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Abstract. Optical coherence tomography (OCT) is a prevalent, interferometric, high-resolution imaging method
with broad biomedical applications. Nonetheless, OCT images suffer from an artifact called speckle, which
degrades the image quality. Digital filters offer an opportunity for image improvement in clinical OCT devices,
where hardware modification to enhance images is expensive. To reduce speckle, a wide variety of digital filters
have been proposed; selecting the most appropriate filter for an OCT image/image set is a challenging decision,
especially in dermatology applications of OCT where a different variety of tissues are imaged. To tackle this
challenge, we propose an expandable learnable despeckling framework, we call LDF. LDF decides which
speckle reduction algorithm is most effective on a given image by learning a figure of merit (FOM) as a single
quantitative image assessment measure. LDF is learnable, which means when implemented on an OCT
machine, each given image/image set is retrained and its performance is improved. Also, LDF is expandable,
meaning that any despeckling algorithm can easily be added to it. The architecture of LDF includes two main
parts: (i) an autoencoder neural network and (ii) filter classifier. The autoencoder learns the FOM based on
several quality assessment measures obtained from the OCT image including signal-to-noise ratio, contrast-
to-noise ratio, equivalent number of looks, edge preservation index, and mean structural similarity index.
Subsequently, the filter classifier identifies the most efficient filter from the following categories: (a) sliding win-
dow filters including median, mean, and symmetric nearest neighborhood, (b) adaptive statistical-based filters
including Wiener, homomorphic Lee, and Kuwahara, and (c) edge preserved patch or pixel correlation-based
filters including nonlocal mean, total variation, and block matching three-dimensional filtering. © 2018 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.1.016013]
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1 Introduction
Optical coherence tomography (OCT) is a noninvasive, low
coherent interferometry technique that uses backscattered light
to generate tomographic images of tissue microstructures.1 With
advances in imaging technology and optical devices, OCT cur-
rently has extensive biomedical applications in various fields
including dermatology.1,2 Although OCT offers high-resolution,
three-dimensional (3-D) images of tissues with 2- to 15-μm res-
olution and 1- to 2-mm imaging depth,3 OCT images suffer from
a grainy texture artifact, speckle, due to the broadband/low
coherent light source used in the configuration of OCT.3

Speckle is formed, if the out-of-phase backscattered signals
reach the detector within the coherence time of the laser, and
it is the summation of multiple optical backscattered wavefields
from the sample.4 Speckle reduces the image quality, e.g., spa-
tial resolution of the borders and edges in the image.5 Since
speckle is an artifact that carries submicron structural informa-
tion, devising an appropriate speckle reduction algorithm
becomes a challenging task.6 Speckle reduction methods can be
categorized into hardware-based methods7 and software-based

methods.8,9 Compounding techniques are the most common
hardware-based methods. In these methods, the imaging is per-
formed several times and each time one system parameter is
altered, e.g., angle of light illumination (angular compounding),
polarization of the incident light (polarization compounding),
and central wavelength of the light source (spectral com-
pounding).4,7,9 Software-based methods are digital filters relying
on a mathematical model of the speckle and are implemented
based upon the local or overall statistics of the image. Among
speckle reduction digital filtering methods, the most common
ones, such as averaging and median, are time efficient; however,
they reduce the spatial resolution in the image. Improved per-
formance is provided by adaptive digital filters including Lee,10

Kuwahara,11 and Wiener filter.12 Moreover, wavelet-based filter-
ing methods9 and a diffusion-based filter with fuzzy logic
thresholding as transform domain techniques have demonstrated
adequate results.13 Some of these techniques are compared in
Ref. 8 and authors concluded that the combination of enhanced
Lee method and Wiener filter could significantly improve the
quality of OCT images of ex vivo bovine retina. The other filters
were developed based on an A-scan reconstruction procedure14

*Address all correspondence to: Mohammadreza Nasiriavanaki, E-mail: mrn.
avanaki@wayne.edu 1083-3668/2018/$25.00 © 2018 SPIE

