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Abstract. Quantum capacitance detectors (QCDs) are photon shot noise-limited terahertz
detectors based on a single Cooper-pair box superconducting qubit. The QCD has demonstrated
photon shot noise-limited performance for 1.5 THz radiation under loading conditions between
10−20 and 10−18 W and single-photon detection and counting at that frequency. We report here
fabrication and preliminary characterization of a 441 pixel array of QCDs with readout frequen-
cies between 700 and 850 MHz. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.7.1.011003]
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1 Introduction

The Origins Space Telescope (Origins) traces our cosmic history, from the formation of the first
galaxies and the rise of metals to the development of habitable worlds and present-day life.
Origins does this through exquisite sensitivity to infrared radiation from ions, atoms, molecules,
dust, water vapor, and ice, and observations of extra-solar planetary atmospheres, protoplanetary
disks, and large-area extragalactic fields. Origins operates in the wavelength range 2.8 to 588 μm
and is more than 1000 times more sensitive than its predecessors due to its large, cold (4.5 K)
telescope and advanced instruments.1

There are a number of approaches to far-IR and sub-mm photodetection using superconduct-
ing devices that are being explored as possible technologies to obtain the very low-noise equiv-
alent powers (NEPs of about 10−20 W∕Hz1∕2) required for optimal use of the low-background
platform. One such technology, the kinetic inductance detector,2 relies on the sensitivity of the
surface inductance to the presence of pair-breaking radiation. Two others, the transition edge
sensor3–5 and the nano-hot electron bolometer (nano-HEB),6 rely on low critical temperature
and high thermal isolation to achieve high sensitivity.

The approach at hand, the quantum capacitance detector (QCD),7–10 is based on the extreme
sensitivity of the single Cooper-pair box (SCB), a mesoscopic superconducting device, to pair
breaking radiation. In a QCD, a single quasiparticle tunneling event produces a frequency shift
comparable to or larger than a resonator linewidth. QCDs have demonstrated photon shot noise-
limited performance with useful optical efficiency11 for optical loadings between 10−20 and
10−18 W, corresponding to an NEP below 10−20 W∕Hz1∕2. This sets the QCD apart from the
other approaches, which have to date not demonstrated NEPs lower than 0.95 × 10−19 W∕Hz1∕2

in a single pixel demonstration or 2 × 10−19 W∕Hz1∕2 in a kilopixel demonstration.12–14 Another
important attribute of the QCDs is its speed—the devices are intrinsically fast, and the combi-
nation of sensitivity and speed enables photon counting. In an experiment using a fast readout,
the QCD has demonstrated 1.5 THz (200 μm) photon counting under a range of loadings.15

Although not required for much of Origins science, a true thresholding photon-counting device
is not susceptible to some of the systematic noise concerns of a total-power detector, in particular
low-audio-frequency noise due to amplifiers, electronics, or resonators themselves.
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2 Principle of Operation

In the general QCD design, shown in Fig. 1(a), radiation is absorbed in an antenna coupled or
mesh absorber connected to an island of superconducting material via a small (100 × 100 nm)
tunnel junction defining a device dubbed the SCB. The SCB is embedded in a resonator.
Quasiparticles trapped in the reservoir can only tunnel in and out of the island, changing its
capacitance. This capacitance change causes a shift in the resonance frequency of the resonator
and can be measured by the phase shift of an RF signal transmitted through a feedline that is
capacitively coupled to the resonator. This design allows for straightforward frequency multi-
plexing with each pixel having a unique resonant frequency, and all resonators coupled to a
single feedline.

The operation of the QCD is sketched in Fig. 1(b). Radiation coupling to the absorber via the
antenna breaks Cooper pairs in the absorber, generating quasiparticles that can tunnel in and out
of a small island that is capacitively coupled to the readout resonator. The rate of tunneling from
the absorber into the island is proportional to the quasiparticle population Nqp in the absorber so
Γin ¼ KNqp, where K is a constant which depends on the tunnel junction parameters and
temperature.7 The rate of tunneling out of the island back to the absorber, on the other hand,
is largely independent of the quasiparticle population in the absorber. The probability of occu-
pation of the island by a single quasiparticle is Podd ¼ Γin∕ðΓin þ ΓoutÞ. When the gate voltage is
swept, one observes a series of peaks in the capacitance of the island16 with an average amplitude
given by ΔC ¼ ð1 − PoddÞ ð4EC∕EJÞC2

