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Computational methods for analysis of human
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Abstract. Optical coherence tomography �OCT� has been demon-
strated as a promising means of identifying the boundaries between
normal and diseased breast tissue. This capability has yielded promise
for the development of OCT techniques for biopsy guidance, surgical
margin assessment, and minimally invasive evaluation of disease
states. We present methods for the assessment of human breast tissue
based on spatial and Fourier-domain analysis. Derived from prelimi-
nary OCT data, these methods are aimed at the development of auto-
mated diagnostic tools that will aid in the translation of this technol-
ogy into the clinical environment. © 2006 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.2358964�
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1 Introduction
1.1 Breast Cancer

Breast cancer remains one of the leading causes of death
among women, claiming a projected 40 410 lives in the
United States in 2005.1 Early diagnosis remains a key empha-
sis in lowering this mortality rate. Accordingly, new optical
screening tools are being developed to improve detection.2–4

Additional work is also necessary, however, to improve the
accuracy of the approximately one million biopsies that are
performed in the United States each year. Clinical biopsy lo-
calization techniques, such as stereotaxis and sonography,
yield misdiagnosis in over 10% of nonpalpable lesions
examined.5–8 Improvements in the tools used for biopsy guid-
ance will reduce this rate, thereby potentially reducing treat-
ment costs and improving patient care. Additionally, open sur-
gical procedures may be optimized by improving tumor
margin identification, a process that often contains a great
deal of ambiguity, especially in the case of some in situ car-
cinomas, which are not visible on gross examination.9

The adult female human breast consists of two main tissue
types. Adipose tissue stores fat in adipocytes, large lipid-filled
cells, and makes up the vast majority of the breast, while
glandular structures allow for milk production and transport.10

The glandular tissue comprises a network of lobules and
branching epithelial ducts, which connect the network that
allows for milk delivery. In addition, systems of vascular, con-
nective, and neural tissues reside among the glandular and fat
structures. The connective tissues are often referred to as the
breast stroma.
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Neoplastic growth typically originates in the glandular
structures, most commonly in the ducts where it presents itself
as a dense cluster of epithelial cells.11 After identification of a
mass via palpation or mammography, typical treatment stan-
dards call for a core-needle or fine-needle biopsy and possible
subsequent open surgical removal of any remaining diseased
tissue.12 Pathological diagnosis of removed tissue is based on
a variety of factors including the cell types present, their spa-
tial arrangement, and the presence of nuclear pleomorphism,
among many others.13 Staging of the disease state is also per-
formed in order to assess the need for treatment of metastatic
disease. The potential roles for optical imaging in this treat-
ment regimen, beyond the rapidly developing field of optical
mammography,2–4 are as a tool for the detection of lymph
node metastasis,14 a guide for needle biopsy procedures,15 an
aid for the identification of margins in open surgical proce-
dures, and, ultimately, a diagnostic tool for the evaluation of
disease states in vivo.

1.2 Optical Coherence Tomography
Optical coherence tomography �OCT� is an interferometric
optical imaging modality that provides both high spatial reso-
lution and cross-sectional imaging capability. The sample be-
ing examined is exposed to low-coherence near-infrared
�NIR� light and reflections are detected using a coherence-
gating scheme that allows for depthwise spatial mapping.16

Coherent detection is typically achieved using a Michelson
interferometer, which combines light returning from the
sample with that from a scanning delay line. The interfered
light is incident upon a photodetector, which converts the op-
tical response into an electrical signal that can be stored and
analyzed using a computer system.
1083-3668/2006/11�5�/054015/7/$22.00 © 2006 SPIE
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OCT systems, by employing broad bandwidth sources,
have achieved axial resolutions below 2 �m, making whole
cell imaging feasible,17 and approaching that of conventional
histology.18 In scattering tissues, penetration depths of up to
2 to 3 mm, depending on tissue type, can be realized by ex-
ploiting the naturally occurring “biological window,” the
spectral region between 700 and 1300 nm wherein scattering
events dominate the attenuation process in tissue.19,20 Because
this depth is shallow relative to whole-organ or whole-body
imaging modalities, catheter-, endoscope-, and needle-based
OCT beam-delivery instruments are often employed for medi-
cal applications.17,21,22

