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Abstract. We performed wave-optics-based numerical simulations at mid-infrared wavelengths
to investigate how the presence or absence of entrance slits and optical aberrations affect the
spectral resolving power R of a compact, high-spectral-resolving-power spectrometer containing
an immersion-echelle grating. We tested three cases of telescope aberration (aberration-free,
astigmatism, and spherical aberration), assuming the aberration budget of the Space Infrared
Telescope for Cosmology and Astrophysics, which has a 20 μm wavelength diffraction limit.
In cases with a slit, we found that the value of R at around 10 to 20 μm is approximately in-
dependent of the assumed aberrations, which is significantly different from the prediction of
geometrical optics. Our results also indicate that diffraction from the slit improves R by enlarging
the effective illuminated area on the grating window and that this improvement decreases at short
wavelengths. For the slit-less cases, we found that the impact of aberrations on R can be roughly
estimated using the Strehl ratio. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.8.2.025004]
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1 Introduction

Space-borne spectroscopy with a spectral resolving power higher than tens of thousands at mid-
infrared (MIR) wavelengths is an unexplored region of astronomy that has high scientific signifi-
cance. For example, radial-velocity measurements with a precision of about 10 km/s can identify
the position of the “snowline” in a protoplanetary disk, which is considered a key test of current
models for planetary formation.1,2 The Space Infrared Telescope for Cosmology and Astrophysics
(SPICA) includes the SPICA mid-infrared instrument (SMI),3,4 which contains a high-resolution
(HR) spectrometer designed to be capable of such high-spectral-resolving-power spectroscopy.

In SPICA/SMI-HR, we planned to use an immersion echelle grating. An echelle grating is a
grating that has a low groove density and is optimized for large-angle incident angles (i.e., large
diffraction orders). In addition, in an immersion echelle grating, an echelle grating is in touch
with a substrate through which the incident and diffracted beams pass. With a given incident
angle, a large beam width incident to the grating provides us with a large spectral resolving
power, because it brings a large optical-path-length differences on the grating. The optical-
path-length difference is magnified by a refractive index of a substrate in an immersion echelle
grating. Hence, a beam width required for a given spectral resolving power in an immersion
echelle grating is smaller than one in usual echelle gratings by a factor of the refractive index
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of the substrate. The size reduction of the spectrometer has a particular importance in space-
borne instruments that are strictly limited in size and mass.5

As a material with a high refractive index, some semiconductors are promising in the infrared
wavelength. Crystals of Si, which transmit the light at 1.2 to 7.0 μm, can be applied to immersion
echelle gratings through the process of photolithography.6–8 The single-point diamond
machining9,10 of softer materials including CdZnTe is a method to fabricate immersion echelle
gratings, which have wavelength band pass different from Si crystals. SPICA/SMI-HR is
designed with a substrate of CdZnTe (n ¼ 2.65).9

Since the size of the spectrometer is limited by cost of space craft or the available ingot size10

of the substrate material for immersion grating, it is important to obtain detailed information on
the spectral resolving power of such a size-limited spectrometer. An analytical evaluation, how-
ever, does not consider either diffraction from the spectrometer slit or telescope aberrations, both
of which must be taken into account to properly evaluate the spectral resolving power. To include
these effects, numerical simulations are needed to acquire information on the spectral resolving
power in the MIR-wavelength band without performing difficult experiments. For the following
reasons, the simulations must be based not on geometrical optics but on wave optics:

1. Diffraction from the entrance slit of a spectrometer is not negligible. Without a slit, the
amplitude/phase distributions of the beam incident on the grating surface are effectively
flat, as analysis with geometrical optics assumes. However, with a slit, diffraction produ-
ces beams with non-flat amplitude/phase distributions at the grating surface.11

2. In the MIR, imaging performance tends to be close to the diffraction limit; therefore, it is
inappropriate to use geometrical-optics-based concepts (e.g., the spot diagram radius) to
estimate how the wavefront aberrations of a telescope affect the spectral resolving power.

In this paper, we describe the numerical simulations of the spectral resolving power of the
SMI-HR optical model to investigate how the presence or absence of an entrance slit affects the
spectral resolving power of a compact, high-spectral-resolving-power spectrometer. We per-
formed the simulations using the wave-optics software Wyrowski VirtualLab Fusion (Second
Generation Technology Update [Build 7.3.1.5]).12 In Sec. 2, we review the principle of spectral
resolving power for immersion-echelle spectrometers to clarify the goal of the simulations.
In Sec. 3, we describe the assumptions of our simulations. In Sec. 4, we show our results
and discuss the general characteristics of the simulated spectral resolving power achieved by
a compact, immersion-echelle grating spectrometer. Sec. 5 summarizes the contents of this paper.

