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Abstract. Barrett’s esophagus �BE� and associated adenocarcinoma
have emerged as a major health care problem over the last two de-
cades. Because of the widespread use of endoscopy, BE is being rec-
ognized increasingly in all Western countries. In clinical trials of en-
doscopic optical coherence tomography �EOCT�, we defined certain
image features that appear to be characteristic of precancerous �dys-
plastic� mucosa: decreased scattering and disorganization in the mi-
croscopic morphology. The objective of the present work is to de-
velop computer-aided diagnosis �CAD� algorithms that aid the
detection of dysplasia in BE. The image dataset used in the present
study was derived from a total of 405 EOCT images �13 patients� that
were paired with highly correlated histologic sections of correspond-
ing biopsies. Of these, 106 images were included in the study. The
CAD algorithm used was based on a standard texture analysis method
�center-symmetric auto-correlation�. Using histology as the reference
standard, this CAD algorithm had a sensitivity of 82%, specificity of
74%, and accuracy of 83%. CAD has the potential to quantify and
standardize the diagnosis of dysplasia and allows high throughput
image evaluation for EOCT screening applications. With further re-
finements, CAD could also improve the accuracy of EOCT identifica-
tion of dysplasia in BE. © 2006 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Barrett’s esophagus �BE� is an acquired condition, thought to
be due to gastroesophageal reflux, in which the normal strati-
fied squamous epithelium is replaced by a columnar-type epi-
thelium in which specialized intestinal metaplasia occurs. BE
is being recognized increasingly in all Western countries as
the use of endoscopy becomes widespread. BE and associated
adenocarcinoma have emerged as a major health care
problem.1–4 Adenocarcinoma is thought to develop as a se-
quence of transformations, from the nondysplastic columnar
Barrett’s epithelium, through low-grade and high-grade dys-
plasia and finally invasive cancer.5–8 A 30–40-fold increase in
the incidence of esophageal adenocarcinoa has been demon-
strated in patients with BE.1,4,9

Although BE is readily diagnosed during a standard endo-
scopic examination, it is extremely difficult endoscopically to
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identify the presence of low-grade dysplasia �early precancer-
ous tissue transformation� within a segment of Barrett’s epi-
thelium. Thus, current clinical management for patients with
BE includes periodic endoscopic examinations with multiple
biopsies being obtained according to a standard protocol, spe-
cifically four-quadrant biopsies obtained with a large forceps
at 2-cm intervals along the length of the Barrett’s epithelium,
the so-called Seattle protocol.10 If dysplasia is detected micro-
scopically, monitoring procedures are repeated more fre-
quently, generally every 6 months for low-grade dysplasia and
3 months for high-grade dysplasia. If repeat tissue sampling
reveals high-grade dysplasia, particularly if found in several
of the biopsies, further intervention is usually
recommended.11–13 However, the major limitation of this ap-
proach to management is sampling error.10 By definition, BE
must involve at least 2 cm of the length of the distal esopha-
gus, but typically it involves much longer segments, occasion-
ally the entire length of the esophagus. Even with rigorous
adherence to the biopsy protocol, only a tiny fraction of the
1083-3668/2006/11�4�/044010/10/$22.00 © 2006 SPIE
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entire surface area of the involved esophagus is sampled.
Moreover, the pattern of dysplasia within Barrett’s epithelium
is always irregular with foci that range from tiny to large.

Optical coherence tomography �OCT� is an emerging op-
tical technique based on low-coherence interferometry that
provides noninvasive, subsurface, high-resolution imaging of
biological microstructure.14,15 Endoscopic OCT �EOCT� has
been enabled by the development of fiber-optic catheter
probes that can be inserted through standard endoscopes.15–19

EOCT differentiates the tissue layers of the gastrointestinal
�GI� wall and can identify dyplasia with the mucosa.20–22 In
theory, EOCT could be used in BE to target biopsies to mu-
cosal sites where the probability for the presence of dysplasia
is high.18,20,23–25 In the future, if sufficient sensitivity is
achieved, EOCT could decrease sampling error and increase
yield; ultimately it could even eliminate the need for tissue
sampling.

