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Abstract. Fluorescence recovery after photobleaching (FRAP) is a common technique to probe mobility of fluo-
rescently labeled proteins in biological membranes by monitoring the time-dependence of the spatially integrated
fluorescence signals after a bleaching pulse. Discrimination by FRAP between free diffusion with an immobile
fraction (FDIM) and the phenomenological model for anomalous diffusion based on the time-dependent diffusion
coefficient (TDDC) is a challenging problem, requiring extremely long observation times for differentiation.
Recently, rectangular FRAP (rFRAP) has been introduced for normal diffusion by considering not only the temporal
but also spatial information, taking the effective point spread function of the optical system into account. In this
work we provide an extension of rFRAP toward anomalous diffusion according to the continuous time random walk
(CTRW). We explore whether the spatial information in rFRAP allows for enhanced discrimination between FDIM,
TDDC, and CTRW in a single experiment within a feasible time window. Simulations indicate that rFRAP can
indeed differentiate the different models by evaluating the spatial autocorrelation of the differences between
the measured and fitted pixel values. Hence, rFRAP offers a tool that is capable of discriminating different
types of diffusion at shorter time scales than in the case where spatial information is discarded. © 2013 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.7.076012]
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1 Introduction

The vital protein movement in biological cells, and particularly
in the membrane, is mainly diffusion driven."> Because of the
highly heterogeneous nature of the plasma membrane, both in
composition and structure, transmembrane proteins are unlikely
to exhibit normal diffusion.>* This means that the mean square
displacement (MSD) does not evolve linearly in time ¢ as for
normal diffusion, but is usually modeled as MSD « %, with
a the so-called anomalous exponent. In the case of hindered
or anomalous subdiffusion, 0 < a < 1. Normal and hindered dif-
fusion can be simulated by means of continuous time random
walk (CTRW).

Several microfluorimetric methods are utilized to explore the
diffusive behavior of particles and proteins. Both single particle
and ensemble-oriented approaches are used.*” In this paper the
focus is on fluorescence recovery after photobleaching (FRAP)
10-12 35 this method is readily available in many laboratories.'>!3
FRAP is an ensemble-oriented technique based on photobleach-
ing a significant amount of fluorescent labels within a certain
region of interest (ROI).'® Because of diffusion, the proteins
with unbleached labels from the surroundings will exchange
with the proteins with bleached labels in the ROI. The resulting
recovery of the fluorescence signal is recorded under attenuated
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excitation. The diffusion is related to the rate at which the fluo-
rescence recovers.

Various analysis models are available when the experimental
FRAP data cannot be described by purely free diffusion. In this
work we consider (1) free diffusion in combination with an
immobile fraction (FDIM), (2) a time-dependent diffusion coef-
ficient (TDDC),'”'® and (3) CTRW to incorporate anomalous
diffusion."

In FDIM, the mobile fraction of the proteins within the ROI
is determined by comparing the fluorescence intensity after a
sufficiently long recovery time to the prebleach intensity. The
TDDC and CTRW approaches are discussed in more detail in
the following sections. Briefly, in TDDC a time-dependent dif-
fusion coefficient, mimicking MSD « #*, is considered in the
normal diffusion equation. However, the physical basis of
this phenomenological model is not clear.?’ Instead, the
CTRW model provides a physically justified basis by assuming
that the diffusing particle moves along traps with a residence
time distribution according to a power law.>1%?!

Recognizing anomalous diffusion and discriminating differ-
ent models remains a challenge. FDIM can mask the effects of
long tail kinetics and misleading results can be obtained.?
Anomalous subdiffusion is an example of such long tail kinetics.
It has been suggested that an FRAP measurement over five time
decades is needed to unambiguously distinguish FDIM and
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TDDC.!” Alternatively, FRAP experiments can be conducted at
various ROI sizes. In the case of anomalous diffusion, the esti-
mated apparent mobile fraction in FDIM will show a depend-
ence on the ROI size.”*

Originally, the bleaching in an FRAP experiment was
achieved with an intense, stationary laser beam, yielding a
Gaussian-shaped bleached profile.!® ROIs with different widths
can be obtained by using different objectives.> Due to the intro-
duction of the confocal laser-scanning microscope (CLSM), a
wide variety of geometries can be bleached.?** The recovery
curve is then built from the time sequence of the spatially inte-
grated images of the ROL

When using a CLSM, a rectangular ROI is more natural
because of the inherent scanning procedure. Closed expressions
for data analysis are available.”” However, rectangular ROIs are
less commonly used, although they offer some advantages over
circular ROIs. The observed ROI is not required to match the
bleached ROI and can differ in length and width, allowing min-
imization of the artifacts that originate from the curvature in a
membrane.” Dushek et al.* have derived a closed analytical
expression for rectangular ROIs that offers the possibility to
combine spatial and time information, whereas for circular ROIs
such a closed formula is not available.®® Later on, Deschout
et al’! showed that retaining the spatial information offers
the possibility to take into account the effects of the finite size
of the focused laser beam without additional measurements.