2 Review of Theory

The theory of the spectral resolving power of immersion-echelle spectrometers is no different
from the usual theory for ordinary reflective gratings that can be found in many sources.13

We briefly review it here to clarify the aim of the simulations (stated in Sec. 1) and the symbol
conventions used in this paper. Hereafter, we assume that the light source to be observed is
an ideal point source.

Equation 1 is the fundamental equation for wavelength dispersion by a reflective grating;
it is referred to as the “grating equation,” which is expressed as

EQ-TARGET;temp:intralink-;e001;116;207uðsin αþ sin βÞ ¼ mλ

n
; (1)

where u is the length of a period (the pitch) of the grating structure; α and β are the angle of
incidence and diffraction of the plane wave, respectively; m is the diffraction order; λ is the
wavelength of the light in vacuum; and n is the refractive index of the immersed grating sub-
strate. Although the wavelength dispersion of the medium affects the spectral resolving power, in
this paper, we assume the refractive index14 to be a real constant, independent of λ, to focus on
the other principal effects. Note that Eq. (1) is derived by assuming the incident wavefront to be
a perfect plane wave that spans the entire two-dimensional plane.
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The relationship between dλ and dβ is expressed as

EQ-TARGET;temp:intralink-;e002;116;723

nu cos β

m
dβ ¼ dλ: (2)

The variation of dλ∕dβ is negligible, compared to dλ∕dβ itself, in the interval of the mini-
mum resolvable exit-angle difference (denoted by Δβ). Thus, we can interpret Eq. (2) as a suf-
ficiently well-approximated relationship between Δβ and the minimum resolvable wavelength
difference (denoted by Δλ) is given by

EQ-TARGET;temp:intralink-;e003;116;633

nu cos β

m
Δβ ¼ Δλ: (3)

The spectral resolving power R thus becomes

EQ-TARGET;temp:intralink-;e004;116;579R ¼ λ

Δλ
¼ λm

nu cos βΔβ
¼ sin αþ sin β

cos βΔβ
: (4)

In particular, when α ¼ β (the Littrow configuration), Eq. (4) becomes

EQ-TARGET;temp:intralink-;e005;116;522R ¼ 2 tan α

Δβ
: (5)

Hereafter, we denote the physical size of the grating window along the dispersion direction
by W and the geometrical beam width along the dispersion direction by w; and we assume that
w ≤ W. For the development of SPICA/SMI-HR, the physical sizeW was limited mainly by the
size of the available CdZnTe ingot (e.g., a column with a diameter of 135 mm and a thickness of
50 mm); see Ref. 10 for the detail of the size limitation.

As we are not considering diffraction from slits in this section, we can express Δβ as

EQ-TARGET;temp:intralink-;e006;116;406Δβ ¼ η
λ

nw
; (6)

where η is a correction factor that depends on the shape of the entrance window; more directly,
η depends on how grating grooves are illuminated (e.g., rectangular or elliptical). Substituting
Eq. (6) into Eq. (5) leads to the equation for diffraction-limited R, which is given by

EQ-TARGET;temp:intralink-;e007;116;328R ¼ 2n tan αw
ηλ

: (7)

In Eq. (7), we note that R is directly proportional to the quantity 2n tan αw. This quantity can
be interpreted as the round-trip optical-path difference between light rays from the opposite ends
of the beam width at the incident (exit) window (Fig. 1).

For reference, we also consider the geometrically slit-limited case here. In this case, we can
express Δβ using the telescope diameter D and the slit width in radians on the sky ϕ and the
related equation is

EQ-TARGET;temp:intralink-;e008;116;212Δβ ¼ 1

n
D
w
ϕ; (8)

whereD∕w equals the magnification ratio of the optics. Hence, the geometrically slit-limited R is
expressed as

EQ-TARGET;temp:intralink-;e009;116;147R ¼ 2n tan αw
Dϕ

: (9)

Equation (7) does not consider either diffraction from the slit or telescope aberrations, both of
which are needed to properly evaluate R. In other words, Eq. (7) is based on the assumptions that
the optical system (including the telescope) is aberration-free and that there is no entrance slit.
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When we consider diffraction from the entrance slit, the amplitude/phase profile incident on the
grating surface becomes far more complicated than the one that analysis with geometrical optics
assumes. In addition, diffracted beams may be vignetted at the grating window. Furthermore,
aberrations are additional factors that change the size of the point-spread function (PSF).
Spot sizes determined by ray tracing are inappropriate for evaluating the sizes of the PSFs when
wavefront errors are not sufficiently large compared to the wavelength. Hence, Eq. (7) is not
satisfactory for evaluating the spectral resolving power of a realistic spectrometer with an
entrance slit and/or optical aberrations.

To take these factors into account, we have performed simulations based on wave optics.
The simulations assumed a simple high-spectral-resolving-power spectrograph of limited size
(W ≈ w). We aim to investigate how the presence or absence of an entrance slit and optical
aberrations affect R in the 10 to 20 μm wavelength range.

