
JBO Letters

Processing and rendering
of Fourier domain optical
coherence tomography
images at a line rate over
524 kHz using a graphics
processing unit

Janarthanan Rasakanthan,a Kate Sugden,a

and Peter H. Tomlinsb
aAston University, Photonics Research Group, Department of
Electronic Engineering, Birmingham, B4 7ET, United Kingdom
bQueen Mary, University of London, Barts & The London School of
Medicine and Dentistry, Turner Street, London, E1 2AD,
United Kingdom

Abstract. In Fourier domain optical coherence tomography
(FD-OCT), a large amount of interference data needs to be
resampled from the wavelength domain to the wavenum-
ber domain prior to Fourier transformation. We present an
approach to optimize this data processing, using a graphics
processing unit (GPU) and parallel processing algorithms.
We demonstrate an increased processing and rendering rate
over that previously reported by using GPU paged memory
to render data in the GPU rather than copying back to the
CPU. This avoids unnecessary and slow data transfer, en-
abling a processing and display rate of well over 524,000
A-scan/s for a single frame. To the best of our knowledge
this is the fastest processing demonstrated to date and the
first time that FD-OCT processing and rendering has been
demonstrated entirely on a GPU. C©2011 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3548153]

Keywords: optical coherence tomography; graphics processing unit;
quadratic interpolation resampling; wavelength to wavenumber resam-
pling.

Paper 10532LRR received Oct. 2;, 2010; revised manuscript received
Jan. 4, 2011; accepted for publication Jan. 6, 2011; published online
Feb. 22, 2011.

Optical coherence tomography (OCT)1 is a noninvasive, non-
contact technique which enables high resolution cross-sectional
images of tissue structures to be obtained. OCT systems fall
into two categories: time domain OCT (TD-OCT) and Fourier
domain FD-OCT.2, 3 FD-OCT records the depth profile by de-
tecting the interference signals over a broad bandwidth of light
using a spectrometer.3 Notable advantages of FD-OCT over
TD-OCT are an improved signal to noise ratio (sensitivity) and
higher imaging speeds.4, 5 FD-OCT is capable of dynamically
recording detailed three-dimensional information. The disad-
vantage of FD-OCT is that it requires significantly more data
processing to handle the large amount of information recorded
and historically this has incurred a significant time overhead.
Therefore, the use of graphics processing units (GPUs) for OCT
data processing is of interest since they are optimized for high

Address all correspondence to: Janarthanan Rasakanthan, Tel. 00447988682011;
Fax: 07988682011; E-mail: rasakanj@aston.ac.uk, ra.jana@yahoo.co.uk.

parallelism and memory bandwidth. GPUs require parallel pro-
gramming algorithms to exploit their performance power, for
which specific programming platforms are available. CUDA6

(Computer Unified Device Architecture) is NVIDIA’s (Santa
Clara, California) parallel programming platform, which can be
used to program their GPUs for general purpose computation.6

Watanabe and Itagaki7 used a GPU (NVIDA GeForce GTX
280) with a linear-in-wavenumber spectrometer to achieve a
processing speed of 55,800 lines/s. Subsequently, Zhang and
Kang8 used linear-spline interpolation and a GPU (NVIDIA
Quadro FX5800) to accelerate the processing and rendering of
OCT data from a nonlinear k-space spectrometer. They reached
a processing rate of 680,000 lines/s for overall volume pro-
cessing. However, for smaller A-scan numbers the processing
bandwidth decreased to just greater than 200,000 lines/s for
the range of 1,000 to 10,000 A-scans. Van der Jeught et al.9

compared nearest-neighbor, linear, and cubic-spline interpo-
lation to resample algorithms running on a GPU (Geforce
9800GT) and achieved a processing speed of 25,600 lines/s.
However, progress to date has not explicitly exploited the dif-
ferent GPU memory types available or combined both GPU
processing and rendering capabilities to increase efficiency and
speed. Here we employ the use of paged memory to increase the
data transfer rate from the CPU (host) to the GPU (device). Fur-
thermore, OCT image data is rendered on the GPU to increase
overall speed, rather than copying the data back to the CPU. All
algorithms are optimized for the specific GPU used.

In this study a GPU (NVIDIA Tesla C1060, 1.3 GHz) with
30 streaming multiprocessors (SM) was used. This is identical
to that used by Zhang and Kang8 with the exception that it does
not include a hardware graphics display outlet. Each SM has
8 scalar processor cores making a total of 240 processors. The
GPU has 4 GB dedicated global memory and 16 KB shared
memory per SM. The card is hosted in a PC workstation (Intel
Core i7, 2.67 GHz, 6 GB RAM) running the Ubuntu 9.10 Linux
operating system. The custom programs were written in C using
NVIDIA’s CUDA programming extensions and executed with
the CUDA 3.0 driver and tools.6

Test data sets were acquired using a commercial OCT system
(EX1301, Michelson Diagnostic, UK) at the National Physical
Laboratory, UK. This OCT system contains a swept source op-
erating at a center wavelength of 1305 nm. It has four inter-
ferometric channels focusing on different depths to obtain an
extended depth of field. For simplicity this analysis was carried
out on a single channel of data but is equally able to process
all four channels. OCT images were taken from an optical test
phantom that was created with a femtosecond laser. Details of
this fabrication technique are given elsewhere.10 The phantom
contained a 3-D structure of lines written at different depths and
lateral positions within a silica substrate.

