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Probe classification of on-off type DNA microarray
images with a nonlinear matching measure

Munho Ryu
Chonbuk National University
Division of Bionics and Bioinformatics
664-14 1 Ga, Duckjin-Dong
Duckjin-Gu, Jeonju
Jeonbuk 561-756, South Korea
E-mail: mhryu@chonbuk.ac.kr

Jong Dae Kim
Hallym University
Division of Information and Communication

Engineering
1 Okchon-dong
Chunchon 200-702, Korea

Byoung Goo Min
Seoul National University
College of Medicine
Department of Biomedical Engineering

and
Medical Research Center
Institute of Medical and Biological Engineering
Seoul, Korea

Jongwon Kim
BiomedLab Co., Ltd.
Gyeonggi Technopark Ste. 811
1271-11 Sa-dong, Sangnok-gu
Ansan, Gyeonggi-do
426-901 Seoul, Korea

Yong-Yook Kim
Chonbuk National University
Center for Healthcare Technology Development
664-14 1 Ga, Duckjin-dong
Jeonju, Jeonbuk 561-756

Abstract. We propose a nonlinear matching measure, called counting
measure, as a signal detection measure that is defined as the number
of on pixels in the spot area. It is applied to classify probes for an
on-off type DNA microarray, where each probe spot is classified as
hybridized or not. The counting measure also incorporates the maxi-
mum response search method, where the expected signal is obtained
by taking the maximum among the measured responses of the various
positions and sizes of the spot template. The counting measure was
compared to existing signal detection measures such as the normal-
ized covariance and the median for 2390 patient samples tested on
the human papillomavirus �HPV� DNA chip. The counting measure
performed the best regardless of whether or not the maximum re-
sponse search method was used. The experimental results showed
that the counting measure combined with the positional search was
the most preferable. © 2006 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Automatic analysis is one of the main issues of DNA microar-
ray technology.1–15 The analysis is commonly composed of
two steps. First, a reference position of a spot set is located
and then the signal amplitude of each spot is subsequently
measured. There have been various efforts to measure signal
amplitude effectively. However, most of these studies focused
on ratio images, where the measured continuous signal corre-
sponds to the gene expression profile. However, one must
focus on the absolute value of the detected signal strength for
on-off type DNA microarrays, such as HPVDNAChip
�Biomedlab Co., Korea�, because the signal is interpreted in
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the on-off state to detect the presence of target DNA se-
quence.

The HPVDNAChip, designed to detect human papilloma-
virus �HPV� infection, one of the main causes of cervical
cancer, is configured16–26 as shown in Fig. 1. There are four
chambers in one slide, one for each patient. Each chamber has
two identical spot sets to increase diagnostic credibility. A
spot set has four positive control markers and 22 pairs of HPV
type-specific oligonucleotide probes. Each HPV type probe is
also duplicated forming a pair of spots, yielding four spots for
one type of probe in one chamber. The four positive control
markers in each set are oligonucleotide probes for human
�-globin and are used to locate the reference of a spot set and
to verify the hybridization.

The target DNA is extracted from clinical sample, ampli-
fied by a single-round polymerase chain reaction �PCR�, and
1083-3668/2006/11�1�/014027/7/$22.00 © 2006 SPIE
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hybridized onto the chip. It randomly incorporates Cy5 during
PCR amplification and visualizes the position of hybridization
when the DNA chip is scanned. After locating the marker,
each spot is read as present or absent to detect the existence of
the corresponding HPV type. To make the chip an on-off type,
all of the probe sequences are unique to the HPV type, using
the thermodynamic stability between the oligonucleotide
probe sequence in length of thirty base pairs and the target
DNA sequence.27–30

The template matching method31–55 in our previous studies
showed reasonable performance in locating markers for on-off
type microarray,24–26 as has integration of prior knowledge
and template-matching methods with normalized covariance
as a measure help to locate markers.24 A nonlinear matching
measure has been proposed and compared with normalized
covariance, and successfully applied to locating markers.25,26

The nonlinear matching measure was obtained by binary
thresholding the template region and counting the white pixels
inside the object region. It simulated the behavior of the ex-
pert, who decided that a spot was hybridized if the spot area
was filled with a certain number of relatively white pixels. It
was proven that the measure was robust especially with re-
spect to the spot signal amplitude variation, which is common
in microarray images.

This paper presents that the nonlinear matching measure,
which we denote as a counting measure, also delivers better
performance than the classical signal detection measures such
as covariance and median for the probe classification. We also
present the maximum response search method in which the
expected signal is obtained by taking the maximum of the
responses according to the various positions and sizes of a
spot template. The counting measure was tested on 2390 pa-
tient samples in terms of its discrimination ability on classi-
fying the probes to an on-off state. The comparison showed
that the counting measure outperformed the existing measures
regardless of the adapting maximum response search method
used.