3 Setup

3.1 Layout of the Optical Model

3.1.1 Simplification

The optical model used in the current study is based on the latest design of SMI-HR15 (Fig. 2),
but we have made the following simplifications (Fig. 3):

1. The cross dispersing grating, which is used in the echelle spectrograph, is omitted.
2. We simplified some focusing/collimating systems. The SPICA/SMI is designed with

focusing/collimating systems consisting of multiple high-order aspherical mirrors.
These multiple higher-order aspherical mirrors well correct off-axis aberrations. This com-
pensation is necessary to obtain good imaging performance over a wide field of view for
the focusing at wavelengths other than the blaze wavelength of the Littrow configuration.
In the simplified model, we omitted the multiple higher-order aspherical mirrors. The
omission of these items does not affect the evaluation of the spectral resolving power
at the blaze wavelength of the Littrow configuration.

3. The SMI-HR is designed with off-axis reflective optics, but our calculation model uses
co-axial optics with spatial phase modulation to mimic a thin lens of the focal length f.
With f being the focal length of the lens and r representing the radial coordinate on the
plane of the thin lens, we can express phase modulation by multiplication with the factor
e−

2πi
λ ð
ffiffiffiffiffiffiffiffiffi
f2þr2

p
−fÞ. We chose the spatial-phase-modulation pattern such that a spherical wave

Fig. 1 Illustration of the calculation of the round-trip optical-path difference between light rays from
the opposite ends of the beam on the incident (exit) window. The upper panel is for the case
w < W , and the lower panel is for w ¼ W . The lengths of the solid red lines show half of the
round-trip path difference between light rays from the opposite ends of the beam on the incident
(exit) window.
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from a point source at the front focal point of the thin lens is transformed into a plane wave
by the modulation.

3.1.2 Main parameters

The main parameters of the simulation setup are compiled in Table 1. They reflect the design of
the SPICA/SMI-HR, except for the simplifications described earlier.

3.2 Method of Calculation

3.2.1 Wavelength sampling

We performed calculations for the diffraction orders m ¼ 75, 85, 95, 105, 115, 125, 135, and
145. For each sampled value of m, we selected the following wavelengths, for which α ¼ β
(the Littrow configuration) and the related equation is

Fig. 2 The optical design of the SPICA/SMI-HR. The rays are colored by the diffraction orders of
the diffraction by the immersion echelle grating. The HR spectrometer is one of four subunits that
compose the SPICA/SMI.15

Fig. 3 Optical layout model used for the simulations. The thicknesses of the lenses are exagger-
ated in this figure to make them easy to see. In the actual simulations, we used spatial phase
modulations to represent thin lenses with zero thickness. The surface-to-surface distances d1,
d2, and d3 shown here have the same definition used in Appendix B; see also Table 1.

Itoh et al.: Simulations of the spectral resolving power of a compact space-borne immersion-echelle. . .

J. Astron. Telesc. Instrum. Syst. 025004-5 Apr–Jun 2022 • Vol. 8(2)



EQ-TARGET;temp:intralink-;e010;116;233λm ¼ 2nu sin α

m
: (10)

These values of λm are listed in Table 2. For reference, we also show the slit efficiency Em at
each wavelength, calculated for the assumed slit size 100.000 μm × 720.000 μm.

3.2.2 Algorithms

We next describe the propagation algorithms we used. [We used two Intel(R) Xeon(R) process-
ors, each with CPU E5-2620 v4 (2.10 GHz, 8 cores, 16 threads), in parallel for the simulations.
The maximum amount of memory used during each simulation was less than 128 GB. The
resolution of the simulation on each surface is 4096 × 4096.]

1. A periodic dielectric media (such as a grating or lens) causes the propagated field to
become periodic. Complex Fourier analysis shows that the propagated periodic field can

Table 1 The main parameters for the setup of the simulations. These parameters come from the
design of SPICA/SMI-HR. The reason why the geometry beam and grating window are elongated
is to fabricate the longest possible grating from a CdZnTe ingot, which has a limited size. The width
(100.000 μm) of the slit are designed through our consideration of the diffraction-limited PSF width
at λ ¼ 10 to 20 μm (Table 2).