We developed a real-time EOCT imaging system16 and
have gained experience with this imaging method in a series
of clinical trials.21–23,25–27 Our EOCT system is based on a
high-speed OCT engine described elsewhere.28 The EOCT
catheter probe is introduced into the GI tract through the ac-
cessory channel of a standard endoscope. The OCT light exits
the catheter probe near the tip in a radial fashion and is fo-
cused approximately 2.5 mm from the probe surface with a
minimum spot diameter of approximately 25 u. The focused
light exiting the probe tip sweeps a circular pattern as the
internal optics rotate at four revolutions per second.16

We and others have demonstrated that EOCT is feasible in
the human GI tract and that it provides interpretable, high-
resolution images of the mucosa and submucosa.21,23,26,27,29

The EOCT catheter probe is analogous to catheter ultrasound
probes that are commercially available for endoscopic imag-
ing. We therefore compared the performance of our EOCT
probe to catheter probe endoscopic ultrasonography �CPEUS�
in vitro and in vivo and found that the former provided supe-
rior resolution, but with limited depth of penetration such that
imaging was limited to the mucosa and submucosa.26 Addi-
tionally, EOCT differentiated major structures within mucosa
and submucosa whereas CPEUS did not. In another clinical
study, we demonstrated that EOCT differentiated adenoma-
tous from hyperplastic polyps and normal colon tissue.21 Be-
cause the adenomatous polyp is essentially a form of dyspla-
sia, this study also confirmed our hypothesis with regard to
the EOCT characteristics of dysplastic mucosa, i.e., a de-
creased scattering signal and loss of the structure associated
with normal histological organization. These characteristics
features are also present in EOCT images of BE with
dysplasia.18,23,25 Figure 1 shows examples of EOCT images of
nondysplastic BE �A�, low-grade dysplasia in BE �B�, high-
grade dysplasia in BE �C�, and adenocarcinoma �D�.

In general, computer-aided diagnosis �CAD� systems iden-
tify lesions in medical images by extracting quantitative fea-
tures and identifying anomalies by comparisons with known
features of images of normal and diseased tissue. CAD is
useful because it can provide an objective, quantitative inter-
pretation of clinical images, a type of “second opinion” the
physician can use to guide diagnosis and therapy.30,31 CAD
techniques could enhance the effort to identify dysplasia in
BE in at least three ways: first, CAD could quantify and stan-

dardize the identification of image characteristics associated
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with dysplasia, and thereby reduce inter-observer and intra-
observer variability. Second, the use of EOCT as a surveil-
lance modality for fully developed BE23,25 would yield thou-
sands of images for a single patient. It is improbable that a
human reader �endoscopists� could accurately evaluate such a
large dataset within a reasonable time frame, certainly not in
real time. EOCT surveillance would be a repetitive, tiresome
process involving mostly images of nondysplastic Barrett’s
epithelium. CAD is ideally suited to this type of task.31 Third,
it is possible that CAD could improve the accuracy of identi-
fication of dysplasia in EOCT images of BE, although this
would not be essential to the realization of the first two goals.

EOCT readily distinguishes Barrett’s esophagus from nor-
mal esophageal mucosa,17,18,23,29 but the identification of dys-
plasia within Barrett’s epithelium is more challenging. Using
the image features that we have defined as characteristic of
dysplasia, a prospective study was conducted to test the abil-
ity of endoscopists to diagnose dysplasia in BE. Although the
results were encouraging, the overall accuracy of EOCT
�78%� obtained to date has been insufficient with respect to
making clinical decisions. Moreover, significant inter-
observer variability and intra-observer variability was noted.25

Therefore, we tested the feasibility of CAD as a way to im-
prove the accuracy and usefulness of EOCT in the diagnosis
of dysplasia in BE.