The aim of this work is to explore the discrimination power
between various models with TFRAP when both time and spatial
information are considered, i.e., when the full-intensity profile is
taken into account. To this end, simulations of FDIM and of
anomalous subdiffusion are performed. Comparison with the
spatially integrated approach is carried out.

2 Simulating Free and Anomalous Diffusion

Simulations of free and anomalous diffusions are performed
according to the CTRW implementation introduced by Lubelski
and Klafter.?! Particles move on a two-dimensional square grid
(mesh size ry) by jumping randomly to one of the four neigh-
boring positions. The time between two consecutive jumps, the
so-called waiting time, is randomly distributed according to the
waiting time probability density function (pdf), ¥(z). This pdfis
defined such that the probability for the particle to jump between
time 7 and ¢ + dt is given by ¥(#)dz. The properties of the par-
ticle motion strongly depend on this waiting time pdf. If the first
moment exists, i.e., when the average waiting time is finite, the
system shows normal diffusion'® and is described by Fick’s sec-
ond law.

oC(x,y,1)

= DV2C(x, y, 1), 1
3 (x,y.1) 1)

where C is the concentration of particles as a function of spatial
variables, x and y, and time, ¢. D is the diffusion coefficient and
V2 is the two-dimensional Laplace operator. Free diffusion is
simulated by means of exponentially distributed waiting
times. The diffusion coefficient D is related to the jump length
ro and the average waiting time 7 by

D = r(2) /4. 2)
If on the other hand the waiting time pdf does not have a

finite first moment, the system will exhibit anomalous subdif-
fusion.' In the simulations, the waiting time pdf is obtained
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by taking the time derivative of the Mittag-Leffler function,
E,”

W(r) = = B (1/7), @

where " is the gamma-function and 7 is a time scaling factor.
Normal diffusion is obtained by setting @ = 1, yielding an expo-
nential pdf and a finite average waiting time equal to 7. Setting
a < 1 leads to anomalous subdiffusion. This process is no longer
described by Fick’s law [Eq. (1)], but rather by the so-called
fractional diffusion equation, also known as the fractional
Fokker—Planck equation.’!

0C,(x,y,1) 1 0

t
= — [ (t—s5)*'K,V? d
= | 9K s,
®)

where C, denotes the concentration and K|, is the transport fac-
tor. K, is related to the time scaling factor, 7, and the elementary
jump length, ry, by

K, = r}/4z°. (6)

The solution C,(x,y, t) of the fractional diffusion equation
[Eq. (5)] is related to the solution for free diffusion [Eq. (1)],
C(x,y,1), by*!

Cu(x,y,1) = /OOOA(S, 1)C(x,y, s*)ds, (7

where sx = K,s/D and A(s, t) is the modified one-sided Levy
distribution function. Replacing the argument 7 in C(x,y, t) by
s* is equivalent to replacing Dt in the expression for C(x, y, t)
by K,s. For general a, the modified one-sided Levy distribution
function is given by the series expansion

1 & (=1)" 141
Als. 1) EZF (1-a—-na)l'(1+n) <t"> - ®

n=

3 Data Analysis

The simulated FRAP data are analyzed in two different ways. In
the first approach, common FRAP curves are obtained by inte-
grating the intensity profile over the nominally bleached ROI,
i.e., the user-defined region (L, X L,; Fig. 1). The second
approach is based on fitting the time evolution of the spatial
intensity profile directly. In this case, a larger ROI than the
nominally bleached ROI is taken into account (2L, X 2L;
Fig. 1). Hence, the recovery inside the ROI as well as the fluo-
rescence changes outside the ROI are considered. FRAP curves
and intensity profiles are fitted with three different diffusion
models as discussed below. The functions given below assume
that the data are normalized with respect to their prebleach
values.
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Fig. 1 Top view (a) and cross-section of the bleached ROl along y = 0 (b). The distances x and y are normalized with respect to the size of the nominally
bleached RO, L, and L. The thick solid line indicates the nominally bleached profile. This is the area over which the intensity is integrated when FRAP
curves are fitted. The area of the analyzed ROI, when the intensity profile is fitted, measures four times the area of the nominally bleached ROI (dashed
lines in the left panel). The thin solid line in the right panel shows the effectively bleached RO, illustrating the effect of the bleaching and imaging PSF.
The horizontal dashed line indicates the bleaching depth k. The total simulation area is at least 36 times the area of the nominally bleached ROI.