Recently, OCT imaging of mammary tissue has been
demonstrated.23 Images of carcinogen-induced rat tumor mod-
els showed that the OCT response from tumor and adipose
tissues are clearly distinguishable, revealing the possibility of
OCT-based techniques for the surgical identification of tumor
margins and the guidance of biopsy procedures.23 In order for
these techniques to meet with widespread clinical use, how-
ever, there must be low operator training requirements. As in
other clinical imaging modalities,24,25 computer-aided tissue
identification techniques are expected to assist in this transi-
tion. While computer-aided OCT tissue identification based
on speckle analysis has been investigated in the past,26 we
present techniques specifically tailored to the unique struc-
tural features of breast tissue in OCT images.

1.3 Computational Tissue Identification Techniques
Computational techniques already enjoy widespread clinical
use for screening, laboratory analysis, and image evaluation.
Modern analysis of cervical Pap smears, for example, is per-
formed by computerized microscope systems that locate ab-
normal cells and tag them for review by a cytotechnologist or
cytopathologist. These systems may employ geometrical clas-
sification, density analysis, or neural network processing to
identify suspicious areas in digitized microscope images.27–30

Computational techniques are also heavily used in digital ra-
diology for object size measurement, boundary determination,
and the automated identification of features in a variety of
imaging modalities.31,32 For example, digital analysis tech-
niques have been heavily studied as an automated means by
which to identify masses and microcalcifications in digital
mammography images, potentially improving advanced iden-
tification of suspicious lesions.33–35

2 Methods
2.1 Tissue Properties
Prior to the development of effective algorithms, it is neces-
sary to have an understanding of the OCT image properties
from each tissue type. In order to develop this knowledge,
human tissue was acquired from three breast cancer patients
under protocols approved by the institutional review boards of
the University of Illinois at Urbana-Champaign and the Carle
Foundation Hospital, Urbana, Illinois. The tumors were diag-
nosed as invasive ductal carcinomas via standard pathological
evaluation techniques performed at Carle Foundation Hospi-
tal. After surgical excision, one tissue sample from each pa-
tient was placed in a buffered saline solution and stored in a
refrigerator or cooler until imaging was performed, typically

less than 6 h later. OCT data were acquired from the margin
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region, the interface between normal and diseased tissues, and
from tumor, adipose, and stroma tissues individually, having
been identified and separated in the laboratory based on visual
and tactile inspection. The assessment of tissue properties
within each image was performed in the laboratory. To facili-
tate registration between OCT images and histology, the
scanned tissue region was marked with India ink, fixed in
10% formalin solution, embedded, sectioned, and stained with
hematoxylin and eosin �H&E� for evaluation using a light
microscope.

The acquired OCT scan lines have a pixel size of 2 �m
and extend to approximately 1.3 to 1.5 mm in depth. The pre-
liminary data presented here are composed of 1666 scan lines
of adipose tissue, 1408 scan lines of tumor tissue, and 941
scan lines of stroma tissue. The data were acquired using an
OCT system employing a neodymium:vanadate pumped tita-
nium:sapphire laser with a center wavelength of 800 nm and
a bandwidth of 70 nm, yielding an approximate axial resolu-
tion of 4 �m. Light was introduced into a single-mode 50/50
fiber optic splitter �Gould Fiber Optics, Inc.�, which coupled
light from the source to sample and reference arms, and then
back onto a silicon photodetector �New Focus, Inc., Model
2007�. Approximately 10 mW of sample arm light was fo-
cused into the tissue by a 20-mm achromatic lens, yielding a
15-�m spot size �transverse resolution�. Spatial scanning over
the sample was achieved using a galvanometer-mounted mir-
ror �Cambridge Technology, Inc�. The reference arm com-
prised a galvanometer-based delay operating at 30 lines per
second. Sampling and data acquisition were performed with a
dedicated computer card �National Instruments, Models PCI-
6110, PCI-6711� having a 10-MHz sampling rate and a
12-bit quantizer. The logarithm of the amplitudes of the ac-
quired data were displayed and stored on a personal computer.

