Levenburg-Marquardt training
18cm ! at 675 nm for a 15% concentration of the stock 10% function?%2” The input layer had five nodes, corresponding to
Intralipid, as calculated from spectrophotometer measure- the five nonzerd values, and the output layer contained two
ments and the inverse adding doubling technitfiessuming nodes, one for each of the two optical properties predicted. A
thatg=0.722* hyperbolic tangent sigmoid transfer function was used in the
It should be noted that whilg=0.72 represents a highly  hidden layer and a linear transfer function in the outer layer.
forward-scattering medium, it is outside the range eflues Training of the network necessitated dividing the calibration

Source Fiber

(b)
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Table 1 Evaluation of optical property estimation models generated using a neural network (NN) ap-
proach. The root mean square error (true versus predicted values) for absorption and reduced scattering
coefficients is presented for all 16 combinations of calibration and validation data sets.

RMSE- RMSE-
Case #  Calibration dataset ~ Validation dataset ~ Model type g (cm™) ) (cm™)
1 Simulated-uniform Selfvalidation NN 0.66 1.23
2 Simulated-random NN 0.54 1.95
3 Measured-uniform NN 2.30 3.44
4 Measured-random NN 1.58 2.35
5 Simulated-random Simulated-uniform NN 1.50 2.53
6 Selfvalidation NN 0.98 1.91
7 Measured-uniform NN 1.61 4.17
8 Meausred-random NN 1.32 2.68
9 Measured-uniform Simulated-uniform NN 1.77 2.91
10 Simulated-random NN 1.19 2.31
11 Selfvalidation NN 1.37 2.88
12 Measured-random NN 1.35 2.87
13 Measured-random Simulated-uniform NN 1.25 3.61
14 Simulated-random NN 0.87 2.44
15 Measured-uniform NN 1.42 2.96
16 Self-validation NN 0.94 1.61

data into three subsets. Approximately half of the calibration Uniphase, San Jose, Califorphidaser power delivered to the
data was used for the training set, a quarter for the validation tissue was 0.3 mW at 543 nm and 0.05 mW at 633 nm. For

set, and a quarter for the testing set. The algorithm employedeach wavelength, two measurements were taken at each of
a validation set to terminate training early if the model per- three different locations. Reflectance data were processed as
formance failed to improve over several iterations, and used adescribed previously. For each measurement, the distribution
testing set to verify that the network was generalizing well. S was then used as input to the NN model developed from
Typically, algorithm training was terminated when improve- simulated reflectance data with uniform optical properties
ments in model performance slowed to a minimal level. (Table 1, cases 1 to)4Optical property estimations were
compared to corresponding data from the literature.
2.5 Measurements of Ex Vivo Tissue

Further evaluation of our approach to optical property deter- 3 Results
mination was performed usingx vivo biological tissue
samples. Bovine liver samples were interrogated due to their
relative homogeneity and evidence that their optical proper- A Monte Carlo simulation was performed for each of the 60
ties would be within the range of interé8£° Measurements ~ optical property pairs in the uniform and random sets. Se-
were performed on fresh tissue purchased from a local marketlected results from the uniform set are presented in Fig. 2 to
and were approximately 48-h post mortem at the time of use. illustrate the effect of absorption and scattering coefficients on
The tissue was refrigerated and wrapped in plastic to mini- radial reflectance distributions. In these graphs, the effect of
mize water and blood loss. The experimental setup was iden-each optical property+, in Fig. 2@ andu in Fig. 2(b)—is

tical to that shown in Fig. 1, with the exception that two isolated by holding the other optical property constant at a
different sources were used: helium neon lasers at wave-moderate level. Characteristic changes are evident for fogth
lengths of 543 and 633 nnModels 1508 and 1653, JDS andu. As u, increased, there was a monotonic increase in

3.1 Light Transport Simulations
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Fig. 2 Selected radial reflectance results from simulations. Graphs il-
lustrate the effect of optical properties on radial reflectance. Graph (a)

demonstrates the effect of u, when u.=10 cm™, whereas (b) dem-

onstrates the effect of u. when u,=10 cm™.