g∕CΣ, where Ec is the junction charging energy e2∕2CΣ,
EJ is the junction’s Josephson energy, Cg is the gate capacitor capacitance, and CΣ is the sum of
the gate and junction capacitances. Since ΔC is a function of Nqp, and Nqp is a function of the
optical signal power coupled by the antenna, a measurement of ΔC is a measurement of the
optical signal power [Fig. 1(c)]. The change in capacitance is measured by the phase shift
of the RF signal transmitted through the feedline, which is caused by the change in the resonant
frequency of the resonator.

3 Device Description

We fabricated a 21 × 21 array of pixels in a square grid with 0.9 mm spacing [Fig. 2(b)]. A
feedline meanders through the array to couple the readout signal to each resonator. The devices

Fig. 1 (a) Schematic diagram of a QCD. (b) Energy diagram of single Cooper-pair box at the
degeneray point (CgVg∕e ¼ 1) showing photogeneration of a quasiparticle and tunneling rates
in and out of the island. (c) Simulation of quantum capacitance signal for various illumination
levels.
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are formed from thin-film superconducting metals patterned on a high-resistivity float-zone sil-
icon substrate 500-μm-thick. The resonators are niobium films patterned into meandered induc-
tors and interdigitated capacitors [Fig. 2(a)], with the frequency set for different devices by
variations in the inductor length. Each absorber is a 60 μm × 60 μm aluminum mesh consisting
of 100 nm wide, 20-nm-thick aluminum lines on a grid with unit cell 5 μm × 5 μm as shown in
Fig. 2(c); the resulting total volume of aluminum is 1.56 μm3. The absorbers are backside-
illuminated. In the previous devices (5 × 5 arrays), radiation was focused onto the meshes with
an array of Fresnel lenses, also etched in a high-resistivity float-zone silicon substrate. Since at
the time of the measurements described here we did not have a matching 21 × 21 array of Fresnel
lenses, we have simply used a flat piece of silicon as a backing plane.

In order to maximize absorption, the absorber’s sheet resistance should be set to
377∕ðn − 1ÞΩ∕□,17 where n ¼ 3.4 is the index of refraction of the substrate. The sheet resis-
tance of diagnostic mesh absorbers placed on the same chip measured at 4.2 K was 72 Ω∕□
somewhat lower than the target. Electromagnetic simulations indicate that this should yield an
absorption efficiency of 49% at 1.5 THz.

The SCB island is a T-shaped line in close proximity to the lowermost finger of the resonator
interdigitated capacitor [Fig. 2(b)]. The tunnel junction is formed at the overlap between the
vertical part of the island and the mesh absorber.

4 Measurements

4.1 Measurement Approach

To characterize their performance, the samples were cooled in a dilution refrigerator, mounted
inside a shield at the mixing chamber temperature. The optical set up is shown in Fig. 3(a). A
cylindrical opening (baffle) on the mixing chamber contains a stack of three mesh filters with a
10% bandwidth around 1.5 THz and one zytex filter to block radiation at wavelengths smaller
than the mesh hole size. The cylinder housing the filter stack is coated inside and out with a black
material composed of a mixture black epoxy and lamp black carbon18 and acts to limit the field of
view of the detector array to a small window at the still temperature. This material, referred to as
“Berkeley Black,” has a reported reflectivity ranging from 0.1 for a wavelength of 1 mm to 0.025
at 167 μm wavelength.18 The mixing chamber shield with its inside surface coated by the same
black material is inside the still shield. The still shield has baffles around the mixing chamber
shield cylindrical opening. The inside of the still shield was coated with the black material and so

Fig. 2 (a) 21 × 21 array of QCDs. (b) SEM picture of single Cooper-pair box showing the island in
close proximity to the lowest finger of the interdigitated capacitor, the tunnel junction, and a portion
of the mesh absorber.
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were the baffles (inside and out). The array was illuminated through a 500-μm aperture by a
black body source outside of the still shield and thermally regulated with a weak thermal link
to the helium bath. An additional mesh filter is placed behind the aperture followed by a 2-THz
low-pass filter and an additional zytex filter. The transmission coefficients of the optical filters
were measured using a Fourier-transform infra-red spectrometer and some results are shown in
Fig. 4. The black curve is the measurement for a single mesh filter. The blue curve is the mea-
sured transmission for a stack of three mesh filters and it shows that the curve shoulders are at the
noise floor of the spectrometer. For comparison, we plot in red the product of the transmissions
of three filters showing the net transmission falls below the noise floor of the instrument. The
actual filter stack contains a total of four mesh filters, one 2 THz low-pass filter and two zytex
filters. The product of the transmissions is shown in cyan. A model function (shown in green)
was used in the actual power calculations.