Parameter Value

Wavelength of light λm ¼ 2nu sin α
m

Refractive index of the immersion-echelle grating n ¼ 2.65000

Pitch of the grating u ¼ 282.700 μm

Angle of incidence at the grating surface α ¼ 75 deg

Diffraction order m ¼ 75;85;95;105;115;125;135; and 145

Numerical aperture (NA) in the dispersion direction 0.0939085

dl∕dβ in Eq. (13) 399.962 mm

Entrance pupil diameter (ellipse) 14.000 mm × 5.60000 mm

Distance between the entrance pupil and lens 1 80.3000 mm

Diameter of lens 1 20.0000 mm

Thickness of lens 1 0.00000 mm

Distance between lens 1 and slit 71.7112 mm

Aperture size of the slit 100.000 μm × 720.000 μm

Distance between the slit (or detector) and lens 2 150.929 mm

Diameter of lens 2 40.0000 mm

Thickness of lens 2 0.00000 mm

Distance between lens 2 and the window of
the immersion-echelle grating

85.7676 mm

Size of the window of the immersion-echelle grating 31.5000 mm × 15.0000 mm

Size of the geometrical beam at the grating window 29.4000 mm × 11.8000 mm

Distance between the window and the grating center 56.7381 mm

Size of the grating surface 117.479 mm × 15.0000 mm
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be represented as the sum of tilted plane waves known as the spectrum of plane waves
(SPW). We used the method of the SPW16,17 to calculate all free-space propagation, except
for the interval from the slit to lens 2 (Fig. 4). This exception is necessary because, with
SPW, a large amount of memory is required to calculate large-angle diffraction after the
slit. The SPWmethod also requires a large amount of memory to calculate the propagation
between planes separated by a large distance. Hence, we split each interval between the
optical elements into several smaller calculation steps. The number of such divisions is
indicated in parentheses in Fig. 4.

2. We used the far-field approximation to Rayleigh’s diffraction formula of the first kind14 for
the propagation from the slit to lens 2 (Fig. 4), which requires a huge amount of memory
for large angle diffraction in the case of the SPW method. The operator PFarField

Δz for the
far-field approximation is expressed as

EQ-TARGET;temp:intralink-;e011;116;258½PFarField
Δz Uðx; yÞ�ðx 0; y 0Þ ¼ Δz

iλr 0
e

2πir 0
λ

r 0

Z
∞

−∞

Z
∞

−∞
dxdyUðx; yÞe2πiðx 0xþy 0yÞ

λr ; (11)

where ðx; yÞ and ðx 0; y 0Þ are Cartesian coordinate systems on the surfaces before and after
the propagation, Uðx; yÞ is the original field before the propagation, Δz is the distance
between the two planes along the optical axis, and

EQ-TARGET;temp:intralink-;e012;116;175r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðΔzÞ2

q
; r 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 02 þ y 02 þ ðΔzÞ2

q
: (12)

3. We modeled the grating as a linear phase-modulation pattern. This model can be inter-
preted as a grating that has an ideally selective diffraction efficiency; in other words, the
diffraction efficiency of this grating model is 100% for an observed diffraction order and
0% for the other orders; see Appendix A for details.

4. We used Eq. (5) to evaluate R. We evaluatedΔβ in Eq. (5) using the width of the calculated
monochromatic PSF, which we denote by Δl, through the equation expressed as

Fig. 4 Summary illustration of the method of calculation. The abbreviation SPW represents a
method that uses a spectrum of plane waves, and IG is an abbreviation for immersion-echelle
grating. We need the division of the propagation distances to reduce the amount of random-
access memory that SPW requires. However, for the slit-less cases, we calculated the propaga-
tion between lenses 1 and 2 using SPW (1 step), which is different from this figure.

Table 2 The wavelengths λm used for the simulations and the slit efficiency Em calculated for
the assumed slit size at each wavelength. The wavelengths λm are the blaze wavelengths for
the Littrow configuration.

m 145 135 125 115 105 95 85 75

λm (μm) 9.98108 10.72042 11.57805 12.58484 13.78339 15.23428 17.02654 19.29675

Em (%) 87.1 86.2 84.9 83.0 80.5 77.2 72.9 67.7
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EQ-TARGET;temp:intralink-;e013;116;735Δβ ¼
�
dl
dβ

�
−1
Δl: (13)

The value of dl∕dβ in Eq. (13) depends on the optical design (see Table 1 and Appendix B).
Using the value of dl∕dβ given in Table 1, together with Eqs. (5) and (13), we obtain the equation

EQ-TARGET;temp:intralink-;e014;116;668R ¼ 2;985;356 μm

Δl
: (14)

The definition ofΔl18 used in this paper is the full width at half maximum (FWHM) along the
direction of wavelength dispersion; we first integrated the PSFs along the direction perpendicular
to the direction of wavelength dispersion and then used them to evaluate the FWHMs.

4 Results and Discussion

4.1 Results

The simulated spectral resolving powers for different wavelengths are shown in Fig. 5; for com-
parison, the results for slit-less cases are also shown. For cases both with and without a slit, we
include the following three types of aberrations (added as wavefront errors at the entrance pupil

Fig. 5 The simulated spectral resolving power at different wavelengths. The symbols indicate the
results of numerical simulations with SPWmodeling, and the curves indicate the predictions of the
analytical calculations. The magenta triangles (1) show simulated spectral resolving power for an
aberration-free case with a 100 μm slit. The blue squares (3) and purple crosses (5) represent the
results for the cases with a slit, but they include astigmatism and spherical aberration, respectively.
In each case, the magnitude of the assumed wavefront aberration is RMS 0.071λref (where
λref ¼ 20 μm). The circles indicate the results of the slit-less cases; the cyan (2), orange (4), and
green (6) circles represent the aberration-free results, the results with astigmatism, and the results
with spherical aberration, respectively. The assumed aberration is the same as that in the cases
with a slit. The three black curves (7–9) are the results of some analytical estimates (see Sec. 4.2
in the main text).
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of the simulation model): aberration-free [(1) and (2) in Fig. 5)], astigmatism with root-mean-
square (RMS) 0.071λref [(3) and (4) in Fig. 5], and spherical aberration with RMS 0.071λref
[(5) and (6) in Fig. 5]. The symbols (1), (3), and (5) are for cases with a slit, whereas (2),
(4), and (6) are for cases without a slit.