2 Materials and Methods
Under a protocol approved by the Institutional Review Board
of University Hospitals of Cleveland, we are investigating the
role of EOCT during surveillance endoscopy in patients with
BE. The protocol specifies that surveillance be conducted ac-
cording to the standard “Seattle protocol,”10 with biopsies be-
ing obtained in four quadrants at 2-cm intervals along the
entire length of esophagus involved by Barrett’s changes. A
digital stream of EOCT images is obtained at each biopsy site

Fig. 1 EOCT images of Barrett’s esophagus �A�, low-grade dysplasia
�B�, high-grade dysplasia �C�, and adenocarcinoma �D�.
prior to removal of the actual biopsy. For this purpose, a 2.4-
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mm-diameter EOCT probe was designed for use with a cap-
fitted, 2-channel endoscope �Olympus models GIF 2T 160 and
GIF 2T 240�.

The cap, a transparent, plastic cylinder beveled at the distal
end, fits tightly on the end of the endoscope. When the tip of
the endoscope is deflected toward the wall of the esophagus, a
small circular portion of the esophageal mucosa is fixed by
the cap, thereby negating the effects of esophageal motion.
With the EOCT probe inserted through one of the two acces-
sory channels in the endoscope, a portion of the esophageal
mucosa within the area encircled by the cap is imaged. To
accomplish this, it was necessary to offset the imaging plane
of the probe 30 degrees from perpendicular and to set the
focal point at 3 mm. As a digital stream of images is being
obtained, a biopsy forceps inserted through the second endo-
scope channel is used to obtain a specimen. The endoscope
has a mechanism at the distal port of the second channel that
can be used to deflect an accessory inserted through the chan-
nel. When the cap is properly aligned on the tip of the endo-
scope, the lever mechanism is used to deflect the biopsy for-
ceps into the EOCT imaging field. Thus, a biopsy can be
taken from exactly the same region of mucosa that is being
imaged by EOCT. In fact, removal of the biopsy results in a
divot in the mucosa that is readily evident in the EOCT im-
age. Using this system, EOCT images can be precisely corre-
lated to the histopathologic features of the mucosa.

In this study, an experienced GI pathologist, blinded to
endoscopic and EOCT findings, evaluated each biopsy using
standard criteria. The histopathological findings were classi-
fied as no dysplasia, indefinite for dysplasia, low-grade dys-
plasia, high-grade dysplasia, and intramucosal cancer. The en-
doscopic procedures were performed by one of four
endoscopists in patients with known Barrett’s esophagus who
were undergoing surveillance endoscopy �some had dysplasia
in biopsies obtained at prior examinations�. Each endoscopist
separately reviewed the EOCT digital image stream after the
procedure and rated EOCT findings according to the presence
or absence of dysplasia. A total of 314 EOCT image streams
paired with biopsy diagnoses from 33 patients were analyzed
in the study. Using the pathologist’s diagnosis as the standard,
the performance of EOCT was sensitivity, 68%; specificity,
82%; positive predictive value, 53%; negative predictive
value, 89%; and diagnostic accuracy, 78%. Diagnostic accu-
racy for the four endoscopists ranged from 56% to 98%. The
results of this study are reported elsewhere.25

For the present study, an image database was constructed
of image-biopsy pairs obtained during endoscopic surveil-
lance procedures in 13 patients. An EOCT image stream �ap-
proximately 20 frames� was recorded at each biopsy site. One
EOCT image from the stream was selected for analysis. The
image selected was the last image recorded immediately be-
fore the biopsy forceps entered the EOCT field of view. For
each biopsy site, all EOCT image streams were reviewed
jointly by two investigators �XQ, MVS�. Each biopsy was
evaluated by an experienced GI pathologist �JEW�. The
image-biopsy pair selection criteria were as follows: �1� entry
of the biopsy forceps into the EOCT imaging field had to be
clearly visible to insure perfect image-biopsy correlation; �2�
an EOCT image of good quality, without distortion or artifact;
�3� the biopsy was interpreted as nondysplastic BE or as low-

or high-grade dysplasia �i.e., biopsies graded as indefinite for
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dysplasia or as cancer were excluded�. Of a total of 405
image-biopsy pairs collected, 106 met inclusion criteria: 68
graded as nondysplastic, 38 graded as dysplastic.32