3.1 Free Diffusion with a Mobile Fraction (Model

FDIM)

In the case of free diffusion, the MSD evolves linearly in
time.
MSD = 4Dt. )

The intensity profile as a function of time during recovery,
F(x.y,1), is given by’!

—ef (ﬂ)} [er (M)

y_Ly/2

‘eﬁ(m)}

where erf is the error function, k is the bleaching depth (Fig. 1),
L, and L, are the sizes of the nominally bleached rectangle [the
center of the rectangle has coordinates (0, 0)], ¢ is the time since
bleaching, and r is the resolution parameter. This parameter
accounts for the finite resolution during bleaching and acquis-
ition of the recovery images. It is defined as r* = (r3,, + r7)/2,
where r, and r,,, are the respective half-width waists at e=2 of
the effective bleaching and imaging point spread function (PSF).
Integrating the intensity profile over the nominally bleached
area yields the recovery curve, denoted by F;,;:

Fo ) /L}./Z /Lx/2
in r)=

r -Ly/2J-L./2
k

{Lxerf<

(10)

F(x,y,t)dxdy

X

EPELIN )
4Dt + r?

xboy

L? L,
X ——— ) =1 p x4 Lyerf | ————
[exp< 4Dt+r2> }} { yo <\/4Dt+r2)
4Dt + r? L3
e —— | =1] ;. 11
i z [exp( 4Dt +r? an
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Apart from the introduction of the resolution parameter r,
Eq. (11) is a simplified form of the formula previously published
by Dushek and Coombs,? for the particular case that the inte-
gration area equals the nominally bleached ROI. Equations (10)
and (11) can be extended for the case that some molecules are
essentially fixed on the time scale of the experiment. The mobile
fraction, M, for both the integrated FRAP curve and the intensity
profile, is introduced as

Fuy(x,y,t) = MF(x,y, 1) — (1 = M)F(x,y,0), (12)

Finm(t) = MF;, (1) = (1 = M)F,,,(0), 13)
with F(x,y,0) and F(0) the fluorescence intensity immediately

after the bleaching step.

3.2 Anomalous Diffusion: Physical Approach
(Model CTRW)

When anomalous diffusion is modeled according to CTRW, the
MSD as function of time is given by*!

4K 1

MSD = —/——.
S (1 +a)

(14)

Note that for @ = 1, Eq. (9) is essentially retrieved. The
expressions for the intensity profile and the integrated FRAP
curves can be derived by applying the same transformation
as is done for the solution of the diffusion equation [Eq. (7)].
The intensity profile in the images, considering the finite reso-
lution, during recovery, F(x,y, 1), is given by

F(x,y,t) = L(x,y) ® PSF,(x,y) ® C,(x,y,1)

®PSFim(x»y)’ (15)
where ® denotes the two-dimensional spatial convolution prod-
uct, L is the ideal ROI normalized by the prebleach intensity,
PSF, is the bleaching PSF, and PSF,, is the imaging PSF.
This can be rewritten as
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F(x,y,0) ® Co(x,y,1) = F(x,9,0)

®/ (s,1)C(x,y, sx)ds, (16)

Fo(x,y,1) =

Fo(x,y,1) = /OmA(s,t)[F(x,y,O) ® C(x,y, s*)|ds

= /mA(s,t)F(x,y,s*)ds. 17
0

The integrated FRAP curve, F,, ,(7), is given by
L,/2 [L/2 o0
Fina(t) = / / / A(s, 1)F(x,y, s¥)dsdxdy.
-L,/2J-L./2J0
(18)

This can be rewritten as

0 L,/2 [L, /2
Fonalt) = / As.1) / /
0 ~L,/2J-L,/2

_ /°°A(s, 1)F 5, (5%)ds.

0

F(x,y, s*)dxdyds

19

In the remainder of this work, this anomalous diffusion
model will be referred to as CTRW model.

3.3 Anomalous Diffusion: Phenomenological
Approach (Model TDDC)

In contrast to the CTRW model, the TDDC is based on a phe-
nomenological approach.'”'® In this case the MSD is given by*?