S at all fiber positions and the slope of the curve increased
dramatically. The magnitude of changesSrdue tou, was
relatively constant ag., increased. Distributions of were
more weakly influenced by changesf . At n=2 (r=0.67),

e had minimal influence oi$, whereas the other collection
fibers showed variations i that increased with distance

of data points in a sdin this casem=30). For each calibra-
tion dataset, a single self-validation and three other valida-
tions were performed. Tables that summarize the model evalu-
ation results are provided for both PLSable 2 and NN
(Table ) approaches. Several trends in the accuracy of optical
property estimations are evident in these tables: 1. prediction
accuracy was greater for, thanu. (the average RMSE for
all models was 1.46 fop, and 3.10 forwl); 2. NN models
were more accurate than PLS models; and 3. the RMSE val-
ues of self-validation cases tended to be relatively low, but
was often not the lowest for any particular calibration dataset.

Detailed examination of prediction results for individual
models(Figs. 3 and 4 provides additional insights into the
optical property estimation process. Cases 1 and 4 in the table
of NN results(Table 1 represent the self-validation case and
independent evaluation against experimental data for one of
the most accurate models developed in this study. The graphs
of case 1 results in Figs(& and 3b) reveal minimal levels
of error throughout thew, range, but greater inaccuracy for
wl, especially afu.=25 cnil. Case 4 results in Figs(®
and 3d) also indicate thaj:, was more difficult to predict
than u,. Figure 3c) contains two obviously erroneous pre-
dictions of negativeu, values. Poor estimates were not un-
common for samples with true optical properties near the
edge of the calibration range. The graphs in Fig. 4 illustrate
wes results for case&) 16 and(b) 15, respectively, in Table 1.
Both of these graphs contain points that represent poor esti-
mations by the model. The true optical properties of the out-
lier in Fig. 4@ wereu,=22.8 cm?, x.=23.6 cm?, and
for the two apparent outliers in Fig(), u,=25 cml, ul
=5 cm ! andu,=1 cml, u.=25 cnl Each of these
three optical property pairs is near the edge of the calibrated
range. These inaccuracies indicate that for optical estimation,
the range of calibration values should be significantly greater
than the range of expected optical property values and that
estimated values near the edge or outside the prediction range
should either be discarded or regarded as being of question-
able validity.

Results from reflectance measurementseforvivosamples
of bovine liver are graphed in Fig. 5 as individual points. This
figure shows the mean and standard deviatio8 fafr liver at
532 and 633 nm. Si$ distributions measured at each wave-
length were used to calculate six sets of optical properties,

from the source fiber. The magnitude of these changes wasfrom which the mean and standard deviation were deter-

greatest at higher, levels. While ., caused an increase in
slope, this change was smaller in magnitude than that pro-
duced foru, .

3.2 Optical Property Estimation Models

Each of the four datasets were implemented in NN and PLS
routines to calibrate models that were, in turn, evaluated using
the same four datasets. Prediction error for each calibration-
validation pair was quantified using the root mean square of
the residuals, or the root mean square e(RWVISE):

m 1/2

1
RMSE= EE (,U«predj_:u*tru&i)2 '
i=1

wherepredrefers to the model’s predictiotrue refers to the
actual optical property value, amdindicates the total number

210 Journal of Biomedical Optics * April 2003 + Vol. 8 No. 2

mined: for 543 nm, u,=14.5+35 cm?! and u.=7.2
+3.7 cm'}; for 633 nm,u,=4.7=1.7 cnt and u.=6.7
+3.4 cmL. Monte Carlo reflectance distributions using the
average estimated optical property values for each wavelength
are also displayed in Fig. 5. These results indicate a 20 to 50%
uncertainty in prediction of optical properties. Graphical re-
sults show a slight disagreement between measured reflec-
tance profiles and theoretical results at 543 nm. This may be
due to inaccurate measurements at large separation distances
(very low light levels, which resulted in an overestimation of
light intensity.

4 Discussion

4.1

The primary goal of this study was to evaluate the feasibility
of our approach to optical property determination in highly

Validity and Accuracy
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Table 2 Evaluation of optical property estimation models generated using a partial least squares (PLS)
approach. The root mean square error (true versus predicted values) for absorption and reduced scatter-
ing coefficients is presented for all 16 combinations of calibration and validation data sets. In all cases,
either three or four factors were used.