CAD processing was implemented in three phases: the first
is segmentation of the region of interest �ROI� in EOCT im-
ages. The ROI in an EOCT image is the tissue that was re-
moved as the biopsy; nontissue image features, such as the
cap, and sometimes tissue outside the cap are excluded. The
ROI is the only portion of the EOCT image subjected to the
second phase, feature extraction. Based on our clinical obser-
vation of decreased tissue organization in dysplastic versus
normal or benign mucosa, image texture analysis was selected
as the feature extraction method. In EOCT images of BE, a
decrease in tissue organizational structure appears as a more
homogenous texture, which can be quantified using texture
analysis. Texture features that can be quantified include mea-
sures of smoothness, coarseness, and regularity.33 The third
phase is tissue classification. Texture features are input to a
statistical model, called a classifier, which groups the images
as dysplastic or nondysplastic tissue. Leave-one-out cross-
validation and the receiver operating characteristic �ROC�
curve were used to evaluate the performance of CAD.

2.1 Segmentation Methods
For the purposes of this study, a semi-automatic segmentation
process was developed. The cap and tissue outside the cap
were deleted manually from the image. Global thresholding
was used, based on the assumption that the image has a bi-
modal histogram, to obtain a binary image. The binary image
was multiplied with the original filtered image to remove the
background noise, resulting in a clean EOCT image without
background noise and cap artifacts. Edge detection and mor-
phological processing yielded a continuous and smooth region
of interest �ROI� corresponding to the tissue under examina-
tion. First, the intensity of image was rescaled to cover the
entire dynamic range, which can increase the contrast of out-
put image. The Sobel kernel was used to find edges of the
image via the Sobel approximation to the derivative. The
edges at those points are the maximum of their gradients. The
threshold for Sobel method is half of global image threshold
using Otsu’s method.34 We used morphological processing to
dilate the binary image with line structuring elements at 0
degrees and 90 degrees, then erode it with a “rolling ball” disk
structuring element to smooth the edges.35 Finally, a binary
mask defining the ROI was produced, which was used for the
next step, feature extraction.

2.2 Feature Extraction Methods
Texture analysis is a class of image processing techniques
designed to quantify image properties such as smoothness,
coarseness, and regularity.36–39 By clinical experience, we
have observed certain characteristics of EOCT images that
correlate with dysplastic mucosa in Barrett’s esophagus, in-
cluding decreased scattering signal and loss of structure asso-
ciated with normal histological organization.18,23,25 The EOCT
images do not contain such texture structures as large-scale
replications, symmetries, or combinations of various basic
patterns. Because the EOCT intensity and structural image

features tend to vary locally, we chose the center-symmetric
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auto-correlation �CSAC� method for this study. The CSAC
texture features relate to local intensity variations and can
capture local structure variation.

CSAC is a texture analysis method that quantifies the re-
lationships between each pixel and its neighboring pixels.40 In
our study, for each image, six CSAC measures were calcu-
lated: gray-scale texture covariance �SCOV�; local variance
�VAR�; between-pair variance �BVAR�; within-pair variance
�WVAR�; variance ratio �SVR�; and normalized SCOV
�SAC�. A mathematical description of these measures calcu-
lated for center-symmetric pairs of pixels in a 3�3 neighbor-
hood �as shown in Fig. 2� are presented in Eqs. �1�–�6�. Table
1 defines these abbreviations.

SCOV =
1

4�
i

4

�gi − ���gi� − �� �1�

VAR = �1

8�
i

4

�gi
2 + gi�

2�� − �2 �2�

BVAR = � 1

16�
i

4

�gi + gi��
2� − �2 �3�

Fig. 2 3�3 neighborhood of pixels with 4 center-symmetric pairs �gi
and gi�, here i=1, 2, 3, 4�, used to compute CSAC measures. Here, gi
and gi� are the intensity values of the center-symmetric pair.