4K
MSD — T"* . (20)

The expressions for TDDC are obtained in a straightforward
way by formally substituting the factor Dt in the formulas for
normal diffusion [Egs. (10) and (11)] by K, % t*/a.

4 Experimental Procedures

4.1 Simulation Procedure

A priority queue obtained by arranging the waiting times to the
next jumps in ascending order is used to determine which par-
ticle is the next to make a jump. This particle jumps to one of the
four nearest neighboring grid points, chosen at random, and is
given a new random waiting time before being put back in the
priority queue. Multiple particles can occupy the same grid point
at the same time. After a preset time (sampling time), an image is
rendered by taking into account the imaging PSF. Bleaching is
assumed to be instantaneous, taking into account the bleaching
PSF. The probability P(x,y) that a particle with coordinates
(x,y) is bleached is given by
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=S ()
eﬁ(%) ﬂrf(%ﬂ @1)

For each particle, a random number, uniformly distributed
between O and 1, is generated. The particle is bleached if this
number is smaller than P(x,y).

Simulations of free diffusion are done with a diffusion coef-
ficient of a typical order of magnitude for transmembrane pro-
teins (D = 0.25 um>s™') and a mobile fraction (M = 0.9);
simulations of anomalous diffusion are done with an anomalous
exponent and transport factor that yield rather similar recovery
curves within the time scale of the experiment (a¢ = 0.75,
K, = 0.3 yum?s™%), to provide a challenging case. The fixed
jump length (ry = 25 nm) equals half the pixel size (50 nm).
The bleached ROI measures 64 x 64 pixels (k = 0.5). The
half width value at e=2 of the imaging PSF is chosen to be dif-
fraction limited (r;,, = 0.35 pm) and the width bleaching PSF is
slightly larger (r, = 0.5 yum). An overview of the simulation
parameters is given in Table 1. Each experiment has a concen-
tration of about 3500 particles/um?. With a sampling time
t, =04 s, 10 prebleach images and 100 postbleach images
are generated. The time between bleaching and the first post-
bleach image is the same as the time between any two sub-
sequent images. Because CTRW is a nonstationary process>!
when a < 1, all particles are given a new waiting time immedi-
ately after the bleaching procedure. The side of the square sim-
ulation area is six times larger than the side of the square-
bleached ROI (Fig. 1). Particles that jump outside the simulation
area are placed back at a random position on the edge of the
simulation area. If the particle was bleached, it is then turned
on again. The simulation program was written in C and ran
on a high-performance cluster.

X

Table 1 Input parameters of the simulations.

Mesh size ro = 0.025 ym
Pixel size 0.05 um
Bleached ROl size (pixels) 64 x 64

Bleached ROl size (um) 3.2 umx 3.2 um

Bleaching psf (half width at e72) rp =0.35 um
Imaging psf (half width at e72) rim=0.5 ym
Resolution parameter r2 =0.186 um?
Bleaching depth k=0.5
Mobile fraction (FDIM) M=0.9
Diffusion coefficient (FDIM) D=0.25 ym?s!
Anomalous exponent (CTRW) a=0.75
Transport factor (CTRW) K,=0.3 yum? s«
Sampling time t,=04s
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4.2 Fitting Procedure

FRAP curves and intensity profiles are fitted by minimizing the
reduced y?2, i.e., the sum of squared differences between mea-
sured and fitted data, weighted by the inverse of the variance of
each data point and divided by the degree of freedom, i.e., total
number of data points minus the number of freely adjustable
parameters. Before fitting, data are normalized with respect to
the prebleach value. The variances of the data points in the
recovery phase are determined by multiplying the variance of
the prebleach data by the actual calculated value of the fitting
function, and are therefore adjusted iteratively.

The freely adjustable parameters in the free diffusion model
are the diffusion coefficient D, the mobile fraction M, and
the bleaching depth k. The fitting according to TDDC or
with the CTRW model is toward the transport factor K,, or
K ,*, the anomalous exponent a, and the bleaching depth k.