RMSE- RMSE-
Case #  Calibration dataset ~ Validation dataset ~ Model type  w, (cm™)  ul (cm™)

1 Simulated - uniform Selfvalidation PLS 1.42 2.75
2 Simulated-random PLS 1.12 2.11
3 Measured-uniform PLS 1.94 6.00
4 Measured-random PLS 2.43 5.67
5 Simulated-random Simulated-uniform PLS 1.46 2.92
6 Selfvalidation PLS 1.08 1.89
7 Measured-uniform PLS 1.90 5.85
8 Measured-random PLS 2.64 579
9 Measured-uniform Simulated-uniform PLS 1.78 3.45
10 Simulated-random PLS 1.22 2.58
11 Self-validation PLS 1.71 3.27
12 Measured-random PLS 1.65 4.02
13 Measured-random Simulated-uniform PLS 1.42 2.69
14 Simulated-random PLS 1.12 1.74
15 Measured-uniform PLS 1.90 4.03
16 Self-validation PLS 1.29 2.65

attenuating biological media. The computational and experi- Tables 1 and 2, cases developed with simulation data and
mental(phantom and biological tissueesults presented here  evaluated using phantom data tended to have larger RMSE
all provide strong evidence that this approach is both valid values than those evaluated with simulation data. This is not
and can achieve at least a moderately high level of accuracy.an unexpected result, since even small experimental errors
An initial indication of the validity of the model development  may have significant impact on the radial reflectance distribu-
a|g0rltth |S pI’OVIded by Se|f-Va|IdatI0n I'eSU|tS These cases tion_ However, Severa' cases, particular'y those developed
consistently predicted optical property values with a high it the NN approach, indicated low levels of error, ap-
level pf accuracy, mdlcatlng that our MATLAB codes were proaching=1 cm™* for u, and =2 cm™* for x. . This level
effective at generating well-calibrated models. An evaluation of accuracy provides additional evidence for the validity of

of the ability of the model to generalize the relationship be- _ . : .
tweenS and optical properties beyond the data of the calibra- this technque and approgchgs a level that might be adequate
to perform highly valuablén vivo measurements.

tion set is provided in the non-self-validation cases, in which Si the | i | of thi his clinical optical
simulation data were used for both calibration and evaluation. ince the long-term goal of this research IS clinical optica

In these cases, prediction accuracy was good and sometimeé’_roperty es_timation, data_collected on biolpgical tissue_ pro-

even better than for the self-validation case. This indicates Vide @ reality check that is not possible with computational

that the models were not overly specific to the calibration set, Simulations or tissue phantom measurements. Optical prop-

however, other factors, such as the range of the calibration €ty estimates using our approach ae vivobovine liver

and evaluation dataset may have played a role in determiningsamples(u,=14.523.5 cm* and u;=7.2+3.7 cm* at

the RMSE values calculated. 543 nm;u,=4.7+1.7 cmtandu.=6.7-3.4 cm ! at 633
Estimation of tissue phantom optical properties varied sig- nm) were found to compare favorably with the limited and

nificantly with calibration and validation set. As shown in varied data in the literature. While we are not aware of any
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Fig. 3 (a,b) Self-validation and (c,d) evaluation of a neural network model trained on simulation data
with uniform optical properties (cases 1 and 4 in Table 1). Evaluation was performed using a dataset
comprised of experimental measurements of tissue phantoms with random optical properties. Absorption
coefficient data are presented in graphs (a) and (c), whereas reduced scattering results are presented in
graphs (b) and (d). Corresponding root mean square errors (from Table 1) are (a) 0.66, (b) 1.23, (c) 1.58,
and (d) 2.35 cm™. Line with a slope of 1 (estimated value equals true value) is shown to facilitate the

evaluation of data.