Table 1 Abbreviations of image analysis measures.

CSAC Center-symmetric autocorrelation

SCOV Gray level texture covariance

VAR Local variance

BVAR Between-pair variance

WVAR Within-pair variance

SVR Variance ratio

SAC Normalized SCOV
Journal of Biomedical Optics 044010-
WVAR =
1

16�
i

4

�g
i
− gi��

2 �4�

SVR =
WVAR

BVAR
�5�

SAC =
SCOV

VAR
�6�

where gi refers to the gray level of pixel i, here i=1, 2, 3, 4
and � denotes the local mean value.

SCOV is a measure of the pattern correlation as well as the
local pattern contrast. VAR is a measure of local gray-level
variation and is the sum of BVAR and WVAR. BVAR is a
measure of between-pair intensity variance. WVAR is a mea-
sure of within-pair intensity variance. SVR, the symmetric
variance ratio between the within-pair and between-pair vari-
ances, is a statistic equivalent to the auto-correlation measure
SAC. SAC is a normalized gray-level invariant version of the
texture covariance measure SCOV. It is invariant under linear
gray-level shifts such as correction by mean and standard
deviation.40

2.3 Classification Methods
Principal component analysis �PCA� is used to reduce the
dimensionality of a dataset that consists of a large number of
interrelated variables, while retaining as much as possible of
the variation present in the dataset.41 Each principal compo-
nent is a linear combination of the original variables. The first
few principal components typically contain most of the vari-
ance present in all of the original data. For this study the six
texture features were calculated for every EOCT image in the
dataset and evaluated as classifiers. Then, PCA was carried
out and the first two principal components �pc1 and pc2� were
evaluated as classifiers. Using the pathologist’s diagnosis of
each biopsy as the reference standard, two methods were used
to evaluate the performance of the CAD algorithm and the
value of six texture features and pc1 and pc2 as classifiers.

First, the receiver operating characteristic �ROC� curve
was generated for those variables and the areas under the
curves were calculated. Second, due to the limitation in
sample size �106 images�, a statistical re-sampling technique
called leave-one-out cross-validation was used to estimate the
sensitivity, specificity, positive predictive value �PPV�, nega-

Fig. 3 EOCT image of Barrett’s esophagus �A�; region of interest �ROI�
without background noise and cap artifacts �B�; binary mask defining
the ROI.
tive predictive value �NPV�, and accuracy of those variables
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as classifiers.42 For this, the maximum accuracy point �mini-
mum sum of false negative and false positive� was used as the
decision threshold.

3 Results
3.1 Segmentation Results
All 106 EOCT images included in this study were success-
fully segmented in order to identify the region of interest rep-
resenting the tissue from which the biopsy was obtained. Fig-
ure 3 illustrates the segmentation process using a
representative EOCT image �non-dysplastic�. In Fig. 3�A�,

Fig. 4 The histograms of six CSAC texture features within the ROI e
background noise and the plastic cap are evident. The cap was

Journal of Biomedical Optics 044010-
removed manually from the image. Using global thresholding
and filtering, as mentioned in the materials and method sec-
tion on segmentation methods, a clean EOCT image without
background noise and cap artifact was obtained, as shown in
Fig. 3�B�.

Using edge detection and morphological processing, as
mentioned in the materials and method section on segmenta-
tion, a binary mask defining the ROI was obtained, as shown
in Fig. 3�C�. Within the next phase, Fig. 3�B� is processed to
extract texture features within the area defined by its binary
mask �Fig. 3�C��.

d from 68 nondysplastic Barrett’s and 38 dysplastic EOCT images.
xtracte
July/August 2006 � Vol. 11�4�5
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3.2 Feature Extraction Results
Using the center-symmetric auto-correlation method, texture
covariance �SCOV�, normalized texture covariance �SAC�,
variance ratio �SVR�, local variance �VAR�, between-pair
variance �BVAR�, and within-pair variance �WVAR� were
calculated over the ROI segmented in each of the 106 EOCT
images. Figure 4 shows the histograms of those six CSAC
features within the ROI in EOCT images. Here we group the
106 EOCT images into two groups: 68 images of nondsyplas-
tic mucosa and 38 of dysplastic mucosa �31 low-grade dys-
plasia, 7 high-grade dysplasia�.