The OCT response from adipose tissue was characterized
by spatially periodic highly scattering boundaries due to the
large size of the lipid-filled adipocytes �60 to 120 �m�,36

while stroma tissue was more densely scattering and tumor
tissue even more so. These properties are clearly evident in
the representative adipose, stroma, and tumor axial scans
rtissue�z� shown in Fig. 1. The averaged Fourier-domain re-
sponses Rtissue�k�=FFT�rtissue�z�� from the adipose, tumor,
and stroma tissues are shown in Fig. 2. Attenuation effects
have been removed from these data by subtracting a first-
order linear fit from each response and every scan line has
been normalized by the total integrated response over all spa-
tial frequencies k. Additionally, each scan line has been trun-
cated so that only the region below the tissue surface remains,
thereby removing effects arising from the varying free-space
distance above the sample surface. Each tissue type displays a
unique Fourier-domain signature that may be used to differ-
entiate between scan lines of different tissue types.

Based on the spatial data, it was also expected that the
mean distance between high-intensity reflections in each scan
would vary between tissue types. Therefore, we measured the
mean distance between regions of intensity greater than half
of the maximum in each scan line. Figure 3 shows the histo-
gram of the distance measurements from all scan lines. These
data show that adipose tissue exhibits a larger mean distance
due to the large adipocyte cell boundaries while stroma and

tumor tissues exhibit a smaller mean distance due to the
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smaller cell sizes and denser clustering of scattering objects.
These data yield a simple means of classification via compari-
son of an unknown periodicity response with a set of known
values. It is also clear from these data, however, that this
property will not allow for highly effective differentiation be-
tween tumor and stroma tissues.

2.2 Computational Techniques
Two techniques were evaluated for the identification of tumor
tissue. The first takes advantage of the unique Fourier-domain
signature from each scan line, and the second exploits the
periodic scattering response from adipose tissue. Each scan
line, or image column, was classified individually in order to

Fig. 1 OCT axial scan data from human breast tissue �logarithmic
response�. �a� The periodic response due to adipose tissue. �b� The
dense scattering response and associated attenuation effects from in-
vasive ductal carcinoma tumor tissue. �c� The dense scattering re-
sponse from stroma tissue with less prevalent attenuation effects and
higher frequency oscillations than in tumor tissue.
facilitate the use of these techniques in conjunction with the
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various forward-imaging devices present in the literature,
which may yield single forward-directed scan lines of data,
create circular images by combining scan lines from a radially
directed and angularly scanned beam, or use various beam
translation schemes to form traditional OCT B-scan
images.22,37,38 The techniques presented here may also be ap-
plied to layered tissue boundaries by evaluating each scan line
over a windowed region, which may be shifted along the axial
response.

The Fourier-domain classification process was imple-
mented by comparing the Fourier-domain data from each un-
known scan line F�k� with the averaged adipose, tumor, and
stroma responses Rtissue�k� from a set of training data. The
tissue comparison with the lowest cumulative error

Etissue = �
k

w�k��F�k� − Rtissue�k�� �1�

yielded the final classification, where w�k� is a weighting
function. The comparison was weighted by the maximum dif-

Fig. 2 Fourier-domain data from OCT axial scans showing the unique
signature from each tissue type. The averaged responses are shown
over all tumor �black�, stroma �dark gray�, and adipose �light gray�
tissue axial scans normalized by total area.

