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Abstract. This study aimed to determine the feasibility of using optical coherence elastography to measure inter-
nal displacements during the curing phase of a light-activated, resin-based composite material. Displacement vec-
tors were spatially mapped over time within a commercial dental composite. Measurements revealed that the
orientation of cure-induced displacement vectors varied spatially in a complex manner; however, each vector
showed a systematic evolution with time. Precision of individual displacements was estimated to be ~1 to
2 um, enabling submicrometer time-varying displacements to be detected. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
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1 Introduction

Light-activated, resin-based composites (RBCs) are widely used
in both industry! and medicine.” In dentistry, they have largely
replaced mercury-based dental.’

Light cure RBCs are typically composed of a monomer (i.e.,
bisGMA, UDMA, TEGDMA), a filler material (silica and vari-
ous bioglasses), and a photoinitiator system (Camphorquinone/
dimethylaminoethyl methacrylate).!? Illumination of the RBC
with light, corresponding to the photoinitiator absorption wave-
length initiates polymerization and consequent hardening of the
resin into a solid material.

Optimization of the spatial cure characteristics of RBCs has
been the subject of considerable research®™ driven by certain
shortcomings of RBCs. For example, they are well known to
exhibit shrinkage during cure.® In dentistry, shrinkage presents
a clinical and technological challenge’ resulting in stress at the
tooth-restoration interface, separation fracture® and secondary
caries.” Furthermore, varying degrees of polymerization'® are
expected to result in a spatially varying elastic modulus.'!

The dynamic development of RBC elastic modulus is of
importance because it necessarily effects shrinkage stress at the
tooth-restoration boundary and thus impacts upon the likelihood
of failure.'>!> However, there are currently no widely available
tools to visualize and measure internal physical characteristics
of RBC:s in real time, throughout cure. Therefore, finite element
computer modeling has been used to estimate three-dimensional
distributions of shrinkage stress'* and movements'> within resto-
rations although curing dynamics have not been investigated.

Experimentally, curing has previously been investigated
using low-coherence interferometry (LCI) to measure the refrac-
tive index change and shrinkage of RBCs.!® The consequent
internal defects of RBC restorations have been imaged using

*Address all correspondence to: Peter H. Tomlins, E-mail: p.h.tomlins@gmul.
ac.uk
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optical coherence tomography (OCT),'” an LCI-based imaging
technique. Outside of dentistry, OCT has been used to evaluate
the structure of composite materials'®!® and applied to engineer-
ing applications.?*?!

Optical coherence elastography (OCE)!72!?2 uses OCT to
measure spatial variations in the elastic modulus of materials.??
Under uniaxial loading conditions, the elastic modulus
E = o/¢e, where the stress 0 = F/A is defined by a force F
applied over an area A, and the resulting strain ¢ = Al/I is
the ratio of length change Al to the original length /. OCT mea-
sures localized deformation in response to a known applied
stress. However, for optically cured dental composite, the
applied stress is spatiotemporally varying in multiple directions,
thus making the direct determination of the spatial elastic modu-
lus nontrivial. Consequently, this work has been restricted to the
measurement of local deformation vectors. This is a central step
in OCE, and therefore, this term is used for consistency with
other literature. To the authors’ knowledge, OCT/OCE has
not previously been applied to measuring internal deformation
within curing dental composite.

Therefore, this article sets out to determine the feasibility of
using OCE to dynamically measure the internal deformations
within light-cured RBCs due to polymerization shrinkage.

2 Materials and Methods

A commercial RBC was investigated (Enamel shade A2, IPS
Empress Direct, Ivoclar Vivadent). Following the manufac-
turer’s instructions, it was cured for 20 s with a dental curing
lamp (Optima 10, BA International Ltd). The RBC was mea-
sured before, during, and throughout cure for a total duration of
60 s using a custom-built fiber-optic OCT system. The light
source was a superluminescent light-emitting diode (SLD1325,
Thorlabs Ltd) operating nominally in the 1250 to 1400 nm
waveband and was detected by a custom spectrometer. The
spectrometer comprised a 92 kHz line scan camera (SU1024-
LDH2, Sensors Unlimited) and a reflective diffraction grating
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Resin based composite

Curing illumination

OCT Probe beam Glass microscope

slide

Fig. 1 Experimental configuration. The resin-based composite was
constrained within a 0.75 mm deep, 4 mm diameter ring placed on
a glass microscope slide through which the OCT probe beam and
the curing lamp illuminated the sample.

(1200 lines per mm). The OCT point spread function (PSF) was
characterized by its axial and lateral full width half maxima
(FWHM) of 7.8 £ 1.0 and 9.1 £ 1.7 um, respectively [uncer-
tainty represents 95% confidence interval (CI)]. The experiment
was configured as depicted in Fig. 1 and was repeated three
times.