Figure 1 shows a flow chart of the OCT data processing
methodology. The acquired data from the OCT system was
saved on the PC hard-drive (16-bit integer format) prior to pro-
cessing. The raw data comprised four components: the source
reference spectrum Sj, mean A-scan noise floor ηj, resample
index table Jj, and the OCT interference signal Ii,j, where the
subscripts j and i represent the array indices for spectrally de-
tected data points and individual A-scan numbers, respectively.

1083-3668/2011/16(2)/020505/3/$25.00 C© 2011 SPIE

Journal of Biomedical Optics February 2011 � Vol. 16(2)020505-1

JBO Letters

Fig. 1 OCT processing flow chart for GPU-CPU hybrid.

The reference, noise, and resampling data values were read di-
rectly from file and copied to GPU memory. The resample in-
dices were used to pre-compute interpolation coefficients Mm,j ,
which were stored in the GPU global memory. A third-order
Lagrange interpolating polynomial was used to resample the in-
terference data from discrete measurements at j to linear points in
wavenumber space2 J, where the resampled interference signal,
I ′
i, j , is given by:

I ′
i, j =

3∑

m=0

Mm, j Ii, j+m−2, (1)

where the interpolation coefficient is:

Mm, j =
3∏

n=0,n �=m

Jj − j − n + 2

m − n
. (2)

Interpolation coefficients were computed once for each OCT
volume data set. To generate OCT images, the OCT spectral
interference signals corresponding to each A-scan were loaded
sequentially from the file into the host memory and then trans-
ferred into the GPU global memory, essentially mimicking data
acquisition from a frame grabber. Each OCT spectrum was pre-
processed by subtracting the reference spectrum, resampling
using Eq. (1), and multiplying by a Hann window function to
reduce noise. This step was implemented as a CUDA kernel that
executed on the GPU, processing multiple A-scans simultane-
ously. Following the pre-process, a real to complex fast Fourier
transform (FFT) of each A-scan was computed using the CUFFT
kernel (a dedicated FFT kernel available with CUDA).6 A cus-
tom post-processing kernel then determined the modulus from
all of the Fourier transforms and stored the result in GPU mem-
ory as 3-D texture array (cached global memory). Once the
entire data volume was processed, the data from global memory
was rendered using the CUDA ray-casting (volume rendering)
method, which avoids copying back to host memory and the
associated time overhead. The processed data volume was also

copied back to the host memory for storage. The code was op-
timized by the use of shared memory, constant memory, and
registers. All GPU computations were carried in single preci-
sion, which is natively supported by the present device.

To test the speed of this process, we used two OCT data
sets obtained from the test phantom and recorded the processing
time for individual processes using CUDA events.5 Both data
sets comprised 1000 B-scans with an A-scan length of 1024 pix-
els. However, the number of A-scans per B-scan differed, with
samples 1 and 2 containing 240 and 1836 A-scans per B-scan,
respectively. The optimal A-scan batch size was investigated by
arranging 200 A-scans as frames, processing multiple frames
together in batches to understand processing improvement with
increased A-scans. To confirm that the data was not corrupted
by this approach, we validated the CUDA results by compar-
ing them with the output of MATLAB code using cubic-spline
interpolation function.

The parallel preprocessing algorithm was carefully optimized
for the specific GPU capability. For example, our GPU is limited
to a maximum of eight thread blocks per SM. The number of
threads per block is limited by the size of the processor core
shared memory and available registers, with the total number of
threads per SM limited to a maximum of 1024. For the present
work, a block size of 16×16=256 threads was found to be
optimal, allowing 4 blocks to run on each of the 30 SMs. In our
configuration, each block was used to simultaneously resample
16 data points from 16 different A-scans (256 data points in
total). The whole A-scans were distributed across 64 blocks,
enabling parallel resampling of 16 complete A-scans. The re-
maining 56 blocks were used to resample partial A-scans and
thus maximize processor utilization. To maximize speed the A-
scan data was loaded from global to shared memory along with
the corresponding 16 resampling coefficients, from where it was
operated on by the preprocessing kernel. Once the resampling
operation was completed for all data points within a block, the
next 16 points were loaded for each A-scan. Hence, 4 blocks
were required to load an entire A-scan consisting of 1024 el-
ements. We were therefore able to simultaneously preprocess
120 A-scans.

The recorded processing times were averaged over 500 runs
and 1000 frames and are given in Table 1 for both data sets.
The total time for processing a single frame for sample 1 and
2 is about 0.63 and 3.50 ms, which gives a processing rate of
377,768 and 524,205 lines/s for samples 1 and 2, respectively.
It is clear that sample 2, with the larger number of A-scans,
shows a higher processing rate. Our result indicates that the
interpolation coefficients were calculated in about 0.03 ms, al-
though these are only computed once per data set. Preprocessing
took approximately 0.20 and 1.24 ms per B-scan of samples 1
and 2 respectively.