Journal of Biomedical Optics 016013-1 January 2018 • Vol. 23(1)

Journal of Biomedical Optics 23(1), 016013 (January 2018)

http://dx.doi.org/10.1117/1.JBO.23.1.016013
http://dx.doi.org/10.1117/1.JBO.23.1.016013
http://dx.doi.org/10.1117/1.JBO.23.1.016013
http://dx.doi.org/10.1117/1.JBO.23.1.016013
http://dx.doi.org/10.1117/1.JBO.23.1.016013
http://dx.doi.org/10.1117/1.JBO.23.1.016013
mailto:mrn.avanaki@wayne.edu
mailto:mrn.avanaki@wayne.edu
mailto:mrn.avanaki@wayne.edu
mailto:mrn.avanaki@wayne.edu


or Bayesian estimation15 for OCT image speckle reduction.
Several other studies have been carried out on speckle reduction
by tuning the internal parameters in a particular despeckling
algorithm.16 Relying on more advanced filtering methods, sev-
eral speckle reduction methods were developed based on the
total variation (TV) concept,17 nonlocal mean (NLM) filtering,17

and block-matching 3-D filtering (BM3D).
A tissue’s cellular specification can be represented by optical

and textural features extracted from OCT images. Together with
the attenuation coefficients,18 textural features can provide valu-
able information about the texture and scattering properties of a
biological tissue.19,20 We introduced an expandable despeckling
framework, named learnable despeckling framework (LDF).
LDF decides which speckle reduction algorithm is most effec-
tive for a given image by learning a single quantitative image
assessment measure: the figure of merit (FOM). Among several
algorithms developed for speckle reduction in OCT images, we
utilized the above-mentioned digital filters to evaluate our pro-
posed framework. With any given image to LDF, it is retrained
and its performance improved. Any other algorithm can easily
be added to this framework; this is the expandable characteristic
of LDF. LDF’s architecture is composed of two main parts; an
autoencoder neural network and a filter classifier. In our pro-
posed scheme, initially the autoencoder learns to construct
a weighted FOM measure based on quality assessment mea-
sures, i.e., signal-to-noise ratio (SNR), contrast-to-noise ratio
(CNR),8,21–23 equivalent number of looks (ENL), mean struc-
tural similarity (MSSIM) index, and edge preservation index
(EPI), extracted from filtered OCT images in the following cat-
egories: (a) sliding window filters including median, mean, and
SNN; (b) adaptive statistical-based filters including Wiener,
homomorphic Lee, and Kuwahara; and (c) edge preserved
patch or pixel correlation-based filters including NLM, TV,
and BM3D. Then, the filter classifier identifies the most efficient
filter.

2 Materials and Methods
In Sec. 2.1, we present the digital filtering methods used in this
study. In Sec. 2.2, we describe statistical features that can be
extracted from an OCT image. In Sec. 2.3, we explain the
image quality assessment measures that are utilized to evaluate
the quality of the filtered images. Following that, in Sec. 2.4, we
introduce the architecture of the LDF in details. The OCT sys-
tem specifications are given in Sec. 2.5.

2.1 Digital Filtering Methods

Digital filters are means to implement mathematical operations
characterized by its transfer functions or, equivalently, on a
sampled signal or image, to improve its quality. A speckle
reduction method is designed and implemented based on the
statistical characteristics of speckle. There are three main classes
of digital filters such as sliding window, adaptive statistical
based, and edge preserved patch or pixel correlation-based fil-
ters. We explored 25 filters. Among them, filters #1 to #4 are
median filter with window sizes 3, 5, 7, and 9 pixels, respec-
tively; filters #5 to #8 are averaging filter with window sizes
3, 5, 7, and 9 pixels, respectively; filters #9 to #12 are symmetric
nearest neighborhood (SNN)16 with window sizes 3, 5, 7, and 9
pixels, respectively; filters #13 and #14 are Kuwahara24 with
window sizes of 3 and 5 pixels, respectively; filters #15 to
#18 are adaptive Wiener filter with window sizes 3, 5, 7, and
9 pixels, respectively;25 filters #19 to #22 are Lee filter with

window sizes 3, 5, 7, and 9 pixels, respectively; filter #23 is
a pixel-wise NLM filter;26 filter #24 is a TV16 filter; and filter
#25 is a BM3D.27