Fig. 3 Histogram of the mean distance between high-intensity back-
reflections in OCT data from human tumor �black�, stroma �dark
gray�, and adipose �light gray� tissues. Each datum in the histogram is

derived from one scan line.
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ference between any two known responses at each frequency,
emphasizing the most relevant regions. The weighting func-
tion was calculated by

w�k� = max��Radipose�k� − Rtumor�k��, �Rstroma�k�

− Radipose�k��, �Rtumor�k� − Rstroma�k��� �2�

for each spatial frequency.
The periodicity analysis technique was implemented by

comparing the mean distance between high-intensity reflec-
tions in a scan line of unknown tissue d with a set of known
values. The known tissue having the maximum histogram in-
tensity Htissue�d� at this value yields the most probable classi-
fication. In this analysis, high-intensity regions of each scan
line were constrained to those greater than half of the maxi-
mum scan line intensity and greater than 4 �m in width, re-
ducing noise effects. Figure 4 shows the processing steps for
both techniques.

A combination of these two techniques was also imple-
mented. The classification of each scan line was assigned a
confidence rating for both evaluation techniques. The Fourier-
domain and periodicity techniques generated confidence rat-
ings �cF and cP� by calculating the difference between the
cumulative error or histogram amplitude, respectively, of the
classified tissue type and the next-best tissue type.

cF = min��Eclassified tissue − Eother tissue 1�,

�Eclassified tissue − Eother tissue 2�� �3�

cP�d� = min��Hclassified tissue�d� − Hother tissue 1�d��,

�Hclassified tissue�d� − Hother tissue 2�d��� �4�

Confidence ratings were normalized by the maximum rating
generated from each technique. Upon evaluation, confidence
ratings were used to determine the most likely tissue classifi-
cations among the scan lines for which a dispute existed.

Studies of layered tissue, those having multiple tissue
types in a single scan line, may also be accomplished using
these techniques. This analysis relies on the use of a window-

Fig. 4 Diagram of the processing steps implemented in the Fourier-
domain and periodicity analysis techniques.
ing scheme, wherein sections of the axial data are evaluated
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separately. For example, a 100-�m window may be scanned
along a 1-mm depth scan of data in 10-�m steps. After evalu-
ation of the data in each window region via the Fourier-
domain, periodicity, or combined technique, overlapping re-
sults in each 10-�m region are compared, with the most
common classification being selected. These results will be
limited by the relationship between window size and feature
size. For instance, if the window size is too small to capture
the entire response from an adipocyte, the periodicity tech-
nique will not produce a measurement matching the expected
response. However, too large a window size will result in a
response that is not fine enough to accurately detect bound-
aries between tissue layers. Fourier-domain results are espe-
cially influenced by time-frequency tradeoffs, most notably in
the low-frequency region that is critical to this classification
technique.39,40 To combat these limitations, future work may
be undertaken to analyze the performance of more complex
techniques employing variable window lengths.

3 Results and Discussion
As a demonstration of these methods, all three techniques
were used to evaluate two OCT images of tumor margins
from human breast specimens. The preliminary data shown in
Figs. 2 and 3, from three patients, were used as training data.
The OCT image shown in Fig. 5, taken from a fourth patient
with invasive ductal carcinoma, shows a vertical margin be-
tween tumor and adipose tissue and is 2�2 mm in size. The
results of the algorithms are shown below the image in Fig. 5,
with white, black, and gray lines indicating adipose, tumor,
and stroma tissue classifications, respectively. Visual inspec-
tion of the gross tissue, OCT data, and histological assessment
suggested that the left region �columns 1 to 485� was com-
posed of dense tumor tissue and that a large portion of the
right region �columns 615 to 833� was composed of adipose.

Fig. 5 OCT image of a vertical tumor margin �logarithmic response�
assessed along all vertical scans using all three detection techniques
�left� and the corresponding H&E stained histology �right�. The corre-
spondence between the OCT image and histology is very strong.
Highly correlated image features are indicated with arrows. The bot-
tom three boxes show the results of �a� combined analysis, �b� Fourier-
domain classification, and �c� periodicity analysis, for each scan line
within the image. Black, white, and gray regions represent tumor,
adipose, and stroma classifications, respectively. Scale bars are
200 �m.
The histological section shown in Fig. 5 was evaluated by a
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board certified pathologist who verified the sample composi-
tion. Note that the OCT image is highly correlated to the
histological preparation, with many corresponding features.