When data are fitted with the CTRW model, the one-sided
modified Levy function [Eq. (8)] has to be approximated. One
hundred seventy terms are calculated, because the used preci-
sion (64 bits floating point) does not allow the evaluation of
the gamma function for arguments larger than about 171.
The integral in Eqgs. (17) and (19) is numerically approximated
by means of the trapezoidal rule. The integration parameter, s, is
taken on a logarithmic grid. The values range from 22 to 107
with 16 points per octave. However, for large values of s, the
series expansion in Eq. 8 does not always converge. This occurs
when the exponential factor rises more rapidly than the gamma
function for n < 170. It can be shown that for increasing s, the
function first increases to its maximum and then monotonically
decreases to zero. Hence, if during evaluation the function
appears to increase for increasing s, after it has been decreasing,
this is a sign that the series expansion is no longer converging.
Therefore the function is only evaluated up to the previous value
of s and approximated by O for all larger values. For two values
of a (a = 1/2, a = 1/3), a closed expression exists for Eq. (8).

2
a= 1/2:A(s,t):%exp(—%), (22)

) s 253/2 253/2
e= 13460 = \[3[1 (57) =1 ()|
23)

where I_;3 and I;;3 are the modified Bessel functions.
Comparison of the numerical evaluation of Eq. (17), respec-
tively Eq. (19), with Eq. (8) for a=1/2, respectively
a = 1/3, confirmed the validity of the procedure. Fitting is
done with an in-house developed Matlab (The Mathworks,
Natick, Massachusetts) program.

4.3 Comparing Fits: the S-Score

We found that the reduced y is generally not conclusive to dis-
criminate the various models and searched for a different cri-
terion to quantify the goodness of fit. We present the S-score,
a procedure inspired by the run-test.’> While the »2 takes the
absolute values of the residuals into account and ignores their
sign, the S-score takes the succession of the signs in the auto-
correlation function (ACF) of the residuals into account and
ignores their value.
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When the spatially integrated FRAP curve was fitted, the
ACF of the residuals over time (-ACF) was calculated. In
case of randomly distributed residuals with little correlation,
the autocorrelation will display many zero crossings.

When the spatial intensity profiles are fitted, the resulting
residuals can be considered at each pixel in the image and
for each time point. This allows the spatio-temporal autocorre-
lation functions (xyt-ACF) of the residuals to be calculated.
Because the imaging PSF overlaps several pixels, there is cor-
relation in the spatial distribution of the residuals at short dis-
tances, while the correlation at longer distances approaches zero.
However, if the fit is not perfect, the central peak in the xy#-ACF
can be broader than expected. For a three-dimensional ACF, it is
not possible to simply count the number of zero crossings and a
generalized procedure to quantitatively compare the goodness of
fit is required.

We introduce the S-score in which the sign of each value of
the ACF is compared to the sign of its nearest neighbors. The
score is increased by 1 if both signs differ and the result is di-
vided by the maximally obtainable score. Hence, in the case of
the 7-ACF, the S-score is given by

N1

> diffsign{G(kt,). G[(k + 1)t,]}.  (24)

S =

N -1

where “diffsign” is an operator that gives O if both arguments
have the same sign and 1 otherwise. G is the t-ACF, ¢, is the
time between two subsequent data points, and N, is the number
of points in the -ACF. Analogously, an expression that com-
pares signs x-, y- and #- direction was derived for the xyz-
ACEFE. Eventually a score between O (all values have the same
sign) and 1 (all values have the opposite sign of their nearest
neighbors) is obtained.

For the integrated FRAP curve, 100 data points are available
and the first 50 points of the t-ACF are calculated. Analogously,
the xyr-ACF is calculated over 50 points in time and 64 points in
each spatial direction, since the fitted profile measures
128 x 128 pixels.

5 Results and Discussion

The simulations of free diffusion and anomalous diffusion are
analyzed according to three models—FDIM, CTRW, and
TDDC. It is expected that FDIM will give the best fit for the
simulation of free diffusion and, similarly, CTRW for anoma-
lous diffusion. TDDC can possibly lead to equally good fits
in both cases. Two approaches will be applied to compare
which has the better ability to distinguish the three different
models: (a) integrated FRAP curves and (b) the time evolution
of the intensity profile. To that purpose the function S [Eq. (24)]
will be evaluated over 15 simulations for each parameter set
(Table 1).

Initially, the resolution parameter, r, is kept fixed for both the
integrated FRAP curves and the intensity profiles. This value is
calculated from the input values for the bleaching and imaging
PSF (Table 1). In a later stage it is investigated whether the prior
knowledge of r is required to distinguish the different models.
The intensity profiles are then fitted with a freely adjustable r.
Based on previous work,* it is not expected that integrated
curves based on single bleach ROI can be fitted with a freely
adjustable r.

July 2013 « Vol. 18(7)



Clercq et al.: Distinguishing free and anomalous diffusion by rectangular fluorescence recovery. ..