2.1.1 Sliding window filters

This class of filter includes mean, median, and SNN. These fil-
ters are time-efficient and can be used in real-time speckle
reduction applications, such as video-rate OCT imaging.
Although they effectively reduce speckle noise in the OCT
image, they smooth edges in the image and create blurriness.
Mean filter is a linear convolutional low-pass filter. In this filter,
a pixel value is replaced by the average of its neighboring pixel
values. In median filtering a pixel value in a window, M × N
pixels, is replaced by the value of the middle pixel in a vector
of pixel values sorted in an ascending order.28 This nonlinear
filter is more robust than the mean filter and preserves edges
more effectively. SNN is considered as an edge preserving slid-
ing window speckle reduction method. In SNN, initially the
opposite pairs of pixels in the support are compared and
replaced with the pixel value that is closest to the central
pixel value.16 Each pixel value is then replaced by the average
of processed pixel values in the support.

2.1.2 Adaptive statistical-based filters

This class of despeckling filter includes Kuwahara filter,11 adap-
tive Wiener filter, and Lee filter and utilizes statistical features e.
g., mean and variance, extracted from the image or a part of the
image. Kuwahara works by dividing the support into four
subregions.24 The central pixel is replaced with the average
of the quadrants with the lowest variance. Wiener filter tailors
itself to image local mean and local variance, i.e., the larger the
variance, the less smoothing is applied.12 Lee filter is an adaptive
filter that determines each pixel value according to the weighted
sum of the center pixel value; the local statistics (mean and vari-
ance) calculated in a square kernel surrounding the pixel with a
minimum mean square error (MMSE) approach.29

2.1.3 Patch or pixel correlation-based filters

This class of despeckling filter, includes NLM, TV, and BM3D,
are based on high inter- or intra-correlations among nearby pix-
els or patch of pixels. The NLM filter algorithm changes the
value of the target pixel by taking the average value of all or
selected pixels in the image and weighting them based on
their similarity to the target pixel. NLM filters are known to pre-
serve the textures.26 TV filters are based on an edge preserving
TV regularization process that relies on the fact that signals with
excessive detail have high TV, implying a large integral of abso-
lute gradient for the signal.30 TV provides a close match to the
ground truth image. TV efficiently suppresses the noise while
preserving the image details. BM3D is a collaborative filtering
method designed considering the fact that the image has a
locally sparse representation in the transform domain.27 The pro-
cedure begins with grouping similar image patches into three-
dimensional (3-D) groups. Then, a 3-D linear transformation is
applied on the image and a shrinkage procedure is performed.
Following this process, an inverse transformation is applied on
spectrum coefficients. Combining the patches results in an esti-
mation of the ground truth image. At the end, a Wiener filter is
used to form the final denoised image.31
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2.2 Image Textural and Optical Features

To quantify tissue properties, 27 features including 26 texture
features32,33 and 1 optical property are extracted from OCT
images. For each image, 6 first-order statistical features includ-
ing mean, variance, skewness, median, kurtosis, and entropy are
calculated. Twenty features from the gray-level co-occurrence
matrix (GLCM)34 i.e., homogeneity, contrast, energy, entropy,
and correlation in four directions, 0 deg, 45 deg, 90 deg, and
135 deg, are calculated as textures.35 The optical property cal-
culated for the OCT image is the attenuation coefficient. We
used Vermeers’ method36 to calculate the attenuation coefficient

for each pixel in the OCT intensity image. We utilized principal
components analysis (PCA) algorithm to reduce the dimension
of the features (from 27 to 5) with the least loss of information.
PCA is a projection-based method that reduces the computa-
tional complexity through construction of orthogonal principal
components.37