3.3 Classification Results
In this study, the first two principal components captured 94%
of the variation present in the six texture features. The histo-
grams of the scores of the first two principal components are
shown in Fig. 5.

The ROC curves for each texture feature from the CSAC
calculations are shown in Fig. 6. Table 2 gives the area under

Table 2 Numerical comparison of ROC curves

TCH

Area under
ROC

�95% CI�
Sensitivity
�95% CI�

Specifi
�95%

SCOV 67%
�57% �75% �

50%
�35% �65% �

82%
�72% �

VAR 83%
�75% �90% �

82%
�66% �91% �

74%
�62% �

BVAR 84%
�75% �90% �

87%
�72% �95% �

69%
�57% �

WVAR 70%
�61% �79% �

61%
�45% �75% �

74%
�62% �

SVR 80%
�72% �88% �

74%
�58% �85% �

74%
�62% �

SAC 71%
�62% �80% �

82%
�66% �91% �

52%
�40% �
Fig. 5 The histograms of first two principal components �PC1 an
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each ROC curve. Also shown in Table 2 are the sensitivity,
specificity, PPV, NPV, and diagnostic accuracy calculated by
leave-one-out cross-validation.

The ROC curves for the first and second principal compo-
nents calculated from the six texture features are shown in
Fig. 7. Table 3 shows the area under ROC curve and the
sensitivity, specificity, PPV, NPV, and diagnostic accuracy for
pc1 and pc2.

4 Discussion
From Table 2, local intensity variation �VAR� and between-
pair intensity variation �BVAR� are the most important texture
features for classification of nondysplasia and dysplasia in
EOCT images of BE. They achieved essentially the same area
under the ROC �75% � 90% CI�. This is because VAR is the
sum of BVAR and WVAR, and BVAR occupies most of VAR.
From Table 3, although the PCA did not improve the diagnos-
tic accuracy, compared with the most important texture fea-
tures �VAR and BVAR�, the pc1 and pc2 gave the same clas-

h feature of CSAC.

Positive
predictive

value
�95% CI�

Negative
predictive

value
�95% CI�

Diagnostic
accuracy
�95% CI�

61%
�44% �76% �

75%
�64% �83% �

71%
�62% �89% �

63%
�49% �75% �

88%
�77% �94% �

76%
�67% �84% �

61%
�48% �73% �

90%
�79% �96% �

75%
�66% �83% �

56%
�41% �70% �

77%
�65% �86% �

69%
�60% �77% �

61%
�47% �74% �

83%
�72% �91% �

74%
�64% �81% �

48%
�37% �60% �

83%
�69% �92% �

62%
�53% �71% �
for eac

city
CI�

90% �

83% �

79% �

83% �

83% �

63% �
d PC2� for nondysplastic images and dysplastic images.
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sification result �area under ROC� as VAR and BVAR.
Because VAR and BVAR, of the 6 texture features, captured
most of the variance of the dataset, pc1 and pc2 should have
the same axes as VAR and BVAR. For the present study, only
a single image per biopsy site was used. PCA did not improve
the classification. However, in the future PCA may be useful
for feature classification where multiple images per biopsy
site are obtained.

Due to beam focusing and a radial scanning geometry, the
EOCT does not sample the tissue space uniformly. Signals
returned from the beam focus sample smaller tissue volumes
than signals away from the beam focus. Sample spacing is
closer near to the probe and farther apart away from the
probe. We did not perform any test to determine the effects of
the nonuniform sampling on the CAD procedure. However,
due to the controlled manner in which the images were ac-
quired, the region of interest in each image was located ap-
proximately the same distance from the probe. Therefore, we
expect any effects of nonuniform sampling to be minimal in
this study.