Radiation is usually focused on the individual pixels by an array of Fresnel lenses fabricated
on high-resistivity float-zone silicon, the same substrate used for the detectors. Since for the

Fig. 3 (a) Schematic diagram of QCD readout. (b) Schematic diagram of optical characterization
setup.

Fig. 4 Transmission coefficients of the filter stack. Black: a single mesh filter (measurement). Blue
a stack of three mesh filters (measurement). Red: the product of three mesh filters (from the blue
curve). Purple: 2-THz low-pass filter (measurement). Cyan: product of the transmission coeffi-
cients of all filters in the filter stack. Green: model function used to calculate the optical power.
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devices described here we did not have a matching lens array, we have used a flat piece of silicon
as a holder. The devices are still back side illuminated. The radiation absorbed is calculated as

EQ-TARGET;temp:intralink-;sec4.1;116;711Ps ¼ ϵmeshΩMAA

Z
νh

υl

TðνÞhν3∕c3
e

hν
kBT − 1

dν;

where TðνÞ is the transmission through the filter stack, εmesh is the calculated mesh absorption
efficiency,ΩM is the solid-angle subtended by mesh absorber as seen from the aperture, and AA is
the aperture area. The lower limit of integration was taken as 100 GHz, the lowest frequency that
can break a Cooper pair in 20-nm-thick aluminum films, which have a critical temperature of
∼1.36 K, as measured in the previous samples with the same thickness. The highest limit of
integration was taken as 2 THz, since the 2 THz filter provided a very sharp cutoff at that
frequency.

As shown in Fig. 3(b), measurements are performed by sending an RF signal at the resonant
frequency of the QCD resonator through a feedline which is capacitively coupled to the reso-
nator. The transmitted signal is amplified by a cryogenic amplifier and is down-converted by a
mixer, yielding a voltage proportional to the phase shift acquired by the RF signal. The resulting
signal is digitized and recorded. To characterize the performance we sweep the gate voltage with
a sawtooth waveform at a frequency of 1000 Hz and amplitude encompassing 5 quantum capaci-
tance peaks.

4.2 Results

Figure 5(a) shows the transmission through the device. Of the 441 design frequencies, 416 were
found. The absent frequencies may have a dip too small to observe or there may be collisions
with other frequencies.

To estimate the NEP, for each optical loading, we have measured the quantum capacitance
time stream for 0.5 s while sweeping the gate voltage at 1000 Hz with an amplitude of 1.5 V,
enough to sweep over 5 quantum capacitance peaks. We calculated the standard deviation of the
time stream, which will be proportional to the amplitude of the quantum capacitance signal (plus
additional noise). We repeated the measurement 125 times, and estimated the standard deviation
of the results, which is our RMS noise for a 1 Hz bandwidth. The signal for that value of optical
loading is the mean value of the results. We then stepped the optical loading by an amount ΔP
and repeated the process. The responsivity of the device is the derivative of the signal with
respect to the optical power, and the NEP is simply ΔP divided by the signal-to-noise ratio.
Figure 5(b) shows the data obtained in this manner.

Figure 6(a) shows a histogram of the measured NEPs; they cluster around 5 × 10−20 W∕Hz1∕2.
Comparing the measured NEPs with the expected photon shot-noise NEP, we obtain the efficiency
map shown in Fig. 6(b). Note that since not all resonances were found, the location of each

Fig. 5 (a) Transmission through QCD feedline. (b) Example of a NEP measurement.

Echternach, Beyer, and Bradford: Large array of low-frequency readout quantum capacitance detectors

J. Astron. Telesc. Instrum. Syst. 011003-5 Jan–Mar 2021 • Vol. 7(1)



resonance on the device may not be accurate. However, in general, we do expect the edges of the
array to have poor efficiency simply due to the fact the edges are not illuminated because the
diameter of the cylindrical entrance baffle is smaller than the array diameter. We will correct this
in the near future by introducing larger diameter mesh filters.