Copying back to CPU after processing took about 0.25 ms
per frame for sample 1 and about 1.00 ms per frame for sample 2.
To avoid this time overhead we employed a method available in
CUDA3 to render the final result from the GPU, which eliminates
the need for copying the data back to host (CPU) and hence saves
a considerable amount of time. The approximate rendering time
for a sample of size 1,024×1,836×1,000 is about 3.50 ms.

To facilitate qualitative comparison, Fig. 2 shows a B-scan
from sample 1, processed using (a) MATLAB cubic-spline inter-
polation and (b) our CUDA algorithm. The images are visually

Journal of Biomedical Optics February 2011 � Vol. 16(2)020505-2

JBO Letters

Table 1 Time for different processes per frame: these data are aver-
aged over 1000 frames.

Sample 1 Sample 2

Process time (ms) time (ms)

Frame size 1024*240 1024*1836

Quadratic coefficient 0.028 0.028

Copy data to device
(GPU)

0.183 0.860

Preprocessing 0.198 1.237

CUFFT 0.356 1.390

Modulus 0.050 0.269

Copy result to host
(CPU)

0.250 0.969

Frame 0.640 3.502

Processing rate
without copying back
to the CPU

377,768 524,205

identical, confirming that the algorithm faithfully reproduces
the expected OCT image. Figure 3 shows that as the number of
A-scans per frame increases as the processing time decreases,
although the processing rate plateaus around 694,330 lines/s for
A-scan batch sizes between 3500 and 4500. This also shows
that the maximum processing speed of the card can be reached
more quickly than demonstrated elsewhere using comparable
hardware.7 This is achieved because our processing exploits all
of the different types of memories available in the GPU effec-
tively.

In conclusion, the use of GPUs enables real-time pro-
cessing and visualization of OCT data. To maximize the

Lateral Dist. [um]

A
xi

al
 (

O
pt

ic
al

)
D

is
t.

[u
m

]

0 5 10 15

x 10
−4

0

1

2

3

4

5

6

7

8

x 10
−4

Lateral Dist. [um]

A
xi

al
 (

O
pt

ic
al

)
D

is
t.

[u
m

]

0 5 10

(a) (b)

15

x 10
−4

0

1

2

3

4

5

6

7

8

x 10
−4

Fig. 2 (a) Comparison of image quality of B-scan data processed using
built-in MATLAB spline interpolation and (b) our CUDA processor.

Fig. 3 A-scan batch processing rate for up to 20,000 A-scans.

speed of this approach we have used GPU paged memory to
increase the data transfer rate from the CPU to the GPU and
rendered the data on the GPU rather than copying to the CPU.
We found that CPU to GPU transfer takes nearly 18% of the
total processing time per frame and CPU to GPU transfer
takes 20% of the total processing time per frame. Therefore
avoiding unnecessary transfer improves the performance and
rendering time significantly. Data movement between host and
device memory is a comparatively slow process and should be
minimized to achieve high performance. By taking this into
account, we achieved processing rates over 524,205 lines/s for
a B-scan with 1836 A-scans. Additionally, we showed that a
processing rate greater than 724,314 lines/s is achievable for
batch processing. There is still room for enhancing the process-
ing rate by further optimizing our CUDA code for the particular
GPU in use.

Acknowledgments
We would like to acknowledge the assistance of Graham Smith
from Aston University in providing the test OCT artifact
used in this study and the financial support of NPL via a CASE
studentship.

References
1. D. Huang et al., “Optical coherence tomography,” Science 254, 1178–

1181 (1991).
2. A. F. Fercher, C. K. Hitzenberger, G. Kam, and S. Y. El-Zaiat, “Measure-

ment of intraocular distances by backscattering spectral interferometry,”
Opt. Commun. 117, 43–48 (1995).

3. A. F. Fercher, W. Drexler, C. K Hitzenberger, and T. Lasser, “Optical
coherence tomography–principle and application,” Rep. Prog. Phys. 66,
239–303 (2003).

4. P. H. Tomlins and R. K. Wang, “Theory, developments and applica-
tions of optical coherence tomography,” J. Phys. D 38(15), 2519–2535
(2005).

5. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier
domain vs. time domain optical coherence tomography,” Opt. Express
11, 889–894 (2003).

6. NVIDIA CUDA Zone: http://www.nvidia.com/object/cuda_home_
new.html.

7. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain
optical coherence tomography system using a graphics processing unit,”
J. Biomed. Opt. 14(6), 060506 (2009).

8. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visual-
ization using graphics processing unit on a regular nonlinear-k Fourier-
domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).

9. S. Van Der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resam-
pling in Fourier domain optical coherence tomography using a graphics
processing unit,” J. Biomed. Opt. 15(3), 030511 (2010).

10. P. H. Tomlins, P. D. Woolliams, G. Smith, J. Rasakanthan, and K.
Sugden, “Femtosecond laser micro-inscription of optical coherence to-
mography resolution test phantoms,” submitted to Opt. Express (2010).

Journal of Biomedical Optics February 2011 � Vol. 16(2)020505-3