For reference, Fig. 6 shows the one-dimensional PSFs on the slit plane at the blaze wave-
length of the diffraction orders m ¼ 145;95 (Table 2); in addition, Fig. 7 shows the one-
dimensional PSFs on the final focal plane at the same wavelengths as Fig. 6. We obtained these
one-dimensional PSFs through integrating the two-dimensional amplitude distribution along the
direction perpendicular to the direction of wavelength dispersion.

4.2 Discussion

In Fig. 5, the three curves [(7–9) in Fig. 5] represent some simple analytical estimates of R. In
this section, we first explain those three curves and then discuss the results using them. In the
discussion below, the distance between lens 2 and the detector is denoted by fð¼ 150.929 mmÞ).
We define two types of numerical apertures; one (NAGW) is associated with the size W of the
grating window along the dispersion direction, and the other NA is for the geometrical beam size
w along the dispersion direction, which is given by

EQ-TARGET;temp:intralink-;e015;116;124NAGW ¼ sin

�
arctan

�
W
2f

��
; NA ¼ sin

�
arctan

�
w
2f

��
: (15)

The values of NAGW and NA are 0.100550 and 0.0939085, respectively.

Fig. 6 The one-dimensional PSFs on the slit plane at (a) 9.98108 μm and at (b) 15.23428 μm of
the wavelength. The vertical axis is the relative intensity. The blue, magenta, and green curves
indicate the cases of aberration-free, astigmatism, and spherical aberration, respectively. The red
filled area indicates the width of the slit aperture.

Fig. 7 The one-dimensional PSFs on the final focal plane at (a) 9.98108μm and at
(b) 15.23428 μm of the wavelength. The vertical axis is the relative intensity. The blue, magenta,
and green curves indicate the cases of aberration-free, astigmatism, and spherical aberration,
respectively. The red filled area indicates the width of the slit aperture.
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The horizontal dashed black line (7) represents the value ofR determined only by the slit width,
i.e., the value ofR for the case in whichΔl is the full slit width (100 μm). This line corresponds to a
specific example of Eq. (9). This line provides a good estimate of R for the sufficiently diffuse
sources in all the wavelength ranges discussed in the present paper. (Exceptions are extremely long
wavelengths for which we cannot use Kirchhoff’s boundary conditions.14) Next, the black solid
curve (8) and the dash-dot-dot curve (9) represent R for cases in which Δl is evaluated from the
following equations, respectively and they are expressed as

EQ-TARGET;temp:intralink-;e016;116;651Δl ¼ ϒrectλ∕ð2NAGWÞ; (16)

and

EQ-TARGET;temp:intralink-;e017;116;609Δl ¼ ϒelliλ∕ð2NAÞ; (17)

where Υrect ¼ 0.8859 and ϒelli ¼ 1.002. These lines correspond to specific examples of Eq. (7).
Equations (16) and (17) are obtained with the calculation of the Fraunhofer diffraction integral
for rectangular and elliptical aperture functions;14 these expressions are not used in the SPW
simulations.

Curve (8) gives the value of R for the case in which the grating window is fully and homo-
geneously illuminated by a perfect plane wave; thus, this curve can be interpreted as the upper
limit on R, which is realized approximately for a case with a sufficiently narrow slit width. In
other words, when the collimated beam projection is less than the physical extent of the grating
(w < W), inserting a narrow slit spreads the beam over the entire grating, reproducing the result
where w ¼ W without a slit. Similarly, curve (9) shows the value of R for a case in which the
geometrical beam size determines the illuminated region on the grating window. When we com-
pare the symbols (1–6) and the lines (7–9) in Fig. 5, we find the followings:

1. Symbols (2) fall approximately on curve (9).
This means that the numerical and analytical estimates of Δl are approximately

consistent with each other.
2. Symbols (1), (3), and (5) trace almost the same positions.

This can be interpreted as meaning that the slit suppresses the effect of the assumed
aberrations on R. This is significantly different from the previous estimate of the SPICA
SMI-HR spectral resolving power.15 The previous estimate is based on geometrical optics
(Wada et al.15 estimated the spectral resolving power of SMI-HR assuming a telescope-
PSF size diffraction-limited at 20 μm and geometrical optics for SMI-HR.) and R takes
almost the same values as line (7). Experimental demonstration of the improvement of the
spectral resolving power R for the cases with aberrations by the existence of a slit would
be valuable.