5 Path Forward

5.1 Uniformity

The NEP measurements presented here demonstrate that the QCD has the potential to satisfy the
OST requirements in a large format array. Even though the tests were performed at 200 μm
wavelength, simulations show the performance should satisfy the requirements of OST for wave-
lengths between 25 and 460 μm as shown in Fig. 7. However, QCDs also display a large vari-
ability in performance that has to be addressed. We believe a source of this variability is the
spread in tunnel junction resistances. We are addressing this issue by fabricating arrays of test
tunnel junctions that can be probed at room temperature. We have initially seen a large variability
in resistance measurements, but are converging on fabrication parameters which have already
brought the yield of 100 × 100 nm2 junctions to 70% and 100 × 150 nm2 to 90%. We are

Fig. 6 (a) Histogram of measred NEPs. (b) Map of efficiencies calculated by comparing the mea-
sured NEPs with photon shot noise NEP.

Fig. 7 Simulation of QCD NEP (blue) versus wavelength for the optical loading predicted for the
OST compared with the required NEP (orange).
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working on improving the yield of these 100 × 100 nm2 junctions further. We note that our
simulations indicate that we could also use the higher-yield 100 × 150 nm2 junctions to achieve
shot-noise-limited performance, but this has to be confirmed experimentally.

Another issue that arose with the low-frequency design utilized for this latest 441-pixel
prototype is a long-term fluctuation of the quantum capacitance signal. On the time scale
of minutes, in some pixels, the quantum capacitance signal jumps between two values.
This behavior was not present on the previous QCD arrays which operated with higher readout
frequencies, so we believe the effect is due to the resonator design. To achieve the low readout
frequencies (700 to 900 MHz), the resonator inductors (which are the frequency-determining
elements of the pixels), must be large. They are composed of 1-μm-wide lines tightly
meandered with only 1-μm spacing. This is compared to the 4-μm wide, 4-μm spacing used
for the higher frequency (∼4 GHz) designs. We believe this tight packing increases the like-
lihood of a charge fluctuator located between the lines to couple to the resonator and produce
frequency noise. We have designed and fabricated 21 × 21 arrays with higher frequency read-
out with the wider inductor lines and spacing to test this hypothesis. These devices will be
tested shortly.

5.2 Dynamic Range

An important consideration for Origins detectors is the dynamic range. The QCD loses sensitivity
at high-incident power because the photon rates exceed the quasiparticle tunneling rates, increasing
the device noise above the photon shot noise. Figure 8 illustrates this effect observed in devices
described in Ref. 15. Figure 8(a) shows the response (amplitude of quantum capacitance) versus
optical power for the mesh absorber device of Ref. 15 with island volume 0.022 μm3 and absorber
1.5 μm3. Figure 8(b) shows the NEP as a function of optical power for the same device. The region
where shot noise dominates ranges at most from 10−20 to 10−18 W. This is predicted by the sim-
ulations as shown in Fig. 8(c) (the blue circles). Simulations also predict that for a device with
island volume 0.001 μm3, absorber 0.044 μm3 and with increased width of the junction from 0.1
to 0.15 μm the shot noise limited region will extend from 10−22 to 2 × 10−16 W (red dots). Even
though there are many competing factors determining the NEP, the main reason for this is the fact
that small island and reservoir volumes increase both tunneling in and tunneling out rates causing a
decrease in the shot noise of electron tunneling, the main source of noise for the QCD.
Furthermore, somewhat counter intuitively, increasing the width of the junction from 0.1 to
0.15 μm also increases the tunneling rates due to a decreased tunneling resistance, whereas the
reduced charging energy causes only a modest decrease in responsivity. Although we are at the
lower limit for a mesh absorber volume, using an antenna coupled device allows for an absorber
with this small volume and also a small volume island. We will explore devices with small island
and absorber in the near future with the hope to increase the dynamic range.

Fig. 8 (a) Response and (b) NEP versus optical power for the same device of Ref. 15. Note small
region of shot noise limited performance; (c) simulations of NEP versus optical power for a mesh
absorber with same parameters as the one from (a), and for an antenna coupled device with small
island and absorber, and 0.15-μm wide junction.
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