Based on this preliminary data, the estimated statistical
performance of all three techniques was very good. When
analyzing the OCT image in Fig. 5, the combined technique
yielded the optimal overall performance, with approximate
tumor tissue sensitivity and specificity measurements of 97
and 68%, respectively. The periodicity technique had an ap-
proximate sensitivity of 97% and an approximate specificity
of 56%. The Fourier-domain technique had an approximate
sensitivity of 99% and an approximate specificity of 58%. The
estimated sensitivity of all three techniques approach or sur-
pass that of conventional x-ray mammography and ultra-
sound, which have reported invasive ductal carcinoma detec-
tion sensitivities of approximately 81 and 94%, respectively.41

The techniques were also demonstrated using an image of
a horizontal margin between adipose and tumor tissues �Fig.
6�. The data were analyzed over a window of 0.4 mm, which
was shifted axially in increments of 40 �m. Classification of
each 40-�m segment was determined by the dominant clas-
sification among windows overlapping that segment. Analysis
was performed for three representative scan lines �arrows in
Fig. 6� using all classification techniques. The combined tech-
nique yielded the optimal results, which are displayed to the
right of the original figure. This demonstration shows that
while the general regions of tumor and adipose may be prop-
erly classified, significant imprecision will exist when locating
the precise border between tissue types due to window size
constraints. Future improvements to this technique may in-
clude the incorporation of advanced windowing functions
such as those often applied in spectroscopic OCT analysis.42

The example in Fig. 5 shows some classification ambiguity
between scan lines. For this reason, these techniques are most
likely to be useful for the identification of tissues using mul-

Fig. 6 OCT image of a horizontal tumor margin �logarithmic re-
sponse� assessed using the combined detection technique at three
representative scan lines �arrows indicate columns 40, 115, and 190�.
The three boxes show the results of the combined analysis for each of
the indicated scan lines. Black, white, and gray regions represent tu-
mor, adipose, and stroma classifications, respectively. Scale bar is
200 �m.
tiple adjacent scan lines, as opposed to single isolated scan
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lines. Improved preliminary results were obtained by compil-
ing the classification from adjacent scan lines into a single
result. In addition to providing a more consistent response
across tissues, averaging provided an improvement in the es-
timated statistical performance, slightly improving the com-
bined technique sensitivity in Fig. 5 from 97 to 99% when
five total scan lines were considered. This result does not
prevent the use of this technique for margin assessment, how-
ever, but instead simply constrains any boundary classifica-
tion to the width of multiple scan lines.

The techniques described here are not designed for optimal
performance from a stochastic modeling perspective. More
complex techniques such as the hidden Markov model, for
example, which are used extensively in communications and
speech processing, could potentially yield more effective sta-
tistical classification of tissue types.43 The distinct disadvan-
tage of more rigorous methods, however, is that they are far
more computationally complex than the techniques presented
here. The fast Fourier transform operation, the central pro-
cessing task required in the Fourier analysis technique, could
be implemented very quickly using readily available dedi-
cated hardware, in contrast to more complex stochastic mod-
eling techniques that would require far more extensive com-
puting resources and result in increased processing time.
Since real-time results are key to the surgical evaluation of
tissue, computationally complex stochastic analysis tech-
niques are far less clinically practical and, therefore, have
been excluded from this work in favor of simpler methods.

As predicted by the preliminary data in Figs. 2 and 3,
analysis of the example images showed that differentiation
between tumor and adipose tissue was less challenging than
between tumor and stroma. This is evident in Fig. 5, where
most false negatives �nontumor classifications on the left side
of the image� were classified as stromal tissue. The analysis of
Fig. 5 also revealed that the algorithms seem to fail most often
in regions where isolated adipocytes or other structures alter
the response of the scan line. In addition to these false nega-
tives, the algorithms tended to yield false positives �tumor
classification in the right half of the image in Fig. 5� in re-
gions where the adipocyte structure was poorly defined. This
example, therefore, leads to the prospect that these techniques
will yield an excellent method of identifying regions of sus-
picious tissue, while resulting in false classifications in a
small number of predictable circumstances.