3. Symbols (1), (3), and (5) lie in the region between curves (8) and (9) for λ ≳ 12 μm.

This is a result of diffraction from the slit spreading the illuminated region of the grating
surface. Since the assumed width of the slit is not sufficiently larger than the widths of diffrac-
tion-limit PSFs, an electromagnetic wave that has passed through the slit has a different angular
spectrum compared to the wave before passing through the slit. Hence, electromagnetic waves
that have passed through the slit illuminate the grating surface in different ways from the
assumption of curve (8).

Figure 8 shows the results for the simulations of the spectral resolving power for cases with
slit widths of 50, 100, 150, 200, 250, 300, 350, and 400 μm (m ¼ 85, λ ¼ 17.02654 μm).
For each slit width, we examined three types of aberrations (aberration-free; astigmatism with
RMS 0.071λref , where λref ¼ 20 μm; and spherical aberration with RMS 0.071λref). Hereafter,
we express the full width of the first-null point along the axis of the short-side direction of the
slit (221.20 μm) as ε.

Figure 8 shows the following tendencies:

1. For all the aberrations, in the region where the slit width is narrower than ε, R declines
approximately linearly as the slit width is increased. This indicates that narrow slits
enhance the spectral resolving power even if the window of the immersion echelle grating
is as compact as the geometrical beam width.
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2. As the slit width increased beyond ε, R increases again after first passing through a local
minimum. To interpret this phenomenon, it is useful to consider the one-dimensional
Fraunhofer diffraction model for the pupil function, which is expressed as

EQ-TARGET;temp:intralink-;e018;116;321

ΠðqÞ ¼

8>><
>>:

0 ðjqj > 1
2
Þ

1
2

ðjqj ¼ 1
2
Þ

1 ðjqj < 1
2
Þ
; (18)

that is,

EQ-TARGET;temp:intralink-;e019;116;241

Z
∞

−∞
dqΠðqÞe−2πiξq ¼ sinðπξÞ

πξ
; (19)

where q is the pupil coordinate normalized by the pupil diameter and ξ is the focal-plane
coordinate normalized by λ∕ð2NAÞ (¼ ε∕2). Here, we assume that the slit aperture is
Πðξ∕pÞ, where p is a parameter that represents the width of the slit (the full-width of
the slit normalized by ε∕2). Then, by assuming that the inverse Fourier transform of
Πðξ∕pÞ sinðπξÞ∕ðπξÞ gives the amplitude on the grating surface, amplitude can be
expressed as (the finite size of the grating is ignored here)

EQ-TARGET;temp:intralink-;e020;116;125

Z
∞

−∞
dξΠ

�
ξ

p

�
sinðπξÞ
πξ

e2πiξq ¼
Si
�
pπ
�
1
2
þ q
��þ Si

�
pπ
�
1
2
− q
��

π
; (20)

where SiðzÞ is the sine integral:

Fig. 8 Spectral resolving power in cases with different slit widths (m ¼ 85, λ ¼ 17.02654 μm). The
magenta circles show the simulated spectral resolving power for the aberration-free case. The
orange squares and green triangles represent the results for the cases with astigmatism and with
spherical aberration, respectively. For each case, the magnitude of assumed wavefront aberration
is RMS 0.071λref, where λref ¼ 20 μm. The black dash-dot-dot line represents the FWHM (for the
short-side direction of the slit) of the PSF incident on the slit. The first-null point along the axis of the
short-side direction of the slit (in the aberration-free case) is located at a half width of 110.60 μm;
that is, at a full width of 221.20 μm. The width is shown as a vertical dashed black line.
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EQ-TARGET;temp:intralink-;e021;116;507SiðzÞ ¼
Z

z

0

dt
sin t
t

: (21)

Figure 9 shows the functional forms of the right-hand side of Eq. (20) for different
values of p; in other words, these are the amplitude profiles on the grating surface for
different slit widths; the local minimum in Fig. 8 corresponds approximately to the case
p ¼ 2. The curve for the case p ¼ 1.0 × 1010 is shown to represent the slit-less case; i.e.,
this curve shows the amplitude profile of the original pupil aperture. Figure 9 shows that
the amplitude of the case p ¼ 2.0 is concentrated in a small region on the original pupil
aperture, compared with the other cases. As p becomes smaller than 2.0, diffraction from
the slit enlarges the effective illuminated regions, and R is thus increased. Conversely,
as p becomes greater than 2.0, the amplitude profiles change from bell-shaped curves to
top-hat-like shapes. This enlarges the effective illuminated region on the grating until it is
as large as the original pupil aperture. Hence, R is increased in this case as well.