data onu, for bovine liver at 543 nm, the literature reports a

cm* for porcine liver at 543 and 532 nm, respectivély®

increase in blood absorption from 532 to 543 tfhit,is likely

that the trueu, of bovine liver at 543 nm is only about 10%

less than our mean measured value of BB At 633 nm,
the literature indicates, values of 3.acm™! (Ref. 4 and 3.2
cm* for bovine liver?® and au, of 5.0 cm* for porcine

liver.2° The bovine liver values are about 30% lower than that
obtained by our method, though the porcine liver value is

almost in exact agreement with our results.
Reduced scattering coefficients of 1icth ! for bovine
liver at 532 nn?® and porcine liver values of 108m ! (at

543 nm and 11.7cm™* (at 532 nm,?® have been determined

been found to be 5.m ™! for bovine liver® and 6.4cm™* for

without w! predictions for bovine liver, both predictions for

212
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imity to the lower end of the calibration range. On the whole,
4 Value of 10.9cm™ ! for 532 nm and values of 12.0 and 7.9  our results provide sufficient agreement with the literature as
to warrant further evaluation of this technique as a research
Given these data, the high blood content of liver, and the 20% tool, and after further modification it may be useful for imple-
mentationin vivo. However, the present accuracy of this ap-
proach is not likely sufficient for many medical diagnostic
applications.
One weakness of the present approach is the apparent dis-
crepancy in accuracy between predictiongugfand ., . The
higher RMSE values fop; (Tables 1 and 2may be ex-
plained by the trends seen in Fig. 2. In these graphs it is
shown that changes jn, have an effect osthat is of greater
maghnitude than the effect produced py . Therefore, when

the inverse problem of predicting optical properties fr8is

in prior studies. These values are remarkably consistent andconsidered, it follows that any error i would produce a
indicate that our measured values may be about 30% lowergreater level of error in the estimation pd; than for .
than expected. Reduced scattering coefficients at 633 nm havdiowever, improvements in estimation af may be possible.
Computational modeling resultsot shown hergindicated
porcine liver?® While these values are in good agreement that the intensity of light detected by the first fidgr=1) is
much more highly dependent @ than onu,. By normal-
s must be viewed as moderately suspect due to their prox- izing to the intensity at the first fibéto minimize error due to
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30 Fig. 5 Reflectance data measured in ex vivo bovine liver at wave-
lengths of 543 and 633 nm (points) along with Monte Carlo modeling
-~ 25 A () results (solid curves). Optical properties used to generate simulated
£ $ reflectance distributions (u,=14.5 cm™, u/=7.2 cm™ for 543 nm
L 20 - ¢ ¢ and u,=4.7 cm™', u.=6.7 cm™ for 633 nm) correspond to mean
"o * values predicted from the measured data using a neural network
= 15 - l - . model calibrated with uniform optical properties.
® . g !
QS 10 ~
E $
2 5 - $ models produced lower RMSE values than PLS models, indi-
w cating that an NN approach may be a better choice for deter-
0 ‘ ‘ ‘ ‘ ‘ mination of optical properties. This may be due to the fact that
0 5 10 15 20 25 30 the NN quel de\./e.lopment.algorithm inporporated vaIidation
, a checks using training, testing, and validation sets to avoid
True us' (cm’) overfitting, whereas the PLS code did not contain such

checks. Furthermore, PLS develops a linear solution, and

Fig. 4 (a) Self-validation of a neural network model trained on experi- .
& P therefore may not adequately account for the nonlinear rela-

mental data with random optical properties (case 16 in Table 1) and

(b) evaluation of the model with experimental-uniform data (case 15 tionships inherent to light transport problems. Calibration of
in Table 1). Poorly fitting data points (identified with arrows) corre- PLS models with independent data points is hecessary to cre-
spond to optical property pairs that were near the edge of the optical ate robust models without artifactual correlations. However,
property range over which the model was calibrated. our results for PLS model calibration with uniform datasets

did not indicate a significant reduction in model quality.
While unexpected, this result may be an indication that some

variations in ’ll.lum|nat|on. intensity some ability to detect  ;0t0r gther than calibration data format—possibly the inher-
variation in u¢ is lost. While performing absolute reflectance ently linear nature of PLS—is the primary factor that limits
measurements with an acceptable level of error may be morey,o efficacy of PLS in this application.