These results are promising for the OCT-based detection of
invasive ductal carcinoma, the representative breast pathology
used in this investigation. Of course, full statistical evaluation
must still be performed and the detection of other tumor types
must be studied in order to predict the efficacy of these tech-
niques when applied in a surgical setting. Further investiga-
tion into the OCT responses from benign and malignant
growth, as well as the differences between in situ and invasive
carcinomas will yield the necessary information to fully
evaluate these techniques.

4 Conclusion
The methods presented here hold promise for the automated
identification of breast tumor tissue in human patients. The
techniques take advantage of the fact that highly attenuating,

densely scattering tumor tissue resides among adipose tissue,
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which is characterized by large, lipid-filled cells that exhibit
low attenuation effects. The preliminary statistical perfor-
mance is encouragingly similar to that of current clinical tech-
niques, with the benefit that OCT promises much finer spatial
imaging resolution. While these image analysis techniques are
well-suited for wide-field scanning of suspicious regions, they
can potentially also be augmented on a finer scale by speckle
pattern identification techniques26 to aid in diagnosis of the
tissue once a tumor is found.

The techniques presented here are optimized for the analy-
sis of a single axial scan, yielding compatibility with simple
low-coherence interferometric probing devices that require no
transverse or radial scanning mechanism and may be imple-
mented with a single optical fiber housed in a needle tip. As
such, there exists a great potential for use of these methods in
conjunction with needle-based probes21,22 for the guidance of
core-needle and fine-needle biopsy procedures. These meth-
ods may also be applied to images obtained in open surgical
procedures, where high-resolution OCT scanning may be uti-
lized to identify tumor boundaries in addition to classifying
tissue types.

While the algorithms presented here exploit only the struc-
tural information found in OCT images, they perform remark-
ably well. Future work may be undertaken to refine these
techniques, assess different tumor types, and potentially
couple the analysis with the measurement of other well-
characterized breast optical properties44–47 to further optimize
tumor detection and diagnosis.

Acknowledgments
The authors acknowledge the assistance of Eric J. Chaney,
Freddy T. Nguyen, and the staff and physicians at Carle Foun-
dation Hospital and Carle Clinic Association, including Drs.
Patricia Johnson, Charles Wisseman, and Frank Bellafiore.
This work was supported in part by grants from the UIUC-
UIC Intercampus Research Initiative in Biotechnology
�S.A.B.� and the National Institutes of Health �NIBIB, 1 R01
EB00108-1, S.A.B.�. Funding was also provided by the Na-
tional Science Foundation through the East Asia and Pacific
Summer Institutes for U.S. Graduate Students �0413596�. Ad-
ditional information can be found at http://
biophotonics.uiuc.edu

References
1. A. Jemal, T. Murray, E. Ward, A. Samuels, R. C. Tiwari, A. Ghafoor,

E. J. Feuer, and M. J. Thun, “Cancer statistics, 2005,” Ca-Cancer J.
Clin. 55�1�, 10–30 �2005�.

2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in
diffuse optical imaging,” Phys. Med. Biol. 50�4�, R1–R43 �2005�.

3. X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang,
“Differentiation of cysts from solid tumors in the breast with diffuse
optical tomography,” Acad. Radiol. 11�1�, 53–60 �2004�.

4. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing
light,” Phys. Today 48�3�, 34-40 �1995�.

5. M. B. Acheson, R. G. Patton, R. L. Howisey, R. F. Lane, and A.
Morgan, “Histologic correlation of image-guided core biopsy with
excisional biopsy of nonpalpable breast lesions,” Arch. Surg. (Chi-
cago) 132�8�, 815–821 �1997�.

6. V. A. Bolivar, O. E. Garcia, and G. F. Ayensa, “Stereotaxic core
needle aspiration biopsy with multiple passes in nonpalpable breast
lesions,” Acta Radiol. 39�4�, 389–394 �1998�.