5.1 Fitting Spatially Integrated FRAP Curves

In this type of analysis the resolution parameter was kept fixed
to the value used in the simulation. The results for free diffusion
are listed in Table 2. The input values are quite well recovered by
the fit according to FDIM. The corresponding FRAP curves
together with the time sequence and the time autocorrelation
of the weighted residuals are shown in Fig. 2. The residuals of
the fit with CTRW and TDDC are almost identical and very sim-
ilar to those according to FDIM.

Figure 2 and Table 3 give the results of the analyses of the
simulations of anomalous diffusion. The residuals of the three
models do not differ more than a few times their standard
deviation. The input values are recovered well by the fit with
CTRW. The fit with TDDC underestimates the anomalous expo-
nent and the transport factor. The fit with FDIM mildly under-
estimates the bleaching depth.

The fit with CTRW appears to have a large risk of ending up
in a local minimum. Several fits with different initial values have

Table 2 Results of simulations of free diffusion. A 100-point recovery
curve (40 s) was analyzed with fixed resolution parameter.

Model D/um?2 s=1¢ a or MP k

Input 0.25 0.9 0.5

FDIM 0.26 £ 0.02¢ 0.907 £0.007 0.493 £ 0.006
CTRW 0.6+0.3 0.75+0.07 0.6+0.1
TDDC 0.32+0.02 0.68 £0.02 0.60 +£0.02

?In the case of CTRW or TDDC this column contains the transport fac-
tor, K,, in um? s,

ba for CTRW and TDDC, M for FDIM.

“Uncertainties are reported by the standard deviations.

Free diffusion Anomalous diffusion

Resid. t-ACF

Residuals

Simulated
FDIM
CTRW

Rel. intensity

0.4

0 10 20 30 40 0 10 20 30 40
t/'s t/'s

Fig. 2 Spatially integrated data of free (bottom left) and anomalous
diffusion (bottom right) are fitted with the three different models and
with fixed resolution parameter. The recovery curves resulting from
the different models are not discernable on the scale of the figure.
The corresponding weighted residuals and their t-ACF are shown,
respectively, in the middle and on top. The traces corresponding to
CTRW and TDDC are essentially superimposable.
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Table 3 Results of simulations of anomalous diffusion. A 100-point
recovery curve (40 s) was analyzed with fixed resolution parameter.

Model K,/um?2 s=ae a or M k

Input 0.3 0.75 0.5

FDIM 0.18 £ 0.02¢ 0.87+£0.02 0.430 £ 0.006
CTRW 0.31+0.05 0.75+0.03 0.50+0.01
TDDC 0.24 +0.03 0.64 +£0.04 0.53+£0.02

2In the case of FDIM this column contains the diffusion coefficient, D,
in um?s7',

ba for CTRW and TDDC, M for FDIM.

“Uncertainties are reported by the standard deviations.

to be performed in order to find fit parameters that correspond to
the global minimum. The fits with FDIM and TDDC, however,
did not appear to be sensitive to the initial values.

The scores S for the analyses with the different models fluc-
tuate strongly over the different simulations, for both free dif-
fusion [Fig. 3(a)] as well as anomalous diffusion [Fig. 3(d)]. In
some cases the wrong model is suggested to be the most appro-
priate for the given dataset. For both free and anomalous diffu-
sion, it can be concluded that there is no preference for a
particular model.

Simulations of free and anomalous diffusions, where ROIs of
different sizes are bleached, are both analyzed with the FDIM
model. The apparent mobile fraction is expected to decrease for
increasing ROI size and a constant observation time.”* Figure 4
confirms this effect for the anomalous diffusion simulation.
When free diffusion is simulated, the apparent mobile fraction
hardly depends on the ROI size.

5.2 Fitting the Intensity Profile with Fixed Resolution
Parameter

Figure 5 (top) shows the xy#-ACF of the residuals of the sim-
ulation of free diffusion for the various analyses. As the effect on
the xyz-ACF is most pronounced at small lag-times, only the
xyt-ACF of the residuals for the first 16 lag-times is shown.
The corresponding recovered parameter values are given in
Table 4. The xyr-ACF of the residuals of the analysis with
CTRW shows a broadened peak for small lag-times that gradu-
ally decreases. This excludes CTRW from being the appropriate
model for this dataset. The xyz-ACF for CTRW is very convinc-
ing. In case of TDDC, the effect is less pronounced, but never-
theless clearly visible. The S-scores are consistently higher for
FDIM [Fig. 3(b)], clearly indicating that FDIM is the best model
for this dataset. The parameter values obtained for FDIM are in
good agreement with the input parameters.