2 Probe Classification by Template Matching
A single binary circular template is used to simulate spot
shape.30–36 It is composed of an object region and a back-

Fig. 1 Architecture of HPVDNAChip microarray.
ground region. Object and background have the same area and

Journal of Biomedical Optics 014027-
their values are 1 and −1, respectively, to eliminate bias. Even
though the spot size is determined by the dotter shape and the
marker-locating step, which locates the reference position of a
spot set, our method defines probe location within a reason-
able range, as in Ref. 26. However, it is advantageous to
search the position and size of each probe spot, i.e., fine-
tuning, to achieve a more discriminating result, as is clear1–10

in Fig. 2. Three kinds of fine-tuning methods are applied.
First, neither position nor size is searched, but their default
values are used �no search�. Second, the spot position that
gives maximum response is searched �position search�. Third,
both the spot position and size that gives the maximum re-
sponse are searched25,26 �position and size search�.

For the matching measure, normalized covariance �NC�,
median, and the counting matching measures are compared.
They are expressed as

NC�i, j� =
�k,l�Template

T�k,l�I�i + k, j + l�

�T�I�i, j�
, �1�

Med�i, j� = mediank,l�Template�I�i + k, j + l�� , �2�

Counting�i, j� = #k,l�Template��k,l��I�i + k, j + l��Th,�k,l� � O	

− # ��k,l��I�i + k, j + l��Th,�k,l� � B	 , �3�

where T�i , j� and I�i , j� are the intensities of the template and
the image at the pixel position �i , j�, respectively; �I and �T
are the intensity standard deviation of the template and that of
the image in the area corresponding to the template; and #�·	,
median, Template, O, and B are the number of element of the
set, the median operation, the template area, the object area,
and the background, respectively.

To define the initial position and the size of the template,
we can utilize a priori knowledge as follows: a probe position
is fixed relative to the markers and the shape of a probe spot
is circular and its size varies within a reasonable range around

Fig. 2 Fine-tuning for probe classification. Red crosses are the initial
spot positions predetermined by the located marker. White circles
denote the final spot areas. �a� No search, the white circle is centered
at the cross point; �b� position search, the white circle is not centered
at the cross point; and �c� position and size search, the white circle is
not centered at the cross point and its size is greater than the initial
size.
the dotter size. As one type of probe has four duplicate spots,
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the probe classification procedure can be composed as fol-
lows.

Probe Classification Procedure
For 22 probes

For four duplicate spots
Search spot position which gives maximum re-

sponse.
Search spot size which gives maximum response.

End �for four duplicate spots�
Calculate average response for four duplicate spots.
Determine if this probe is hybridized or not. The probe

is hybridized if the average response is higher than threshold,
and not hybridized otherwise.

End �for twenty-two probes�

End procedure
In the preceding procedure, each probe delivers a real-

valued measure response and it is compared with a given
threshold to determine whether or not the probe is hybridized.

Fig. 3 Three hybridized spots with different intensities on a clear bac
response of the counting measure according to the probe indices. The
in normalized unit. The symbol o corresponds to hybridized spots and
indicates the global mean of the responses for all the samples.
Therefore, if we have the true class of each probe, that is, we
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know whether or not it is hybridized, then we can select an
effective signal detection measure using well-defined pattern
classification methods.

The counting measure of Eq. �3� and the existing measures
of Eqs. �1� and �2� can be combined with three kinds of fine-
tuning methods: no search, position search, and the position
and size search, effectively yielding nine measures. These
nine measures are compared in terms of discriminating abili-
ties with the experts’ classification. We investigated the scatter
plots of pairs of measures for subjective comparison. For
quantitative comparison, the interclass distances and the par-
tial receiver operating characteristic �ROC� analysis were em-
ployed.

3 Experimental Results
A total of 2390 patient samples were used to evaluate the
three kinds of measure and three kinds of fine-tuning meth-
ods. Among them, 768 �32.1%� samples were HPV positive.
All the samples were tested and each spot was determined as

d: �a� chip image, �b� response of NC of each probe number, and �c�
denotes the probe number and the y axis denotes the response value
to nonhybridized spots. The horizontal line just below the � symbols
kgroun
x axis
the �
present or absent by an expert’s naked eye. We assumed that
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the expert’s classification is true. For easy data manipulation,
a reduced set was chosen. Note that as there are 22 probes in
one sample, there are 52,580 probe spots. Among them, all of
1115 hybridized spots were selected, while 2000 of nonhy-
bridized spots were picked up randomly. The scatter plots
shown in upcoming Figs. 4–6 were employed for the subjec-
tive comparison of the measures. The interclass distance �Fig.
7, shown later� and the partial ROC analysis56–58 �Table 1�
were used to quantify the comparisons.

The counting measure provided a more stable response
than the NC for the spots with different signal intensities, as

Fig. 4 Scatter plots of measures for no search for �a� NC versus medi
hybridized and nonhybridized spots, respectively. Each measure w
median=0.51, and counting=0.55, respectively.

Fig. 5 Scatter plots of measures for position search for �a� NC versus me
hybridized and nonhybridized spots, respectively. Each measure was

=0.31, and counting=0.17, respectively.