In the previous study, the EOCT system with human read-
ers has an accuracy of 78% for detection of dysplasia in pa-
tients with Barrett’s esophagus.25 These data are reproduced
in Table 4. However, image selection criteria for CAD were
much stricter than those employed by the endoscopists. For
each image and biopsy pair used in the present study, there
was a high degree of certitude that the biopsy forceps entered
the EOCT field of view, thereby ensuring nearly perfect

Fig. 6 The graphic comparison of ROC curves for each feature of
CSAC.

Table 3 Numerical comparison of ROC curves
features of CSAC.

TCH

Area under
ROC

�95% CI�
Sensitivity
�95% CI�

Specifi
�95% C

PC1 83%
�75% �90% �

82%
�66% �91% �

74%
�62% �8

PC2 84%
�75% �90% �

76%
�61% �87% �

78%
�67% �8
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image-biopsy correlation. Of a total of 405 image-biopsy
pairs collected by endoscopists, 106 met inclusion criteria for
the present study. On the other hand, the endoscopists grading
the images had access to the real-time image stream consist-
ing of many images at each biopsy site, while the CAD algo-
rithm analyzed only one image per biopsy site. Because of
these differences, the results of the CAD grading must be
compared cautiously with the previously reported grading by
endoscopists. However, from the results it appears that CAD
is at least as accurate as humans for identification of dysplasia
in EOCT images.

In a study that included 121 patients with BE, Poneros et
al. found that OCT can reliably distinguish squamous epithe-
lium from normal gastric mucosa.43 A later study that included
109 biopsy-correlated images from 46 patients with BE found
the sensitivity and specificity of EOCT �one blinded investi-
gator� to be, respectively, 68% and 70% for classification of
nondysplasia versus dysplasia �including low-grade, high-
grade, and indeterminate�.44 These results are comparable to
those of our previous study of EOCT for the detection of
dysplasia in BE �68% sensitivity, 82% specificity�. Jackle et
al. found that EOCT images of BE differed substantially from
those of normal esophagus, reflux esophagitis, and esophageal
carcinoma.45

Other optical modalities, in addition to EOCT, have been
employed for the detection of dysplasia in BE. Some of these
techniques use diagnostic molecular and microstructural in-
formation contained in light-tissue interactions such as fluo-

Fig. 7 The graphic comparison of ROC curves for the first and second
principal components of six features of CSAC.

e first and second principal components of six

Positive
predictive

value
�95% CI�

Negative
predictive

value
�95% CI�

Diagnostic
accuracy
�95% CI�

63%
�49% �75% �

88%
�77% �94% �

76%
�67% �84% �

66%
�51% �78% �

85%
�75% �92% �

77%
�69% �84% �
for th

city
I�

3% �

6% �
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rescence, light scattering, and Raman scattering. Using 97
quantitative fluorescence spectra obtained from 20 patients,
Brand et al. distinguished high-grade dysplasia from nondys-
plastic tissue types with 77% sensitivity and 71% specificity.46

Light-scattering spectroscopy can be used to measure epithe-
lial nuclear enlargement and crowding. Using this technique,
Wallace et al. studied 13 patients with BE �76 sites: 4 high-
grade dysplasia, 8 low-grade dysplasia, 12 indefinite for dys-
plasia, and 52 nondysplastic Barrett’s from 13 Barrett’s pa-
tients.� Dysplasia was considered to be present if more than
30% of the nuclei were enlarged ��10 �m as threshold di-
ameter�. The reported sensitivity and specificity for detecting
dysplasia �either low-grade or high-grade� were, respectively,
90% and 90%.47 In a study reported by Wong et al., Raman
spectroscopy differentiated high-grade dysplasia from non-
dysplastic Barrett’s epithelium and low-grade dysplasia with
an 88% sensitivity and 89% specificity.48 These optical spec-
troscopy techniques provide single “point” measurements ob-
tained with a probe, whereas EOCT provides real-time digital
images that are highly correlated with the histopathologic
morphology of the esophageal wall. Thus, EOCT may be bet-
ter suited for clinical screening and surveillance procedures
and is easier for physicians to review.