The RBC was placed into a circular washer (diameter =
4 mm, thickness = 0.75 mm). A glass microscope slide (nomi-
nal thickness 1 mm) provided a transparent substrate through
which the specimen was illuminated with the curing lamp.
The OCT system was configured to acquire B-scans at a
fixed location across the central region of the specimen. A series
of 100 logarithmically scaled OCT B-scan intensity images
were obtained at a rate of one every 600 ms. The spectrometer
integration time was 100 us, enabling single B-scan acquisition
within 50 ms, followed by a delay of 550 ms between B-scans.
The total acquired B-scan image width was nominally 3 mm
acquired over 500 A-scans, yielding a nominal lateral pixel size
of 6.9 um. For comparison, the axial pixel size was nominally
9.5 um.

The OCT images were analyzed numerically using a custom
MATLAB script (Mathworks). Each B-scan was divided into a
grid of 84 regions of interest (ROIs), each measuring M = 25 X
N = 25 pixels (~173 x 238 um?) in the lateral and axial direc-
tions, respectively. The cross-correlation of each ROI, C,, was
calculated between corresponding ROIs in the first OCT image

1
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Optical thickness change (um)

in the time series, ROI,, and each subsequent B-scan, ROI,, at
time ¢ using Eq. (1).

E

—1 N=
Ci(p ROIy(m, n)ROI; (m — p,n — q). (1)
0 n=0

3
Il

The local displacement vector, dr = R — [p,, g,]7, at each time-
point and within each ROI was estimated by calculating the
centre of mass, R, of the cross-correlation, Eq. (2), and sub-
tracting from it the ROI centre, [pg, go]”.

N ,
R_szq Ct(p,q);; Cz(p’CI)|:q:|. Q)

For comparison with the internal displacement measure-
ments, the bulk optical specimen thickness was estimated for
each B-scan. The average specimen A-scan profile along the
axial (z) dimension resembles a rectangular function of the
form I1(z) = 0 if |z| > 0.5, 0.5 if |z] = 0.5, 1 if |z] <0.5. A
smooth approximation to the rectangular function can be con-
structed from the product of two error functions, Eq. (3), which
is well behaved under parameter optimization.

®(z) = Aerf{y[z — (z0 — w/2)|}erf{r[(zo + W/2) — 2]} + k.

3)

Parameters A, zy, k, and w represent the maximum intensity,
z-position, noise floor, and specimen thickness, respectively. A
constant edge steepness parameter y was manually determined
to approximately match the A-scan signal intensity gradient at
the material surface. The specimen thickness w was obtained
at each time point by minimization of the sum of the squared
difference between Eq. (3) and the mean A-scan intensity profile.

3 Results

The mean thickness change for all three experiments is plotted
as a function of time in Fig. 2. The error bars represent the
95% CI.

30 40 50 60

| T

Time (s)

Fig. 2 Mean optical thickness change for the three dental composite specimens measured over a 60 s
period. Error bars represent 95% Cls for the mean thickness change over three independent experiments.
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Fig. 3 Local displacement vectors showing the internal displacement of filler particles at time-points
throughout the curing process. (a) Prior to illumination with the curing lamp, t = 0.6 s, (b) at the initiation
of cure, t =3.6 s, (c) t =5.4 s, and (d) mid-way through the curing process, t = 7.8 s. Boxes i-iv in
(d) indicate regions plotted in Fig. 4.

Displacement vectors were calculated at each time point for complex arrangement. However, each vector was observed
each ROI. These are shown as white arrows in Fig. 3 for time to systematically evolve over time both in direction and
points t = 0.6 s, =3.6s,t =5.4s,and t = 7.8 s. At a given magnitude.
point in time, the direction of the displacement vectors does not This systematic evolution is shown in Figs. 4(a)—4(d) for four
follow a smooth spatial distribution, but instead exhibits a selected displacement vectors. The specific vector locations are

@ Lateral displacement O Axial displacement

8 1 [o] 10
o% O 00g®°
6 0% 2 8 - o F&
?D Oew%& OO% E & O@Q&@QOO
§ 41 [2) 0 000 0% 2 61 o P
3 o 0 %0 P9 o, = o 2 % o o
€ o o 5} o o
o A A
3 o oo oo o ! o
% 0 L] ".‘ %“&s.'?; . ® g 2 - o o © o .
VL v MR At rng e e SNk
2 P o¥% * o o 0 @0 g“?..‘q N .
. b %
4 : - ' : - . 2 : . - .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)
(a) (b)
8 - 8
o
o )
6 - 6 °o:ép°° &0
£ =4 o0
=41 :5’4‘ o<:9°°o%%°°°° o
E 2 é 2 ch o
8 ’ %o 2 7 O ¢
S P o S
5 0 \ﬁm O e T:i o‘u? °
& FoMptieys
g (1)
2 2 ey rve% o ®
) .
42 w -4 : *
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)
(©) (d)