2.3 Image Quality Assessment Measures

The performance of the filtering methods is assessed using well-
established objective assessment measures, including SNR,
CNR,8,21–23 ENL, MSSIM, and EPI.9,38,39 SNR compares the

Fig. 1 (a) Block diagram of FOM calculation, (b) the structure of autoencoder, X 1 to X 5 are nodes of the
encode layer, w1 to w6 and w 0

1 to w 0
5 are the weigh parameters, and X̄ 1 to X̄ 5 are nodes of the decode

layer. FOM is a node of the hidden layer.

Fig. 2 The architecture of the classifier. The ANN is trained to select the best filter for the given input OCT
image. X 1 to X 5 are input nodes, H1 to H10 are hidden nodes, and Y 1 to Y 25 are output nodes.
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signal of an object in the OCT image to its background noise.
CNR is a measure of the signal fluctuations to the noise. The
definition of SNR and CNR is given in Eqs. (1) and (2), respec-
tively. Both SNR and CNR are calculated over a number of ROIs
(10 in this study)

EQ-TARGET;temp:intralink-;e001;63;697SNR ¼ 10 log10

�
medianðI2linÞ

σ2lin

�
; (1)

EQ-TARGET;temp:intralink-;e002;63;653CNR ¼ 1

R

�XR
r¼1

ðμr − μbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σr2 þ σb2

p
�
; (2)

where Ilin is the linear magnitude of pixel intensities in a homo-
geneous region of interest (ROI) where there is tissue, σ2lin is the
variance of the pixel values in the background region, μb and σb
represent the mean and variance of the background region, μr
and σ2r represent the mean and variance of the r 0th ROI.21

ENL is a measure of smoothness in a homogeneous ROI and
can be calculated as

EQ-TARGET;temp:intralink-;e003;326;752ENL ¼ 1

H

XH
h

μ2hσ
2
h; (3)

where μ2h and σ2h are the mean and variance of homogeneous
ROIs (H). The MSSIM index quantifies image quality referring
to its structural similarities and is based on local statistic
calculations

EQ-TARGET;temp:intralink-;e004;326;670MSSIM¼ 1

MN

XM
i¼1

XM
j¼1

½2μÍði;jÞμ ^́Iði;jÞ
þC1�½2σ Íði;jÞσ ^́Iði;jÞ

þC2�
½μ2

Íði;jÞ
þμ2^́Iði;jÞ

þC1�½σ2Íði;jÞ þσ2^́Iði;jÞ
þC2�

;

(4)

where M and N are the sizes of the image in transverse direc-
tions, I is the original image, and Î is the despeckled image. Íði;jÞ

and ^́Iði;jÞ are derived by convolving the original and despeckled
images with a symmetric Gaussian kernel with window size 11
to calculate their local variance and mean, i.e., σÍði;jÞ , σ ^́Iði;jÞ

, μ ^́Iði;jÞ
,

and μ ^́Iði;jÞ
. C1 and C2 are the constants: C1 ¼ 6.502 and C2 ¼

58.522.39 The ground truth image is generated by averaging

Fig. 3 Block diagram of the LDF algorithm. OCT, optical coherence tomography, QA, quality assess-
ment; FOM, figure of merit; and GLCM, gray-level co-occurrence matrix. QA measures include SNR,
CNR, ENL, MSSIM, and EPI, n is the number of filters (in this study n ¼ 25), SSE is the sum square
error, chosen as the performance function.
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170 (can be considered as spatial compounding method40 since
the images are taken from slightly misaligned samples due to
imperfect optical scanners used in the OCT machine) B-scan
images to calculate MSSIM index. EPI is a correlation-based
method that shows how the edges in the image degrade

EQ-TARGET;temp:intralink-;e005;63;697EPI ¼
P

M
i¼1

P
N
j¼1½ΔIði;jÞ − μΔIði;jÞ �½ΔÎði;jÞ − μÎði;jÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
i¼1

P
N
j¼1½ΔIði;jÞ − μΔIði;jÞ �½ΔÎði;jÞ − μÎði;jÞ �

q ; (5)

where I indicates the original image, Î is the despeckled image,
ΔI is an edge detected image with a Laplacian operator, μ and σ
are the mean and variance of the image, μb and σ2b indicate the
mean and variance of the background, respectively.