7. L. Lieberman, L. A. Ernberg, A. Heerdt, M. F. Zakowski, E. A.
Morris, L. R. LaTrenta, A. F. Abramson, and D. D. Dershaw, “Pal-

pable breast masses: Is there a role for percutaneous image-guided

Journal of Biomedical Optics 054015-
core biopsy?” Am. J. Roentgenol. 175�3�, 779–787 �2000�.
8. R. M. Pijnappel, A. van Dalen, I. H. M. B. Rinkes, J. G. van den

Tweel, and W. P. T. M. Mali, “The diagnostic accuracy of core biopsy
in palpable and non-palpable breast lesions,” Eur. J. Radiol. 24�2�,
120–123 �1997�.

9. S. Damaiani and V. Eusebi, “Gross and Microscopic Pathology,” in
Cancer of the Breast, 5th ed., W. Donegan and J. Spratt, Eds., Saun-
ders, New York �2002�.

10. H. Jensen, “Anatomy and histology of the normal human breast”
�1999�, http://tgmouse.compmed.ucdavis.edu/cmpath/jensen/
normal.html.

11. K. Agarwal, “Normal breast and benign breast lesions,” in Early
Breast Cancer: From Screening to Multidisciplinary Management,
M. Morgan, R. Warren, and Q. d. Eovere, Eds., Harwood Academic
Publishers, Amsterdam �1998�.

12. J. A. Hall and J. V. Knaus, An Atlas of Breast Disease, Parthenon
Publishing, New York �2003�.

13. J. McKenzie and J. Dalrymple, “Fine needle aspiration cytology,” in
Early Breast Cancer: From Screening to Multidisciplinary Manage-
ment, M. Morgan, R. Warren, and Q. d. Eovere, Eds., Harwood Aca-
demic Publishers, Amsterdam �1998�.

14. W. Luo, F. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D.
L. Marks, A. O. Oldenburg, and S. A. Boppart, “Optical biopsy of
lymph node morphology using optical coherence tomography,” Tech-
nol. Cancer Res. Treat. 4�5�, 539–548 �2005�.

15. N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner,
and G. J. Tearney, “A portable, low coherence interferometry based
instrument for fine needle aspiration biopsy guidance,” Rev. Sci. In-
strum. 76, 064301 �2005�.

16. D. Huang et al., “Optical coherence tomography,” Science
254�5035�, 1178–1181 �1991�.

17. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski,
and J. G. Fujimoto, “In vivo cellular optical coherence tomography
imaging,” Nat. Med. 4�7�, 861–865 �1998�.

18. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann,
A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C.
Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submi-
crometer axial resolution optical coherence tomography,” Opt. Lett.
27�20�, 1800–1802 �2002�.

19. J. Boulnois, “Photophysical processes in recent medical laser devel-
opments: A review,” Lasers Med. Sci. 1�1�, 47–66 �1986�.

20. A. E. Profio and D. R. Doiron, “Transport of light in tissue in pho-
todynamic therapy,” Photochem. Photobiol. 46�5�, 591–599 �1987�.

21. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto,
and M. E. Brezinski, “Forward-imaging instruments for optical co-
herence tomography,” Opt. Lett. 22�21�, 1618–1620 �1997�.

22. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging
needle for optical coherence tomography,” Opt. Lett. 25�20�, 1520–
1522 �2000�.

23. S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical
coherence tomography: Feasibility for basic research and image-
guided surgery of breast cancer,” Breast Cancer Res. Treat. 84�2�,
85–97 �2004�.

24. P. Gibbs and L. W. Turnbull, “Textural analysis of contrast-enhanced
MR images of the breast,” Magn. Reson. Med. 50�1�, 92–98 �2003�.

25. P. M. Shankar, V. A. Dumane, C. W. Piccoli, J. M. Reid, F. Forsberg,
and B. B. Goldberg, “Computer-aided classification of breast masses
in ultrasonic B-scans using a multiparameter approach,” IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 50�8�, 1002–1009 �2003�.

26. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton,
“Texture analysis of optical coherence tomography images: feasibility
for tissue classification,” J. Biomed. Opt. 8�3�, 570–575 �2003�.