Figure 5 (bottom) shows the xys-ACF resulting from the
analyses with the three models for the simulation of anomalous
diffusion. The parameter values obtained with the various mod-
els are shown in Table 5. The S-scores are consistently higher
for the analysis with CTRW than for the analysis with FDIM
[Fig. 3(e)]. The scores for the analysis with TDDC fluctuate
between the values for the other models, sometimes closely
approaching the score for CTRW. For the example, in Fig. 3,
the difference between CTRW and TDDC is not clear. As for
the simulation of free diffusion, the results for the simulation
of anomalous diffusion obtained with the proper analysis
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Fig. 3 Overview of the S scores belonging to the simulations of free [(a), (b), (c)] and anomalous [(d), (e), (f)] diffusion. In (a) and (d) the integrated FRAP
curves are fitted. The S-scores for the fits of the intensity profile are shown in (b) and (e) for a fixed resolution parameter and in (c) and (f) for a freely

adjustable resolution parameter.

model are somewhat better in agreement with the input param-
eters than for the spatially integrated case. The analysis with
TDDC recovers an anomalous exponent that is in quite good
agreement with the input value, although the transport factor
is significantly underestimated.

In contrast to the integrated approach, the fit with CTRW is
less sensitive to the initial values. The results of a fit with
TDDC, which takes negligible time with respect to a fit with
CTRW, are used as initial values and this always leads to the
global minimum in the least-squares fitting.

5.3 Fitting the Intensity Profile with Freely Adjustable
Resolution Parameter

The effective resolution parameter r is generally unknown in an
FRAP experiment because the effective bleach resolution r,

100
*
= 95¢ 1
K}
©
£ oo} % 0 ¢ C}
Qo
%
[e]
E s85f % 1
i<
o
(]
Q 80 P 1
<D- O Free diffusion Jf
*  Anomalous diffusion
75 - - : :
1.6 2.4 3.2 4.0 4.8

L/um

Fig. 4 Simulations of free and anomalous diffusion analyzed with FDIM
by integrating over the ROI. In the case of anomalous diffusion, the ap-
parent mobile fraction depends on the size (L X L, where L = L, = L) of
the bleached ROI, while this is not the case for free diffusion. Each data
point is the average of 15 repetitions; the error bars indicate the standard
deviation. Resolution parameter was kept fixed.
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depends on many conditions.®> It was demonstrated by
Deschout et al.>! that the effective resolution r can be included
as a free fitting parameter when using the full tempo-spatial pro-
file of the rIFRAP method. As a next step in this study, we have
investigated the effect of having r as a free fitting parameter on
the retrieved diffusion parameters. The results for the simulation
of free diffusion are given in Table 6. The results of the simu-
lation of anomalous diffusion can be found in Table 7. For both
cases the diffusion coefficient and mobile fraction (FDIM) or the
transport factor and anomalous exponent (CTRW) as well as the
bleaching depth are in agreement with the input parameter and
as good as in the analyses when the resolution parameter was
kept fixed to the input value. The resolution parameter is rea-
sonably well recovered when taking into account the standard
deviations of the resulting values.

The scores for the fit of free diffusion with each model are
given in Fig. 3(c). In this case FDIM consequently gets the high-
est score over all simulations, as was the case with the fixed
resolution parameter. However, the scores for the fit of the sim-
ulation of anomalous diffusion [Fig. 3(f)] indicate that it is less
obvious to obtain consistent results regarding the most appli-
cable model over all datasets.

As compared to the analysis with fixed resolution parameter,
the anomalous exponent in the simulation of anomalous diffu-
sion is more underestimated by TDDC analysis, while the trans-
port factor is equally underestimated.

5.4 Discussion

FRAP simulations of free and anomalous diffusions were ana-
lyzed according to two different approaches. The first is the clas-
sic FRAP approach based on the analysis of the time sequence
of the intensities resulting from the integration over the bleached
ROL. Because of the integration, the spatial information is dis-
carded and only the temporal evolution remains. The second
approach, rFRAP, retains the spatial information by considering
the intensity profile over an area larger than the bleached ROI,
and this at various time points. The aim of this work was to
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Fig. 5 Simulations of free and anomalous diffusion were analyzed with three different models and with fixed resolution parameter. Each small square
panel represents the spatial autocorrelation function of the residuals for a certain lag-time when fitting the intensity profile. The sequence of the small
panels shows the evolution of the spatial autocorrelation functions as function of lag-time for the first 16 lag-times. The lag-time evolves from left to right
and from top to bottom. The bar at the right displays the color code for the values of the autocorrelation function.