Journal of Biomedical Optics 014027-
shown in Fig. 3. There are three hybridized spot quadruples,
and each quadruple gives a different intensity, as shown in
Fig. 3�a�. While the NC responses vary with the spot intensity,
as in Fig. 3�b�, the counting measure gives more stable re-
sponse regardless of the spot intensity as in Fig. 3�c�. The
separation between the hybridized and nonhybridized spots
does not seem good enough here, because neither spot posi-
tion nor size was searched.

The NC and the counting measure are highly correlated
and fine-tuning improves discriminating performance. For
each fine-tuning method, the NC, median, and the counting

�b� NC versus counting. The rectangle and triangle symbols denote
rmalized. False negative spots were 9, 146, and 6 for NC=0.43,

nd �b� NC versus counting. The rectangle and triangle symbols denote
lized. False negative spots were 1, 90, and 0 for NC=0.13, median
an and
as no
dian a
norma
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measure are shown in scatter plots in Figs. 4–6. From the
figures, we can see that the NC and the counting measure
show similar and reasonable performance, but the median
shows poor discriminating ability. It can be easily noticed
when we draw a vertical line at the class boundary for the NC
and horizontal lines for the median and the counting measure.
For example, in Fig. 4�a�, there are not many data points �nine
false negative points� crossing over the vertical line at NC
=0.43, that is, the rectangular data points on the left side,
while there are too many data points �146 false negative
points� crossing over the horizontal line around median
=0.51. This investigation proves that the discrimination with
median is poorer than with NC.

The position search showed significant improvement, as
we can see by comparing Figs. 4�b� and 5�b�. However, the
improvement by position and size search is not significant, as
shown in Figs. 5�b� and 6�b�. Note that there was no false
negative spot for NC and counting measure in Figs. 5�b� and
6�b�.

The feature selection criterions are compared in Fig. 7. The
response values of nine measures are applied to a feature se-
lection criterion as a feature set. Hybridized spots and nonhy-

Fig. 6 Scatter plots of measures for position and size search for �a� N
symbols denote hybridized and nonhybridized spots, respectively. E
NC=0.13, median=0.29, and counting=0.21, respectively.

Fig. 7 Comparison of feature selection criterions with interclass dis-
tance. Nine features, a combination of three measures and three fine-

tunings, are compared.
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bridized spots are applied as different classes. The interclass
distance was calculated as expressed in Eq. �4�. It is an aver-
aged Euclidean distance between samples for exclusive
classes. We can confirm the same result as expected from the
previous scatter plots. The discriminating capability improved
as fine-tuning was applied, and the median showed the poor-
est performance. The counting measure with both position and
size search, and that with position search, were the best and
second best performances.

interclass distance�i, j� = �
k�i

�
l�j

�
k,l

d�k,l� , �4�

where i and j are different classes; k and l are samples in
classes i and j, respectively; and d�k , l� is Euclidean distance
between samples k and l.

An ROC curve analysis was performed for each feature.
Each partial area index was calculated for the range where
false positive rate �FPR� is below 0.05, as shown in Table 1.
This also confirms the previous result shown in the scatter
plots and the interclass distance comparison.

sus median and �b� NC versus counting. The rectangle and triangle
easure was normalized. False negative spots were 0, 63, and 0 for

Table 1 Partial ROC area index �for FPR�0.05�.

Fine-Tuning NC Median Counting

No search 0.9987 0.9619 0.9993

Position search 0.9995 0.9728 1.0000

Position and size search 0.9994 0.9807 1.0000
C ver
ach m
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4 Conclusion and Discussion
We proposed a nonlinear matching measure, called counting
measure, and applied it to a probe classification, especially for
an on-off type DNA micoarray. This kind of microarray is
designed in such a way that the hybridization signal is de-
tected as present or absent. Therefore, consideration of mea-
sure selection is important. The basic underlying concept of
this paper is to simulate an expert’s behavior that estimates
the amount of white pixels filling the spot area.

Probe classification was applied to 2390 patient samples.
The counting measure was compared with the NC and me-
dian. Three measures were combined with the fine-tuning
method, where the position and both the position and size
were searched to give the maximum response. The nine kinds
of measures, combinations of each of three measures and fine-
tuning methods, were compared subjectively and quantita-
tively. Pairwise scatter plots were investigated for subjective
comparison and the interclass distance and ROC analysis
were employed for quantitative comparison of nine measures.
The counting measure performed the best regardless of the
employed fine-tuning method. Even though the counting mea-
sure delivers better performance with both position and size
search, only the positional search is preferable, because the
performance enhancement with the additional size search is
negligible in contrast to the great increase of the computation
cost. Note that the position search is operated in the same
template-matching measure response with a single fixed size.
However, the size search requires a separate measure response
for each size.

The integration of a probe classification scheme proposed
here and the marker-locating method along with the proposed
template-matching measure, proposed by the authors previ-
ously, provides a complete solution set to the automatic analy-
sis of the on-off type DNA microarray image. This automatic
analysis of HPV DNA microarray chip has significance in the
sense that it accelerates high-throughput for cervical cancer
screening. This solution can be also applied to the other on-off
type DNA microarrays images.
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