Nonoptical techniques have also been used to evaluate BE.
Endoscopic ultrasound �EUS� appears to have a role in pa-
tients who have BE and high-grade dysplasia or intramucosal
carcinoma, in whom a nonoperative therapy is being contem-
plated. In most cases, however, EUS is incapable of detecting
low-grade and high-grade dysplasia.49 Chromoendoscopy and
magnification endoscopy are endoscopic techniques, some-
times used together, that improve visualization of the surface
of the gastrointestinal mucosa. They are potentially effective
techniques for the recognition of dysplastic mucosa in BE.50

Chromoendoscopy signifies the spraying of a colored dye on
the mucosal surface to enhance detail. This technique, albeit
inexpensive, is time-consuming, and the interpretation of the
findings is subjective and operator-dependent, so that results
have been variable among several studies. With magnification
endoscopy, it is necessary to maintain a fixed optical distance
between the tissue to be imaged and the endoscope; the con-
stant motion of the esophagus usually makes this difficult.
Additionally, the area of mucosa visualized in each magnified
image is tiny, thereby making magnification endoscopy less
suitable for surveillance of long segments of Barrett’s epithe-

Table 4 Evaluation of EOCT classification by endoscopists.

Sensitivity 68% �56% �77% �

Specificity 82% �76% �86% �

Positive predictive value 53% �43% �63% �

Negative predictive value 89% �84% �93% �

Diagnostic accuracy 78% �73% �83% �

Total of 314 imaging biopsy sites �95% confidence interval�
From Isenberg et al.
lium. Other barriers to the widespread application of chro-

Journal of Biomedical Optics 044010-
moendoscopy and magnification endoscopy are increased pro-
cedure time and lack of reimbursement.51

In the present study, semi-automatic segmentation that in-
volved some manual applications was used to extract an ROI.
This would be unsuitable for a CAD surveillance protocol. A
protocol that automatically removes artifacts and extracts the
ROI would be important for high throughput applications. The
CSAC method can only capture single-scale texture features.
Multiple-scale methods such as the wavelet transform to de-
compose the image and fractal dimensional analysis may be
well suited for EOCT feature extraction because they can pro-
vide multiple image scale information instead of single-scale
texture features, as in the present work. In the current study,
the whole ROI was used to extract texture features. However,
it might be feasible to segment the dysplastic and the nondys-
plastic tissue region, which might substantially improve the
accuracy of image classification. Only a single feature was
used as a classifier in the present study. Multivariate data
analysis, such as neural network and classification trees, using
more image texture features may improve the classification
accuracy of CAD and allow further stratification of low-grade
dysplasia, high-grade dysplasia, and cancer. The current study
is limited by the relatively small sample size �106�; a larger
study would provide more generalizable results. Refinements
in EOCT instrumentation that improve image resolution and
sensitivity are expected to improve CAD results and reliabil-
ity.

In conclusion, we have shown that CAD can classify
EOCT images of dysplasia in BE with improved accuracy
compared to that achieved by humans. CAD quantifies the
classification, eliminating inter-observer variability, and po-
tentially allowing further stratification. Our results do not in-
dicate that EOCT is sufficiently sensitive to replace the stan-
dard surveillance with the included biopsies. However, the
high negative predictive value indicates that EOCT could
have a useful role in targeting biopsies by eliminating mu-
cosal areas where there is no suspicion of dysplasia. CAD has
the potential to enable EOCT surveillance of large areas of
Barrett’s mucosa for dysplasia, which is impossible with the
currently available probe technology. Moreover, with further
refinements, CAD could improve the accuracy of identifica-
tion of dysplasia in patients with BE.
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