3. The difference among the three cases of aberration is not obvious in the region where
the slit width is narrower than ϵ, whereas the difference is obvious when the slit is wider
than ϵ. This occurs because a narrow slit works as a spatial filter that suppresses the impact
of aberrations.

4. Symbols (1), (3), and (5) lie approximately on curve (9) for λ ≲ 12 μm.
Since the sizes along the dispersion direction of beams incident on the slit are propor-

tional to the wavelengths for the case without optical aberration, the extent of the
slit-diffraction effect at short wavelengths is expected to be smaller than that at longer
wavelengths.

5. Symbols (4) and (6) have spectral resolving powers lower than symbols (2).

This can be interpreted as the effect of the assumed aberration. Here, we estimate the effect of
the assumed aberration on R as follows. The typical intensity hIi of the PSF is defined as

EQ-TARGET;temp:intralink-;e022;116;199hIi ¼ P
sðΔlÞ2 ; (22)

where P is the power at the last focal plane (the two-dimensional integral of the intensity over the
whole of the last focal plane) and s is a dimensionless constant, the actual value of which is
arbitrary and does not affect the result. Since wavefront aberrations do not change P, Eq. (22)
shows that the value of hIiðΔlÞ2 is constant, independent of wavefront aberrations. Therefore, by
assuming as a working hypothesis that hIi is proportional to the Strehl ratio associated with the
considered aberration (i.e., an assumption that the Strehl ratio is proportional to the typical PSF
intensity hIi), we obtain

Fig. 9 (a) The functional form of the square of the right-hand side of Eq. (20) for different values of
p; in other words, the intensity profiles on the grating surface for different slit widths (for the one-
dimensional model described in the main text). The horizontal axis is the coordinate on the grating
surface normalized by the full width of the grating window. The vertical axis is the relative intensity
of light incident on the grating. The parameter p is the full-width of the slit normalized by ϵ∕2. The
curve for the case p ¼ 1.0 × 1010 is shown to represent the slit-less case. (b) The same curves as
the left panel that is normalized by their own peak values for clarity of their peak widths.
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EQ-TARGET;temp:intralink-;e023;116;359Δl ∝ ðStrehlratioÞ−1
2: (23)

Thus, since R is inversely proportional to Δl [Eqs. (5) and (13)], R (for the slit-less cases) is
proportional to the square root of the Strehl ratio.

Figure 10 shows R for cases (4) and (6) in Fig. 5 divided by R for case (2), together with the
square root of the Strehl ratio; note that the Strehl ratio for case (2) is approximately unity
(diffraction limited). Here, we define the Strehl ratio as

EQ-TARGET;temp:intralink-;e024;116;275ðStrehlratioÞ ¼ e−ð2πΔqÞ2 ; (24)

whereΔq is the RMSwavefront error in waves. Figure 10 shows that the square root of the Strehl
ratio is valid as a rough estimate of the impact of aberrations on the value of R in the cases
without a slit.

5 Conclusion

The commonly used theory for the spectral resolving power of an immersion-echelle grating
does not take into account diffraction from the slit, optical aberration, or two-dimensional
aperture shapes and beam profiles. In this study, we performed numerical simulations to take
these factors into account to properly investigate the spectral resolving power of a compact,
high-spectral-resolving-power MIR spectrometer. This simulation was fully based on wave
optics, as computed using Wyrowski VirtualLab Fusion (Second Generation Technology Update
[Build 7.3.1.5]).

Fig. 10 The impact of aberrations on R in the cases without a slit. The numbers in the legend
denote the model identification numbers in Fig. 5. The orange triangles represent the ratio of
R for a case with astigmatism [(4) in Fig. 5] to the value of R for a case without aberration
[(2) in Fig. 5]. Similarly, the blue crosses represent the ratio of R for a case with spherical
aberration [(6) in Fig. 5] to the value of R for a case without aberration [(2) in Fig. 5]. The
black dashed curve shows the square root of the Strehl ratio associated with the considered
aberrations.
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Our main results are as follows:

1. As diffraction from the slit spreads the illuminated region of the grating surface, when
there are no optical aberrations, R is larger for cases with a slit than for cases without
a slit.

2. The spectral resolving power R reaches a minimum when the slit width is roughly at the
width between the aberration-free-PSF’s first null points along the axis of the short-side
direction of the slit. As the slit widens more, R increases again slightly thanks to a more
uniform illumination of the grating.

3. For cases with a slit (with the slit width assumed to be 94% of the FWHM of the aberra-
tion-free PSF at 20 μm), the impact of the assumed aberrations on R is small and can be
ignored thanks to the spatial-filtering effect by the slit. This result is completely different
from the prediction of geometrical optics, where R depends only on the assumed aberra-
tion and is independent of λ. In practical terms, it is important to consider the trade-off
relationship between spatial filtering and a throughput since a narrower slit reduces the
light throughput especially for aberrated PSFs.