difficult _than our present normalization app_roach, fl_Jture re- The calibration dataset type also had a strong effect on
seg.r(.:h is warranted to eva]uate the po.ter.mal benefits and li-\,qqel quality. In estimating the optical properties of experi-
abilities of the former technique and optimize the accuracy of antal data, NN models calibrated with measured data were
Js estimations. slightly more accurate than their simulation-calibrated coun-
terparts. However, self-validation with simulated data pro-
duced slightly lower RMSE values than self-validation with
Development experimental data, likely due to experimental error. Since the
To make progress toward our goal of a clinically useful tech- results found with experimental data calibration were not con-
nique for endoscopic measurement of optical properties in the sistently and significantly better than results for simulation-
UVAto VIS region, it is useful to evaluate model performance based calibration, and given the presence of experimental er-
in terms of the primary independent variables: model type ror, we believe that the optimal approach would involve
(NN or PLS, data generation approa¢hmodeling or mea- simulation-based calibration.
surement and optical property distributiofuniform or ran- Several sources of experimental error have been identified.
dom). Analysis of the strengths and weaknesses of individual For in vitro measurements, tissue inhomogeneity likely con-
models should lead to advances in experimental and analyticaltributed to the variation in the final estimated optical property
methods. values. Another source of error may have been the large fiber-
Estimation accuracy of inverse solution models was depen- to-fiber variation in light intensity, which affected the accu-
dent on several parameters. Tables 1 and 2 indicate that theracy of CCD camera measurements. In the future, we plan to
most important variable was the type of algorithm used in homogeneize light levels incident at the CCD through the use
model generation and calibration. In almost every case, NN of neutral density filters. These and other measurement errors

4.2 Evaluation and Optimization of Model
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the random dataset included fewer values at the very edge of
the u, and u. ranges than the uniform set. As a result, in-

creased errors were produced when the model had to evaluatdieferences

data points that were slightly outside the range it had been 1.
trained on. Since the model is most accurate over a restricted
range, testing that involves data within this range would pro- 5
duce results more representative of its true accuracy.

One of the most significant limitations of this technique in
regards to its eventual ugevivois its inability to account for
layered tissues with different optical properties. If the present
techniques were applied to multilayer tissues, such as those
found in mucosal tissues of the cervix and esophagus, errors
due to different path lengths and relative sampling of the dif- -
ferent layers may make it difficult even to obtain accurate
estimations of bulk tissue optical properties. However, it may
be possible to modify our steady-state reflectance for two- 5.
layer tissues, especially if it can be combined with a technique
such as optical coherence tomography to provide data on su- ¢
perficial layer thicknes$:

5 Conclusions 7.

This study represents a significant preliminary step toward
development of an experimental numerical approach to endo-
scopic determination of tissue optical properties in the UVAto 8
VIS regime. Radial reflectance profiles were calculated using
Monte Carlo simulations for absorption coefficients from 1 to

25 cm™ ! and reduced scattering coefficients of 5 toc26 *.

Similar profiles were measured for the same optical property °-
range using a fiber optic probe and tissue phantoms at a wave-
length of 675 nm. These data were used to calibrate NN and

PLS models for estimation of optical properties from reflec- 10.

tance distributions. Models were evaluated using simulation
data as well as experimental reflectance measurements from
tissue phantoms. The optical propertieggrfvivobovine liver
samples were then calculated from reflectance measurements
at 543 and 633 nm to provide further verification of this tech- 11.
nigue. Our results indicate the feasibility of a small fiber sepa-
ration approach to optical property determination and the abil- 15
ity to achieve optical property measurements with a moderate
level of accuracy. Given the range of optical properties of the
tissue phantoms and liver, which were measured at 543, 633,1
and 675 nm, our results provide strong support for the poten-
tial use of this technique for mucosal tissue in the UVA to VIS
region. In general, models were able to estimatewith a
greater degree of accuracy tharf (=2 versus=3 cm™%).

The use of an NN approach tended to produce more accurate
models than PLS. While the best estimation of optical prop- 15.
erties from experimental reflectance data was produced
through NN model calibration with experimental data, the use
of computational results for calibration provided surprisingly
accurate results.
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