Fig. 4 Evolution of four displacement vectors (a) to (d), corresponding positions shown in Fig. 3(d) i-iv.
The positive axial direction extends from the top to the bottom of the OCT B-Scan and the positive lateral
direction is from left to right.
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identified in Fig. 3(d) as corresponding sub-images i-iv. The top
of the image represents the side farthest from the curing light
from which the samples were imaged with OCT. The plots
have been aligned such that #+ =0 s represents the time at
which cure was initiated. Positive axial displacement represents
movement toward the curing light (bottom of the OCT image).

Figure 4(a) shows a vector in the top left of the specimen at
the furthest point from the curing light. Axially, a displacement
of ~6 um is observed over the 20 s curing period. Laterally,
there is no statistically discernable change, although the vectors
indicate a movement toward the center. The top-center vector,
represented by Fig. 4(b), exhibits similar behavior, with an axial
displacement of ~8 um observed over the entire measurement
period, including postillumination. The central vector, Fig. 4(c),
exhibits ~3 to 4 pm displacement away from the curing light for
the first 10 s of illumination, although this appears to cease
thereafter. Laterally, there is ~1 ym of movement to the right
that occurs for the entire illumination period with an apparent
reversal during the postillumination period. Figure 4(d) shows
the displacement of a region near to the illuminated surface. An
axial displacement of 6 ym was measured over the entire illu-
mination and postillumination period. Systematic lateral dis-
placement of 2 yum was observed postillumination. Notably,
the top-center vector [Fig. 4(b)] moves toward the light
(down) by ~8 to 9 um compared to the bottom-center vector
[Fig. 4(d)], which shows a displacement of 5 to 6 ym. Thus,
the net displacement of the top and bottom surfaces was in
the range of 3 to 4 um, which agrees with the bulk shrinkage
plot, Fig. 2, to within the 95% CI.

To characterize these results, three forms of precision were
calculated in terms of the displacement standard deviation,
o. The ROI precision (oro) represents the repeatability of
displacement measurements from a single ROI in a given speci-
men. Each ROI precision was estimated from all 16 displace-
ments measured during the final 10 s of each experiment.
During this time, the displacement change due to material
cure was assumed to be negligible.

The mean intraspecimen precision (o) is the mean of orey
over all 84 ROIs in a single specimen. Along with its 95%
CI, it estimates the repeatability of a single displacement meas-
urement from a given specimen regardless of ROIL This provides
a baseline level of measurement noise present in the analysis,
although displacement sensitivity can be improved by averaging
over multiple measurements. Finally, the precision reproducibility
(o,) was assessed across all three specimens as the standard
deviation of o,. This provides an estimate of how much the over-
all specimen precision varies between experiments.

The mean intraspecimen precision (o) and associated 95%
CI was determined over all 84 ROIs within the B-scan field of
view. The resulting specimen-dependent lateral and axial dis-
placement precisions are shown in Tables 1 and 2, respectively,
for all three experiments.

Table 1 shows that the intraspecimen lateral precision was
found to range between 1.06 and 1.80 ym across all the
three specimens. Axially, Table 2 shows a greater spread, with
a mean intraspecimen axial precision range of 1.48 to 5.16 ym.
Axial precision in sample 1 was less than half that in samples
2 and 3. Similarly, sample 1 also exhibited lower lateral preci-
sion than the other samples.

Nevertheless, experimental reproducibility (o,) of the
precision estimates was assessed from all three repetitions of

the experiment. Laterally, i = 0.31 ym compared to an axial
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Table 1 Mean intraspecimen lateral precision (¢'2') measured as the
mean standard deviation of all displacement vectors 50 to 60 s post-
cure. The Cl represents 95% probability that the mean precision falls
between the lower and upper bounds for each specimen.

Mean Lower Upper 95%

precision 95% 95% Cl
Sample o2 (um) Cl (um) Cl (um) (em)
1 1.71 1.62 1.80 0.09
2 1.30 1.24 1.36 0.06
3 1.11 1.06 1.16 0.05

Table 2 Mean intraexperimental axial precision (62¥@') measured as
the standard deviation of all displacement vectors at 50 to 60 s post-
cure. The Cl represents 95% probability that the mean precision falls
between the lower and upper bounds in each experiment.