2.4 Learnable Despeckling Framework

The architecture of LDF includes two main parts: (i) an autoen-
coder neural network and (ii) filter classifier. In Sec. 2.4.1, we
explain the architecture of the autoencoder utilized to learn the
FOM. In Sec. 2.4.2, we describe the architecture of the classifier
that can be trained based on FOM to predict the most effective
despeckling filter.

2.4.1 Autoencoder architecture

An FOM is defined as a single representative measurement to
assess the performance of each filter. In this study, we define the
FOM based on a set of five OCT quality measures including
SNR, CNR, ENL, EPI, and MSSIM. The goal is to find an FOM
to best represent the quality of an image. To do this, we utilized
an autoencoder artificial neural network (ANN) with three

layers for unsupervised training of FOM. The structure of the
autoencoder is shown in Fig. 1. As it is shown, layer 1 contains
six neurons, including SNR, CNR, ENL, EPI, MSSIM, and
a bias neuron. Layer 2 includes one neuron to estimate the
FOM and a biased neuron. Sigmoid transfer function, the sto-
chastic gradient descent optimizer, and MSE as the loss function
are used in training the autoencoder. Autoencoders work well
(accuracy above 90% and faster convergence) if initially all
the weights are the same. Following the work in Ref. 8, for
applications similar to ours, the initial weights of one is the best
choice.41 The autoencoder is trained to calculate the FOM by
utilizing the quality assessments measures obtained from the fil-
tered images. In this experiment, the final weights of the encoder
layer were calculated as: [w1; w2; w3; w4; w5] = [0.1237, 0.2387,
0.0296, 0.1987, 0.4093], where [w1; w2; w3; w4; w5] corresponds
to [SNR, CNR, ENL, EPI, MSSIM]. Based on this experiment,
one can conclude that the MSSIM has a more significant effect
on the FOM, whereas ENL has less significant effect.

2.4.2 Classifier architecture

We used FOMmeasure to classify the despeckling filters. In this
study, we utilized another ANN as the classifier. The classifier
predicts the most effective filter (the winner filter) for the given
input image. The designed ANN classifier includes three layers,
the input layer, the hidden layer, and the output layer. The input
layer includes five neurons corresponding to five features
extracted from the image (the number of extracted features is
initially 27, which is reduced to 5 by utilizing a PCA algorithm).
The hidden layer includes 10 neurons. Finally, the output layer
includes 25 neurons, which is equal to the number of filters in
the experiment. The stochastic gradient descent optimizer and
sum square error (SSE) as the loss function is used in training

Fig. 4 Schematic diagram of the multibeam swept-source OCT; M, mirror; C, optical coupler; PD, photo-
detector; and OA, optical attenuator.
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the classifier. Figure 2 shows the architecture of the classifier.
The value of each neuron in the output layer is a real number
between 0 and 1, which represents the probability of the corre-
sponding filter being the winner filter. At the end, the filter with
the highest probability will be selected as the winner filter.
Before training, the features are normalized, once over each
image and once for the ensemble of all images.

The flowchart of the LDF (including classifier’s training and
testing steps) is given in Fig. 3. We are provided with a set of
OCT row skin images. The images are initially linearized and
normalized. The processed images are then passed through
two parallel channels, A and B. In channel A, we extract the
optical and textural features of the images and convert the set
of the correlated features to a smaller set of linearly uncorrelated
features by utilizing the PCA algorithm. In channel B, we apply
all the filtering methods on the image to create a set of filtered
images. Then, we calculate the FOM of each filtered image
using our pre-trained autoencoder. Thereafter, the filter that
achieves the highest FOM is chosen as the winner filter and

hence is the class label of the selected image. This process
repeats until all images have a class label. At the end, the clas-
sifier is trained and tested using the selected features and the
class labels.