27. G. T. Bartoo, J. S. Lee, P. H. Bartels, N. B. Kiviat, and A. C. Nelson,
“Automated prescreening of conventionally prepared cervical smears:
a feasibility study,” Lab. Invest. 66�1�, 116–122 �1992�.

28. J. Rennie, “Cancer Catcher: Neural net catches errors that slip
through Pap tests,” Sci. Am. 262�5�, 84 �1990�.

29. P. J. Sjöström, B. R. Frydel, and L. U. Wahlberg, “Artificial neural
network-aided image analysis system for cell counting,” Cytometry
36�1�, 18–26 �1999�.

30. D. Tien, P. Nickolls, W. Liew, A. Yeung, Y. C. Liang, and J. Tucker,
“Automated Cervical Smear Classification,” in IEEE Ninth Annual
Conference of the Engineering in Medicine and Biology Society, pp.
1457–1458 �1987�.
31. B. J. Erickson and B. Nartholmai, “Computer-aided detection and

September/October 2006 � Vol. 11�5�6



Zysk and Boppart: Computational methods for analysis…
diagnosis at the start of the third millenium,” J. Digit Imaging 15�2�,
59–68 �2002�.

32. J. S. Suri, S. K. Setarehdan, and S. Singh, Advanced Algorithmic
Approaches to Medical Image Segmentation, Springer, London
�2002�.

33. H. P. Chan, K. Doi, S. Galhotra, C. J. Vyborny, H. MacMahon, and P.
M. Jokich, “Image feature analysis and computer-aided diagnosis in
digital radiography. I. Automated detection of microcalcifications in
mammography,” Med. Phys. 14�4�, 538–548 �1987�.

34. E. D. Pisano and M. J. Yaffe, “Digital mammography,” Radiology
234�2�, 353–362 �2005�.

35. L. J. Warren Burhenne, S. A. Wood, C. J. D’Orsi, S. A. Feig, D. B.
Kopans, K. F. O’Shaughnessy, E. A. Sickles, L. Tabar, C. J. Vyborny,
and R. A. Castellino, “Potential contribution of computer-aided de-
tection to the sensitivity of screening mammography,” Radiology
215�2�, 554–562 �2000�.

36. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson,
Mol. Biol. Cell Garland Publishing, Inc., New York �1994�.

37. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G.
Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Mi-
cromotor endoscope catheter for in vivo, ultrahigh-resolution optical
coherence tomography,” Opt. Lett. 29�19�, 2261–2263 �2004�.

38. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-
scanning forward-imaging miniature endoscope for real-time optical
coherence tomography,” Opt. Lett. 29�15�, 1763–1765 �2004�.

39. R. Carmona, W. Hwang, and B. Torresani, Practical Time-Frequency

Analysis: Gabor and Wavelet Transforms with an Implementation in

Journal of Biomedical Optics 054015-
S, Academic Press, San Diego �1998�.
40. L. Cohen, “Time-frequency distributions—A review,” Proc. IEEE

77�7�, 941–981 �1989�.
41. W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhar-

gavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mam-
mography, clinical examination, US, and MR imaging in preoperative
assessment of breast cancer,” Radiology 233�3�, 830–849 �2004�.

42. C. Xu, F. Kamalabadi, and S. A. Boppart, “Comparative performance
analysis of time-frequency distributions for spectroscopic optical co-
herence tomography,” Appl. Opt. 44�10�, 1813–1822 �2005�.

43. L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proc. IEEE 77�2�, 257–266
�1989�.

44. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J.
Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption
and scattering contrast for near-infrared optical mammography,”
Acad. Radiol. 8�3�, 211–218 �2001�.

45. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J.
Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of
healthy female breast tissue,” Phys. Med. Biol. 47�16�, 2847–2861
�2002�.

46. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Op-
tical properties of normal and diseased human breast tissues in the
visible and near infrared,” Phys. Med. Biol. 35�9�, 1317–1334 �1990�.

47. A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of
carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51�9�,

2165–2177 �2006�.

September/October 2006 � Vol. 11�5�7