4. The slit-diffraction effect on R is weaker at the short-wavelength region than at the long-
wavelength region.

5. For cases without a slit, the impact of aberrations on R can be roughly estimated using
the square root of the Strehl ratio associated with the considered aberration.

6 Appendix A: Model of a Reflective Diffraction Grating with
Ideal Diffraction Efficiency

The x − y plane on the grating surface is defined as follows:

1. x is the coordinate perpendicular to the grooves on the grating surface and 2. y is the
coordinate parallel to the grooves on the grating surface.

For simplicity, assume that the diffraction grating is infinitely long in the y-direction. Also,
assume that the diffraction grating modulates the incident plane wave on the grating surface as

EQ-TARGET;temp:intralink-;e025;116;376gðxÞrectðx∕DÞ; (25)

where

EQ-TARGET;temp:intralink-;e026;116;333gðxþ uÞ ¼ gðxÞ; (26)

u and D are the pitch and full width of the grating, and

EQ-TARGET;temp:intralink-;e027;116;290rectðxÞ ¼ 1ðjxj < 0.5Þ; 0.5ðjxj ¼ 0.5Þ; 0ðjxj > 0.5Þ: (27)

Because gðxÞ is a periodic function with period u, the Fourier conjugate (This Fourier
transform can be physically interpreted as a plane-wave expansion in three-dimensional space.)
of gðxÞrectðx∕DÞ is

EQ-TARGET;temp:intralink-;e028;116;222F ½gðxÞrectðx∕DÞ�ðnκxÞ ¼
�
SðnκxÞ

X∞
m¼−∞

δðnκx −m∕uÞ
�
� sinðDπnκxÞ

πnκx
; (28)

where m, n, and SðnκxÞ are the diffraction order, index of refraction, and diffraction efficiency,
respectively, and where κx ¼ kx∕ð2πÞ and kx is the wavenumber in the x-direction. Here, we
assume an ideal diffraction efficiency; that is

EQ-TARGET;temp:intralink-;e029;116;138SðnκxÞ
X∞

m¼−∞
δðnκx −m∕uÞ ¼ δðnκx −mdesign∕uÞ; (29)

where mdesign means the diffraction order intended to be observed. Equation (28) then becomes
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EQ-TARGET;temp:intralink-;e030;116;735F ½gðxÞrectðx∕DÞ� ¼ sinðDπðnκx −mdesign∕uÞÞ
πðnκx −mdesign∕uÞ

: (30)

The inverse Fourier transform of Eq. (30) is as follows:

EQ-TARGET;temp:intralink-;e031;116;685gðxÞrectðx∕DÞ ¼ e2πimdesignx∕urectðx∕DÞ: (31)

On the other hand, the grating equation for a reflective grating is given by

EQ-TARGET;temp:intralink-;e032;116;642uðsin αþ sin βÞ ¼ mdesignλ∕n: (32)

Using nκx, Eq. (32) can be rewritten as

EQ-TARGET;temp:intralink-;e033;116;599nκx0 þ nκx ¼ mdesign∕u; (33)

where κx0 is sinðαÞ∕λ. By substituting Eq. (33) into Eq. (31), we obtain

EQ-TARGET;temp:intralink-;e034;116;557gðxÞrectðx∕DÞ ¼ e2πinðκx0xþκxxÞrectðx∕DÞ: (34)

Equation (34) shows that, when we assume an ideal diffraction efficiency [Eq. (29)], we can
model a diffraction grating as a “mirror” that reflects plane waves from the direction of κx0 to
the direction of κx. In the simulations, we define the direction of κx0 as the peak direction of
the spectrum of the plane wave incident on the grating.

7 Appendix B: Evaluation of dl∕dβ

The quantity dl∕dβ can be evaluated using matrix ray-tracing based on Gaussian optics.19

We explain the method here. Hereafter, we denote the distance from the center of the grating
surface to the grating window by d1, the distance from the grating window to the thin lens by
d2 and the distance from the thin lens to the detector by d3.

The ray height, h, and the angular direction of the ray, θ, in radians can be written in the
vector form, which is expressed as

EQ-TARGET;temp:intralink-;e035;116;369

�
h
θ

�
: (35)

Thus, the vector

EQ-TARGET;temp:intralink-;e036;116;317

�
0

dβ

�
(36)

means the chief ray (on the grating surface) with the tiny first-order-direction angle dβ.
The transfer matrix from the grating surface to the detector can then be calculated with the

equation that is expressed as

EQ-TARGET;temp:intralink-;e037;116;239
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�
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!
: (37)

Thus, the chief ray with the tiny direction angle on the grating surface propagates onto the
detector, which is given by the equation

EQ-TARGET;temp:intralink-;e038;116;162
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�
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1
A: (38)

Since the height of the ray on the detector can be interpreted as dl, we obtain the expression
for dl∕dβ, which is given by

EQ-TARGET;temp:intralink-;e039;116;86dl∕dβ ¼ nd3: (39)
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