2.5 OCT System Specifications

We use a multibeam swept-source OCT system (SS-OCT)
(VivoSight, Michelson Diagnostic™ Inc., United Kingdom) for
this study (Fig. 4). The lateral and axial resolutions are 7.5 and
10 μm, respectively. The scan area of the OCT system is 6 mm
(width) ×6 mm (length) ×2 mm (depth). A tunable broadband
laser source with the central wavelength of 1305� 15 nm, suc-
cessively sweeps through the optical spectrum, leads the light to
four separate interferometers, and forms four consecutive con-
focal gates. The interference spectrum generated by the fre-
quency sweep, over the whole bandwidth in time, is given
with respect to frequency. The 10-kHz sweep is the frequency
that one reflectivity profile (A-scan) is generated. A B-scan is

Fig. 5 Histogram of winner filter for 285 OCT images with their corresponding execution time. Sliding
window filters are used here. Histogram (a) illustrates the number of images that each filter is winning on,
histogram (b) shows running time for each filtering method, and histogram (c) magnifies histogram (b) in
three distinct scales to elaborate the running time comparison between different window sizes of aver-
age, median, and SNN filters.
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Fig. 6 Results of despeckling using sliding window filters on three test images. Original OCT images
taken from (I_1) healthy thumb of a 24-year-old male, (I_2) acne diseased outer arm of a 56-year-
old female, (I_3) back of a healthy 25-year-old male, (a–d) despeckled images using averaging with
window sizes 3, 5, 7, and 9, respectively, (e–h) despeckled images using median filters with window
sizes 3, 5, 7, and 9, respectively, (i–l) despeckled images using SNN filters with window sizes 3, 5,
7, and 9, respectively. The yellow boxes indicate the winner filter based on FOM measure, the red
boxes indicate the winner filter chosen by the classifier in sliding window filters subgroup.
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then generated by combining several adjacent A-scans for differ-
ent transversal positions of the incident beam.

Due to the multibeam configuration, our Vivosight OCT can
be considered approximately as a discrete dynamic focus
OCT,42 and with a good approximation, these parameters can
be neglected. Therefore, compensation for confocal parameter
of the lens and for the fall in laser coherence was not performed.

3 Results and Discussion
We design three sets of experiment to demonstrate whether the
FOM is a reliable merit and if it could be used as the class label
in training the classifier (see Sec. 3.1). The experiments are per-
formed based on three main classes of digital filters, i.e., sliding
window, adaptive statistical based, and edge preserved patch or
pixel correlation-based filters. Following these experiments, in
Sec. 3.2, we use the fivefold cross-validation technique to esti-
mate the accuracy of the trained classifier.

3.1 Figure of Merit Learning and Validation

The 27 features are computed from 25 ROIs in each image. For
SNR and CNR calculations, 20 ROIs are selected from the tissue
region and 10 ROIs from the background region. For computa-
tion of other three quality assessment measures, the entire fil-
tered image is used. All the 25 digital filters described in
Sec. 2 were implemented in MATLAB® 2016. We used a Dell
desktop computer with an Intel Core i7, 3.10 GHz CPU and
8 GB of RAM to implement the algorithms. The OCT machine
is an FDA approved system for skin imaging, thus, in vivo skin
images were collected. Images were acquired from both healthy
and diseased individual’s skin. OCT images of healthy skin
were taken from various body locations, to account for the

variety of skin architecture found on the body. Additionally,
OCT images of diseased skin were collected, including non-
melanoma skin cancer, psoriasis, and acne. The imaging was
performed in Oakwood Clinic, Dearborn, Michigan. The institu-
tional review board at Wayne State University (Independent
Investigational Review Board, Detroit, Michigan) approved
the study protocol. For training the classifier, the number of
input images was 285 × 25 ¼ 7125, where 285 is the number
of images and 25 is the number of filters. Based on a fivefold
cross-validation method, out of 7125 OCT images, 228 × 25 ¼
5700 images were used for training the classifier, and the
remaining (i.e., 1425 images) were used for test.43 The accuracy
of the classifier is obtained as 97%. In the following, three
experiments are performed based on the three main classes of
digital filters, i.e., sliding window, adaptive statistical-based,
and edge preserved patch or pixel correlation-based filters.