Mean Lower Upper 95%
precision 95% 95% Cl
Sample o2 (4m) Cl (um) Cl (um) (um)
1 4.71 4.26 5.16 0.34
2 2.02 1.92 2.02 0.09
3 1.56 1.48 1.64 0.08

reproducibility of ¢®# = 1.70 ym. In each experiment, the lat-
eral displacement was found to have a greater precision than the
axial precision. However, over all the experiments, no statistical
difference could be discerned (Mann-Whitney U Test, p > 0.05).
This was largely due to the lower precision observed in sample 1
and the relatively low number of specimens. Notwithstanding
this, there is nothing visible in the image data to suggest a prob-
lem with sample 1, and therefore, the result should be considered
representative of the experimental reproducibility.

4 Discussion

Displacement precision was greater laterally compared to
axially. This is because the lateral pixel spacing (6.9 ym)
was ~(6.9 ym — 9.1 ym)/9.1 yum = 24% smaller than the lat-
eral PSF FWHM (9.1 um), compared to the axial pixel spacing
(9.5 ym) that was (9.5 ym —7.8 um)/7.8 um = 21% larger
than the corresponding axial PSF FWHM (7.8 um). Thus, lat-
erally, the PSF FWHM is sampled more than once due to the
pixel spacing, but axially the PSF FWHM is under-sampled.
This is critical because the speckle size is dependent upon
the PSF. Insufficient sampling of the speckle necessarily reduces
displacement precision. Lateral sampling density can be con-
trolled experimentally, although for this work it was preferred
to maximize the scan width relative to the number of A-scans
permitted by the specific OCT implementation. The axial pixel
spacing, Az, in a spectral domain OCT system is proportional
to the reciprocal of the detected spectral width Av, ie.,
Az x 1/Av. The spectrometer design can be improved to
optimize axial speckle sampling, although eventually this
amounts to zero-padding the spectrum and consequent sinc
interpolation. Alternatively, phase sensitive algorithms can mea-
sure displacement with nanometer precision.”>?* However,
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phase-based methods are limited to measuring axial components
of displacement vectors. Speckle tracking is advantageous
because it has the potential to track three-dimensional deforma-
tion directly.” This is important for dental composites that
have been shown to exhibit complex local displacement.
Furthermore, phase sensitive detection requires processing of
the raw interferometric data and places stringent requirements
on experimental stability. In laboratory systems such as ours,
phase information is readily available, although such data are
not necessarily accessible in commercial OCT systems.

The precision values reported in this paper represent single-
point measurements. However, for continuous time-series
measurements as shown in Fig. 4, submicrometer relative dis-
placement changes can be detected in both axial and lateral
dimensions. It is these systematic and continuous changes that
support the findings, that OCE can detect polymerization-borne
displacements occurring within a curing composite material.

Overall, less displacement was observed laterally than
axially. It is expected that bonding to the sides of the circular
retaining ring resisted lateral displacement, while axially the
unconstrained composite surface allowed a higher degree of
deformation. At the base of the specimen, the composite
becomes fixed as it adheres to the glass slide. However,
away from the boundary, the composite is relatively unbound.
Thus, polymerization shrinkage results in the unbound material
moving toward the bound RBC. Hence, close to the interface,
displacement vectors point toward the illumination lamp.

The results show that away from the glass—RBC boundary,
the local displacements follow a complex spatial arrangement
rather than a continuous deformation as seen in compression
experiments with solid phantoms. The observed spatial
arrangement of displacement vectors is similar to the turbulent
flow of a viscous fluid. However, the RBC is not a homo-
geneous liquid, but exhibits varying degrees of monomer-
polymer conversion and solid filler material. Local displace-
ment occurs when there is a net applied stress. The source
of the applied stress is polymerization shrinkage, which acts
in combination with adhesion of the resin at its constrained
boundaries, adhesion to filler particles, and friction generated
by interacting filler particles. Computational models could
be used to explore this and define the distribution of internal
stress. Experimentally, polarization sensitive OCT may allow
direct measurement of the shrinkage stress. The deformation
results imply elastic modulus heterogeneity. However, OCT
makes optical measurements with an inherent ambiguity
between changes in refractive index, n, and physical deforma-
tion, d. The bulk optical thickness measurements shown in
Fig. 2 therefore represent the product w = nd. Previous
work!® resolved this ambiguity, justifying the approximation
that physical thickness change dominates for bulk material.
Whether this is true for local displacements remains to be
fully elucidated. Therefore, future research will focus upon
understanding the relationship among optical deformation
measurement, shrinkage stress, and clinical outcomes.

The results presented in this paper demonstrate the feasibility
of using OCE to dynamically measure and spatially map local
polymerization displacement within a light-cured composite
material. A baseline level of precision and reproducibility has
been estimated based upon speckle tracking from B-scan
images. These results have applications in a variety of fields
from clinical dentistry to aerospace engineering.
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