explore the capabilities of IFRAP approaches to unambiguously
distinguish between three different models—FDIM, CTRW,
and TDDC. FDIM and CTRW are fundamental models
because of their physical justification. TDDC offers a rather
phenomenological model for anomalous diffusion. The
simulation parameters are chosen so that the various models
yield a challenging case for discrimination. In order to compare
the goodness of fit of the different models, we suggested the S-
score that favors many fluctuations around zero in the ACF. It
was found that fitting the intensity profile has a higher power to
discriminate between different models of diffusion. This was
especially the case for simulations of free diffusion, where the
correct model (FDIM) resulted in a consistently better fit. In the
case of simulations of anomalous diffusion, where the correct
model is CTRW, this effect remains but is less pronounced.
When integrated FRAP curves are analyzed, the residuals
and their temporal ACF are not indicative toward a particular
model within an experimentally feasible time interval, as the
S-scores are not indicative [Fig. 3(a) and 3(d)]. This is in agree-
ment with the conclusion of Feder et al.,'’ stating that an

Table 4 Results of simulations of free diffusion. The intensity profile in
100 recovery images (40 s) was analyzed with fixed resolution
parameter.

unambiguous distinction between FDIM and TDDC cannot
be deducted from a single FRAP curve on a moderate time scale.

If the resolution parameter is freely adjustable, the effect on
the S-scores is less pronounced and it becomes virtually impos-
sible to indicate the best model for the simulation of anomalous
diffusion.

Least-squares analyses with the CTRW model appear to have
the risk of arriving at a local minimum. We find that this can be
circumvented in the intensity profile approach by using as initial
values the parameters resulting from a fit with TDDC. The fit
with TDDC takes a negligible time as compared to the fit with
CTRW. When integrated FRAP curves are fitted, different sets
of initial values have to be used to assure the global minimum.

The recovered parameters are in very good agreement with
the input parameters of the simulation provided that the analysis
is done with the correct model and the resolution parameter is
fixed. If the resolution parameter is freely adjustable, the param-
eters of the diffusion model are essentially recovered.

In the integrated FRAP approach, the analysis with TDDC of
the simulation of anomalous diffusion by means of CTRW

Table 5 Results of simulations of anomalous diffusion. The intensity
profile in 100 recovery images (40 s) was analyzed with fixed resolution
parameter.

Model D/um?s1e a or M k Model K,/um?2 s=ae a or M k

Input 0.25 0.9 0.5 Input 0.3 0.75 0.5

FDIM 0.25+0.01¢ 0.898 +0.006 0.499 4+ 0.005 FDIM 0.13+0.01- 0.944+0.01 0.448 +-0.008
CTRW 1.0+0.3 0.6 +0.1 0.55+0.03 CTRW 0.30+0.04 0.75+0.03 0.50 +£0.02
TDDC 0.170 + 0.006 0.94+0.03 0.456 +0.007 TDDC 0.17 £0.02 0.74+0.04 0.46 +£0.02

?In the case of CTRW or TDDC this column contains the transport fac-
tor, K,, in um?s~@

Pa for CTRW and TDDC, M for FDIM.

“Uncertainties are reported by the standard deviations.
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In the case of FDIM this column contains the diffusion coefficient, D,
in um?s',

by for CTRW and TDDC, M for FDIM.

“Uncertainties are reported by the standard deviations.
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Table 6 Results of simulations of free diffusion. The intensity profile in 100 recovery images (40 s) was analyzed with freely adjustable resolution

parameter.

Model D/um?s1e a or M k r2 /um?
Input 0.25 0.9 0.5 0.186
FDIM 0.25+0.01- 0.897 +£0.005 0.501 £0.006 0.21+£0.04
CTRW 0.4+0.3 0.8+0.1 0.49 +£0.02 0.002 +£0.008
TDDC 0.185 +£0.006 0.90+0.03 0.454 +0.007 0.002 +0.006

2In the case of CTRW or TDDC this column contains the transport factor, K,, in um? s™@

ba for CTRW and TDDC, M for FDIM.
“Uncertainties are reported by the standard deviations.

Table 7 Results of simulations of anomalous diffusion. The intensity
profile in 100 recovery images (40 s) was analyzed with freely adjust-
able resolution parameter.
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