The histogram of winner filters for 285 test sets in the sliding
window filter category as well as their execution time are shown
in Fig. 5. According to the graph, the average filter with the win-
dow size 5 is the winner filter for despeckling, most of the time.
Median filter with the window size 5, and SNN with the window
size 5 are the next two winner filters.

In Fig. 6, three original OCT images and their despeckled
images using sliding window filters are shown. In the results
presented in Fig. 6, the classifier has only learned the sliding
window filters subgroup rather than the entire filter pool. The
yellow boxes in the figure indicate the winner filters based
on FOM criterion. For three test images here, the average filter
with the window size 5 was chosen as the winner filter. The red
boxes indicate the winner filter chosen by the classifier in sliding
window filters subgroup.

Fig. 7 Histogram of winner filter for 285 OCT images with their corresponding execution time. Adaptive
statistical filters are used here. Histogram (a) illustrates the number of images that each filter is winning
on and (b) shows the running time for each filtering method.
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Figure 7 shows the histogram of winner filters in the adaptive
statistical filter category for 285 OCT images as well as their exe-
cution time. According to this graph, for our image set, the Lee
filter with window size 5 is chosen for all the images that were
used in this study when FOMwas the quality assessment criterion.

In Fig. 8, original OCT images and despeckled ones using
adaptive statistical filters are shown. Here the classifier has
only learned the adaptive statistical filtering subgroup. The yel-
low boxes in the figure indicate the winner filters chosen based
on FOM criterion, i.e., here, Lee filter with window size 5. The
red boxes indicate the winner filters chosen by the classifier in
the adaptive statistical filtering subgroup.

Figure 9 shows the histogram of winner filters in the patch or
pixel correlation filter category as well as their execution time.
According to this graph, when FOM is the quality assessment
criterion, in most cases BM3D filter is chosen as the winner fil-
ter. NLM and TV are the next winners, respectively.

In Fig. 10, original OCT images and despeckled ones
using patch or pixel correlation filters are shown. In this
case, the classifier has only learned the patch or pixel correlation
filtering subgroup. The yellow boxes in the figure indicate the
winner filters selected based on FOM criterion, i.e., BM3D
and NLM. The red box indicates the winner filter chosen by
classifier.

Fig. 8 Results of despeckling using adaptive statistical filters on OCT images used in Fig. 6 (I_1–I_3).
(a–b) Despeckled images using Kuwahara filter with window sizes 5 and 9, respectively, (c–f) despeckled
images using Wiener filter with window sizes 3, 5, 7, and 9, respectively, (g–j) despeckled images using
Lee filters with window sizes 3, 5, 7, and 9, respectively. The yellow boxes indicate the winner filter based
on FOM measure, the red boxes indicate the winner filter chosen by the classifier in adaptive statistical
filters subgroup.
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3.2 Classifier Training and Performance Evaluation

With the above experiments and the obtained results, we dem-
onstrated that FOM is a reliable merit and could be used as the
class label in the training of the classifier. This was shown by
comparing the winner filter chosen based on FOM (calculated
regardless of image textural features and relying only on quality
assessment measures) and that chosen based on the classifier
(trained based on image’s features). We evaluated the selection
rate of filters in all three categories together for the 285 images
(see Fig. 11).

Figure 12 (I_1–I_6) shows the results of LDF on six OCT
test images (a1 to a6) with their corresponding winner filter pre-
dicted by the classifier when all 25 filters are considered.

Figures 12(b)–12(d) show normalized FOM values for all 25
filters for the OCT images. Comparing the results of the winner
filter chosen by classifier with that chosen by the normalized
FOM, it shows that the classifier can predict the winner filter
with high accuracy, without having to know the result of
each individual filter and only based on the features extracted
from the image. In this experiment, the classifier accuracy was
measured as 97% based on a fivefold cross-validation method.42

Regarding the execution time, we observed that even though
the patch or pixel correlation category filters filtered images
most efficiently, their execution time is in the order of seconds,
whereas the execution time of most of the sliding window filters
are in millisecond range. The choice of having a better quality
(based on FOM) or shorter execution time can be added to LDF
criteria.

Speckle is an artifact that affects image quality and resolution
of OCT images. Computer reduction of speckle has been a sub-
ject of interest since the early times of laser speckle and digital
image processing,2,3,44,45 and their application to OCT have led
to a large number of publications over nearly 20 years. However,
several groups including our group have studied different

Fig. 9 Histogram of winner filter of 285 OCT images with their corre-
sponding execution time. Patch or pixel correlation filters are used
here. Histogram (a) illustrates the number of images that each filter
is winning on and (b) shows the running time for each filtering method.

Fig. 10 Results of despeckling using adaptive statistical filters on OCT images used in Fig. 6 (I_1–I_3).
(a) Despeckled images using NLM filter, (b) despeckled images using TV filter, (c) despeckled images
using BM3D filter. The yellow boxes indicate the winner filters based on the FOMmeasure, the red boxes
indicate the winner filter chosen by the classifier in patch or pixel correlation filters subgroup.

Fig. 11 The probability map (
Q
) of selecting each filter based on clas-

sifier’s results for the 285 OCT images used in this study.
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speckle reduction methods for OCT images, finding an optimum
speckle reduction filter for an image or image set has not been
comprehensively explored. We propose a procedure; we called it
LDF, to learn the most effective speckle reduction method for
one given set of images. We believe that LDF could help in
choosing the most appropriate despeckling filter based on tissue
morphological, textural, and optical features.

Using a more diverse and a larger number of OCT images
(both healthy and diseased) for training the classifier, utilizing
a more efficient training algorithm along with a larger number of
features and quality assessment measures are planned as our
future work.

4 Conclusion
Speckle is an artifact that affects image quality and resolution.
Speckle “noise” reduction has been a subject of interest since
spatially coherent lasers were invented. The necessity of such
algorithms for OCT images has led to a large number of algo-
rithms in the literature. We propose an expandable and learnable
framework to organize these filters in an intelligent manner. The

framework finds the most suitable speckle reduction algorithm
for a given image. We called this framework LDF. LDF learns an
FOM as a single quantitative image assessment measure con-
structed from SNR, CNR, SNL, EPI, and MSSIM using an
autoencoder neural network. LDF was then trained to decide,
which speckle reduction algorithm is most effective for a given
image based on the image textural and optical features. The clas-
sification accuracy of LDF is determined as 97%. We tested
LDF on 285 images. The quality of the despeckled images
using LDF is not only improved in one quality metric but also
in a combination of all quality metrics. LDF can also be custom-
ized based on a sole feature that the user requests. Utilizing a
larger dataset for training the encoder and classifier as well as
utilizing a more efficient training algorithm along with a larger
number of uncorrelated features as well as quality assessment
measures are planned as our future work.
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Fig. 12 (left) Results of LDF on six OCT test images with the corresponding winner filter predicted by the
classifier. (I_1–I_6) Six original OCT images, and their winner filters, i.e., (a_1–a_3) despeckled images
by BM3D filter as the selected optimum filter, (a_4) despeckled image by NLM filter as the selected opti-
mum filter, (a_5) despeckled image using average filter with window sizes 5 as the selected optimum
filter, (a_6) despeckled image using Lee filter with window sizes 5 as the selected optimum filter. (right)
Normalized FOM for all the 25 filters for the same six OCT images for (b) sliding window filters, (c) adap-
tive filters, and (d) path- or pixel-based filters.
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